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Caveolin-1 in sarcomas: friend or foe?
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AbstrAct:
Sarcomas represent a heterogeneous group of tumors with a complex and 
difficult reproducible classification. Their pathogenesis is poorly understood and 
there are few effective treatment options for advanced disease. Caveolin-1 is a 
multifunctional scaffolding protein with multiple binding partners that regulates 
multiple cancer-associated processes including cellular transformation, tumor 
growth, cell death and survival, multidrug resistance, angiogenesis, cell migration 
and metastasis. However, ambiguous roles have been ascribed to caveolin-1 
in signal transduction and cancer, including sarcomas. In particular, evidence 
indicating that caveolin-1 function is cell context dependent has been repeatedly 
reported. Caveolin-1 appears to act as a tumor suppressor protein at early stages 
of cancer progression. In contrast, a growing body of evidence indicates that 
caveolin-1 is up-regulated in several multidrug-resistant and metastatic cancer 
cell lines and human tumor specimens. This review is focused on the role of 
caveolin-1 in several soft tissue and bone sarcomas and discusses the use of this 
protein as a potential diagnostic and prognostic marker and as a therapeutic target.

INtrODUctION

Sarcomas constitute a heterogeneous category of 
neoplasms composed mostly of uncommon tumors of 
different histology, biology, and outcome. According to its 
molecular features, soft-tissue and bone sarcomas can be 
classified in two big groups: associated to specific genetic 
alterations or without specific molecular patterns [1]. One 
third of sarcomas have well defined genetic alterations. 
The identification of these genetic patterns has supposed a 
revolution since some of them have diagnosis, prognosis 
and therapeutic implications [2]. They are further divided 
in two particular categories: sarcomas with specific 
chromosomal translocations and sarcomas with specific 
gene mutations [3]. 

About 15-20% of sarcomas are associated with 
specific chromosomal translocations involving, most 
commonly, a member of the TET family (EWS, FUS or 
TAF15) and a transcription factor. These translocations 
are thought to happen early in carcinogenesis, promoting 
some of the processes that finally lead to the appearance 

of cancer cells [4]. Single gene mutations in certain group 
of sarcomas encode proteins leading to tumor formation. 
Usually, the product derived from the mutated gene is a 
transmembrane tyrosine kinase receptor constitutively 
activated in a ligand-independent manner. This activation 
triggers intracellular pathways that finally lead to 
carcinogenesis [5]. 

About two thirds of sarcomas lack specific genetic 
alterations. Adult sarcomas frequently belong to this 
group and complex karyotypes are often found instead of 
chromosomal translocations. In this category of sarcomas, 
p53 inactivation seems to be an early and common event 
in carcinogenesis. Anomalies in the retinoblastoma 
pathway are also frequently found but no specific patterns 
of abnormalities can be described in this subgroup of 
tumors [6]. Thus, tumors with the same diagnosis present 
different molecular patterns and different chromosomal 
aberrations depending on each case.
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cAVEOLIN-1

Caveolin-1 (CAV1) belongs to a family of proteins 
named caveolins. There are three members: CAV1, 2 and 3, 
which can form homo- and hetero-oligomeric complexes 
mediated by domains in the N- and C-terminal domains 
[7]. CAV1 and 2 are ubiquitously expressed in a variety 
of cell types such as endothelial cells, pneumocytes, 
adipocytes and fibroblasts [8]. Expression of CAV2 nearly 
always mirrors that of CAV1. This may be, in part, due 
to requirement of CAV1 to transport CAV2 to the plasma 
membrane where it can be incorporated into caveolae [9]. 
In contrast, expression of CAV3 is restricted to striated 
muscle cells and is a component of the sarcoplasmic 
reticulum of skeletal, cardiac and smooth muscle [10, 11]. 
CAV1 is the major structural protein in caveolae; small 
invaginations within the plasma membrane. Caveolae 
are involved in signal transduction, wherein CAV1 acts 
as a scaffold to organize multiple molecular complexes 
regulating a variety of cellular events, for a complete 
review see [12]. However, CAV1 might be present on flat 
plasma membrane or/and on different organelles (Figure 

1). Whether its role is different at such diverse locations 
remains to be elucidated. Proteins that associate with 
CAV1 contain the canonical caveolin-1 binding domain, 
фxфxxxф or фxxxxфxxф (where ф= Trp, Phe or Tyr). 
Interaction with a large majority of these proteins occurs 
through the caveolin scaffolding domain (CSD) (Figure 
1). It is the ability to interact with numerous proteins 
that makes CAV1 a keystone in signaling by organizing 
signaling complexes at the inner plasma membrane [12]. 

CAV1 has been shown to possess an ambiguous 
role in cancer and to act both as a tumor suppressor or 
promoter. Both activities had been described for CAV1 in 
breast, oral, colon, lung, uterus and thyroid cancer. This 
apparent contradiction may be explained by different 
interacting partners during cancer progression [13], and 
it is proposed that in vivo, CAV1 plays a tissue and stage 
specific modulatory role in cancer [14]. 

cAV1 IN sArcOMAs

Because CAV1 is most abundantly expressed in 
terminally differentiated mesenchymal cells such as 

FIGUrE 1: cAV1 localization options inside the cell. 1 In caveolae complexed with cavins interacting with tyrosine-kinase or 
G-protein coupled receptors. 2 Out of caveolae interacting with the same receptors. 3 At the endoplasmic reticulum synthesis of CAV1. 4 
From the plasma membrane to the golgi apparatus caveolae-dependent endocytic functions. 5 In the cytoplasm interacting with still unknown 
proteins. Inset Structure and membrane topology of CAV1 showing phosphorylation sites, the caveolin scaffolding domain (CSD), and the 
transmembrane domain.   
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smooth muscle cells, adipocytes and endothelial cells, 
Wiechen et al. investigated whether it was a tumor 
suppressor in sarcomas [15]. By immunohistochemistry 
they found that CAV1 expression was high in fibroblasts, 
smooth muscle cells, adipocytes and endothelial cells with 
a fine granular membranous and a diffuse cytoplasmic 
staining pattern. Moreover, levels of CAV1, comparable 
to normal mesenchymal cells, were retained in all benign 
mesenchymal tumors, including 5 of 5 fibromatoses, 7 of 
7 leiomyomas, 4 of 4 lipomas, and 6 of 6 hemangiomas. 
CAV1 expression was found to be absent or strongly 
reduced in 3 of 3 fibrosarcomas, 17 of 20 leiomyosarcomas, 
5 of 8 angiosarcomas, 15 of 18 malignant fibrous 
histiocytomas, and 8 of 8 synovial sarcomas. Therefore it 
was concluded that CAV1 is a candidate tumor suppressor 
gene in sarcomas [15]. Accordingly, the analysis of CAV1 
in Gastrointestinal stromal tumors (GISTs) suggested that 
this protein may also act as a tumor suppressor [16]. The 
authors showed that in a sample of 108 GISTs patients 
86.1% (93 patients) did not express CAV1. However, there 
was no correlation between the caveolin-1 expression 
status and any of the clinicopathologic variables, including 
mitosis and tumor grade. The expression of caveolin-1 
was not correlated with other immunohistochemical 
marker proteins including, c-kit, CD34 and SMA. On 
the univariate analysis, CAV1 expression was not a 
significant predictor of the disease-free survival for GIST 
patients [16]. Other studies focusing in the expression of 
CAV1 in specific sarcomas have shown that this protein 
is expressed in the cytoplasm of cells from a variety of 
mesenchymal benign tumors, including the adipocyte of 
all types of lipoma and well-differentiated liposarcoma, 
the myocyte of angiomyolipoma, leiomyoma, and well-
differentiated leiomyosarcoma [17]. The immunostaining 
properties were uniform among the cells of each of these 
lesions, and gender and age did not influence the results. 
However, all of the malignant mesenchymal tumors 
which are poorly differentiated and dedifferentiated, 
including leiomyosarcoma and liposarcoma, showed 

weak immunoreactivity or failed to stain with CAV1 [17], 
suggesting that loss of CAV1 might be a necessary step 
towards a differentiation block typical of malignancy and 
visible in most soft tissue sarcomas. Interestingly, we 
have observed high expression of CAV1 in some cell lines 
representative of these sarcomas, such as leiomyosarcoma 
and synovial sarcoma (Figure 2). Therefore, whether the 
expression of CAV1 in these cells correlates with the 
degree of differentiation and consequently it relates to 
any function, requires further investigation. Nevertheless, 
there are some functional studies about CAV1 in specific 
sarcomas such Ewing’s sarcoma family of tumors (ESFT), 
Osteosarcoma and Rhabdomyosarcoma trying to figure 
out the clinical importance of this protein that we will 
review thereafter:

Ewing’s sarcoma family of tumors

ESFT includes aggressive bone-associated 
malignancies that affect the pediatric population. Nearly all 
ESFT patients already have micrometastases at diagnosis, 
resulting in a >95% relapse rate when treated locally 
and a 40% relapse rate after systemic chemotherapy. 
Most ESFT harbor a reciprocal translocation, t(11;22)
(q24;q12), which links a strong transcriptional activation 
domain from EWS to the ETS DNA-binding domain of 
the transcription factor FLI-1 [18]. The EWS/FLI-1 fusion 
is required for Ewing’s sarcoma oncogenesis, as inhibition 
of its function results in the loss of transformation of 
ESFT cells [19-23]. CAV1 was identified as a metastasis-
associated gene that is a transcriptional target of EWS/FLI-
1 as well as an important determinant of ESFT malignant 
phenotype and tumorigenicity [24]. Using antisense and 
short hairpin RNA-mediated gene expression knockdown, 
array analyses, chromatin immunoprecipitation methods, 
and reexpression studies, the authors showed that CAV1 
is a new direct target of EWS/FLI-1 that is overexpressed 
in ESFT cell lines and tumor specimens and is necessary 
for ESFT tumorigenesis. CAV1 knockdown led to up-
regulation of Snail and the concomitant loss of E-cadherin 
expression. Consistently, loss of CAV1 expression 
inhibited the anchorage-independent growth of EWS cells 
and markedly reduced the growth of Ewing’s sarcoma 
cell-derived tumors in nude mice xenografts, indicating 
that CAV1 promotes the malignant phenotype in Ewing’s 
sarcoma carcinogenesis. Reexpression of CAV1 or 
E-cadherin in CAV1 knockdown Ewing’s sarcoma cells 
rescued the oncogenic phenotype of the original Ewing’s 
sarcoma cells, showing that the CAV1/Snail/E-cadherin 
pathway plays a central role in the expression of the 
oncogenic transformation functions of EWS/FLI-1 [24]. 
Later on, CAV1 with other 3 proteins was considered 
a differential diagnostic immunomarker for Ewing’s 
sarcoma/PNET in a sample of 415 genetically confirmed 
cases [25].

Another study from the same authors showed that 

FIGUrE 2: Western blot analysis showing cAV1 
expression  in different sarcoma cell  lines: Ewing 
sarcoma (A673, rDEs); Alveolar rhabdomyosarcoma 
(rh4, rH41); Embryonal rhabdomyosarcoma (A204, 
rD); Osteosarcoma (U2Os, sAOs); Liposarcoma (sW-
872); Myxoid Liposarcoma (402-91); Leiomyosarcoma 
(sKLMs-1); Fibrosarcoma (Ht-1080) ; synovial sarcoma 
(1273/99, sW-982).           

β-Actin

cAV1
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CAV1 expression determines the sensitivity of ESFT 
cells to clinically relevant chemotherapeutic agents [26]. 
Analyses of endogenous CAV1 levels in several ESFT cells 
and ectopic CAV1 expression into ESFT cells expressing 
low endogenous CAV1 showed that the higher the CAV1 
levels, the greater their resistance to drug treatment. 
Moreover, results from antisense- and shRNA-mediated 
gene expression knockdown and protein re-expression 
experiments demonstrated that CAV1 increases the 
resistance of ESFT cells to doxorubicin- and cisplatin-
induced apoptosis by a mechanism involving the activating 
phosphorylation of PKCalpha. CAV1 knockdown in 
ESFT cells led to decreased phospho-PKCalpha levels 
and a concomitant sensitization to apoptosis, which were 
reversed by CAV1 re-expression. These results were 
recapitulated by PKCalpha knockdown and re-expression 
in ESFT cells in which CAV1 was previously knocked 
down, thus demonstrating that phospho-PKCalpha acts 
downstream of CAV1 to determine the sensitivity of 
ESFT cells to chemotherapeutic drugs. These data, along 
with the finding that CAV1 and phospho-PKCalpha are 
co-expressed in approximately 45% of ESFT specimens 
tested [26], implied that targeting CAV1 and/or PKCalpha 
may allow the development of new molecular therapeutic 
strategies to improve the treatment outcome for patients 
with ESFT. 

Our group has demonstrated that CAV1 controls 
migration and invasion in ESFT cells in culture by 
mechanisms involving the production and activation of 
metalloproteinases as well as lung colonization in nude 
mice by regulating SPARC expression levels [27], adding 
relevance to the key roles that CAV1 plays in ESFT biology. 
Moreover, by ectopic expression of a Myc-tagged CAV1 
protein in ESFT cells, as well as the supplementation of 
culture media with purified CAV1 protein followed by 
its intracellular localization using immunofluorescence, 
we showed that ESFT cells secrete CAV1. Likewise, we 
showed that ESFT cells are able to take up the secreted 
protein, and that extracellular CAV1 enhances EWS cell 
proliferation [28]. Whether this secreted CAV1 has roles 
other than proliferation remains to be elucidated.

Osteosarcoma

Osteosarcoma (OS) is the most common primary 
tumor of bone, occurring predominantly in the second 
decade of life. High-dose cytotoxic chemotherapy 
and surgical resection have improved prognosis, with 
long-term survival for patients with localized (non-
metastatic) disease approaching 70%. At presentation 
approximately 20% of patients have metastases and 
almost all patients with recurrent OS have metastatic 
disease, and cure rates for patients with metastatic or 
recurrent disease remain poor [29]. CAV1 has been shown 
to act as an oncosuppressor in human osteosarcoma; its 
down-regulation is part of osteoblast transformation and 

osteosarcoma progression [30]. In the study the authors 
did a survey of 6-year follow-up that indicated a better 
overall survival for osteosarcoma expressing a level of 
CAV1 similar to osteoblasts. Moreover, the majority of 
primary osteosarcoma showed significantly lower levels 
of CAV1 than normal osteoblasts suggesting its role as an 
oncosuppressor. Mechanistically, the authors showed that 
Met-induced osteoblast transformation was associated 
with CAV1 down-regulation. In vitro, osteosarcoma 
cell lines forced to overexpress CAV1 showed reduced 
malignancy with inhibited anchorage-independent growth, 
migration and invasion. In vivo, CAV1 overexpression 
abrogated the metastatic ability of osteosarcoma cells. 
They also showed that c-Src and c-Met tyrosine kinases, 
which are activated in osteosarcoma, co-localized with 
CAV1 and were inhibited upon CAV1 overexpression 
[31]. In contrast, in a recent immunohistochemical study 
of 61 xenotransplanted osteosarcoma tumors it was shown 
that CAV1 showed immunoreactivity in the majority 
of the tumors with no significant variation among the 
subtypes or subsequent passages; even in the majority of 
the metastatic cases. Nevertheless, the authors could not 
conclude that CAV1 is a marker either for good or for bad 
prognosis [31], suggesting that the role of CAV1 in OS 
requires further investigation.

rhabdomyosarcoma

Rhabdomyosarcoma, a neoplasm composed of 
skeletal myoblast-like cells, represents the most common 
soft tissue sarcoma in children. It can be divided into 
two major histological subtypes: so-called embryonal 
and alveolar rhabdomyosarcoma [32]. The embryonal 
subtype is the most common and predominates at 
favorable anatomic sites such as the orbit, other head 
and neck sites, and the genitourinary tract. The alveolar 
subtype occurs in both children and adults, and it is 
more common at extremity sites and carries an overall 
inferior prognosis [32]. Rhabdomyosarcoma is defined 
histologically as a small round blue cell tumor which 
expresses markers of myogenic differentiation, such as 
MyoD, myogenin, desmin, and actin. These myogenic 
markers discriminate it from other soft tissue or bone 
sarcomas, but late markers of myogenic differentiation 
are absent, and rhabdomyosarcoma cells do not form 
myotubes or functional muscle units [33]. Alveolar 
rhabdomyosarcoma is associated in the vast majority of 
cases with a specific balanced translocation involving 
chromosomes 2 and 13 [t(2;13)] or, less commonly, 1 and 
13 [t(1;13)] [34, 35], each of which encodes a novel fusion 
protein, PAX3/FOXO1 and PAX7/FOXO1, respectively. 
In skeletal muscle, CAV1 and Caveolin-3 (CAV3), a 
member of the caveolin family expressed specifically in 
muscle tissue, are both expressed. In particular, CAV1 
expression is restricted to satellite cells, which represent 
a pool of quiescent reserve elements; whereas CAV3 
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is expressed in myoblasts undergoing differentiation 
and in mature fibers [36, 11], suggesting that a timely 
coordinated expression of CAV1 and CAV3 contributes 
to skeletal muscle homeostasis. In rhabdomyosarcomas, 
CAV3 is considered a sensitive and specific marker of 
both subtypes [37]. In contrast to other sarcomas, CAV1 
has been suggested to be a marker of poor differentiation 
for rhabdomyosarcomas [38] associating its expression 
to a better prognostic entity. CAV1 was predominantly 
expressed in the embryonal subtype and its expression 
was associated to an immature cell phenotype. On the 
other hand, most alveolar rhabdomyosarcoma tumors 
exhibiting advanced degree of maturation had very low 
levels of CAV1 suggesting that CAV1 might be a tumor 
suppressor in alveolar rhabdomyosarcomas. However, the 
number of samples used in this study was very small and 
further analysis using a bigger sample would be highly 
desirable.

PErsPEctIVE

In the recent years it has been relatively well agreed 
that depending on tumor type, CAV1 can have either tumor 
suppressor or oncogenic effects on a cell. Many proteins 
contain putative CAV1 binding domains. The effect of CAV1 
on tumor phenotype seems to be very heterogeneous and 
strongly dependent on the molecular partners interacting 
with this protein [13]. Several important proteins involved 
in cell transformation and growth have been shown to 
interact with CAV1 including the molecules that stimulate 
tumor cell invasion and cytoskeletal rearrangement such 
as growth factor receptors, protein kinases, heterotrimeric 
G-proteins and Rho GTPases [39-42]. In general, CAV1 
is supposed to concentrate signaling molecules within 
specialized membrane domains, named caveolae [43, 44]. 
In several cell lines, despite the high expression levels of 
CAV1, caveolae are not morphologically distinguishable 
suggesting a non-caveolar role for CAV1. For example, 
CAV1 can accumulate at focal adhesions and as reported 
by several groups, this translocation requires CAV1 
phosphorylation at Tyr14. Thus, this might represent a 
novel example of a caveolae-independent role of CAV1 
as a molecular organizer. Also, there is no evidence 
supporting the existence of caveolae-like invaginations 
in neurons however, physical organization between 
CAV1 and several receptors may occur in the context of 
membrane microdomains [45]. Furthermore, it is now 
clear that cavins (a new family of proteins that form the 
cavin complex) (Figure 1) are indispensable for caveolae 
formation and function [46]. Therefore, the possible loss 
of cavins in tumor cells opens a new exciting window to 
explore caveolar and non-caveolar roles of CAV1.

In epithelial tumors the role of CAV1 in sarcomas 
is very contradictory; this is aggravated by the fact 
that functional studies are very scarce. However, as 
demonstrated in some bone and soft tissue sarcomas, 

CAV1 may have a key role in their malignant progression. 
From our point of view it will be of key importance to 
correlate caveolar and non-caveolar functions with tumor 
suppressor or oncogenic activities.

Depending on the role assigned to CAV1 in every 
sarcoma type it will be possible to use different targeting 
options. In those sarcomas where CAV1 was demonstrated 
to act as a tumor suppressor, targeted ectopic re-expression 
or introduction of a CSD would be a feasible option. In 
fact, re-expression of CAV1 has successfully reduced the 
tumor growth of breast cancer cells [47] and the invasive 
capability of pancreatic [48] and breast [49] cancer 
cells. Delivery of CSD peptides fused to the C-terminus 
of the Drosophila antennapedia (AP) homeodomain 
internalization sequence to subcutaneously implanted 
tumors inhibited tumor progression by reducing vascular 
permeability and mediating an indirect anti-angiogenic 
effect [50]. On the other hand, direct targeting of CAV1 
using antisense and siRNA, or indirectly by chemical 
inhibition, or lowering cholesterol (disrupts caveolae) may 
result of great help in the cases where CAV1 acts as an 
oncogene. Similar to prostate cancer [51] and melanomas 
[52], our group successfully showed that targeting CAV1 
with shRNAs reduced Ewing’s sarcoma progression [27]. 
In multiple myeloma, proteasome inhibitors blocked 
VEGF-triggered CAV1 phosphorylation and expression 
resulting in reduced migration and survival [53]. The use 
of statins to inhibit cholesterol synthesis in glioma cells 
suppressed CAV1 expression and consequently reduced 
migration and survival [54]. Whether these drugs may 
be of use for the treatment of sarcoma patients remains 
unknown. However, the development of new reagents 
such as siRNAs, peptide and small-molecule inhibitors 
will define new avenues for therapies, not only for some 
sarcomas but for tumors that present CAV1-triggered 
progression. In addition, as more protein and signaling 
molecules are found to interact with and regulate CAV1 
expression the design of novel therapies for sarcomas 
will evolve. These therapies may include humanized 
antibodies, small-molecule inhibitors and targeted siRNAs 
altogether with improved gene therapy delivery systems.
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