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Probabilistic graphical models relate immune status with 
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ABSTRACT
Breast cancer is the most frequent tumor in women and its incidence is increasing. 

Neoadjuvant chemotherapy has become standard of care as a complement to surgery 
in locally advanced or poor-prognosis early stage disease. The achievement of a 
complete response to neoadjuvant chemotherapy correlates with prognosis but it is 
not possible to predict who will obtain an excellent response. The molecular analysis 
of the tumor offers a unique opportunity to unveil predictive factors. In this work, 
gene expression profiling in 279 tumor samples from patients receiving neoadjuvant 
chemotherapy was performed and probabilistic graphical models were used. This 
approach enables addressing biological and clinical questions from a Systems Biology 
perspective, allowing to deal with large gene expression data and their interactions. 
Tumors presenting complete response to neoadjuvant chemotherapy had a higher 
activity of immune related functions compared to resistant tumors. Similarly, 
samples from complete responders presented higher expression   of lymphocyte cell 
lineage markers, immune-activating and immune-suppressive markers, which may 
correlate with tumor infiltration by lymphocytes (TILs). These results suggest that 
the patient’s immune system plays a key role in tumor response to neoadjuvant 
treatment. However, future studies with larger cohorts are necessary to validate 
these hypotheses.

INTRODUCTION

Breast cancer is the most common neoplasm and 
the fifth cause of cancer-associated death among women 
[1]. Estrogen receptor (ER), progesterone receptor (PR), 
and human epidermal growth factor receptor 2 (HER2) 

provide a system of classification and clinical diagnosis. 
Seventy percent of the tumors are hormonal receptor 
positive, and HER2 overexpression is observed in 15% of 
cases. ER+ and PR+ tumors respond to endocrine therapy, 
whereas tumors overexpressing HER2 respond to targeted 
therapies such as trastuzumab [2, 3]. Tumors negative for 
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ER, PR and HER2 are known as Triple Negative Breast 
Cancer (TNBC) and do not respond to the aforementioned 
therapies.

A molecular classification of breast cancer defined 
four intrinsic subtypes [4]. Luminal A disease, which 
accounts for 67% of all tumors, shows high expression 
of genes related to hormone receptors and low expression 
of genes related to cell proliferation. Luminal B, HER2-
enriched and Basal-like subtypes have a more aggressive 
phenotype [5] [6, 7].

Neoadjuvant chemotherapy has been increasingly 
administered to reduce the size of primary tumor, thus 
increasing the likelihood of breast conservation and 
enhancing survival [8]. Currently, there is no clinically 
useful molecular predictor of response to cytotoxic drugs 
in the neoadjuvant setting. Clinical parameters or the 
expression of single molecular markers (ie, Bcl-2, p53, 
MDR-1, and so on) show weak association with response 
and are not regimen-specific. Molecular subtyping may 
offer some help, as Luminal B and Basal-like tumors 
respond better than Luminal A tumors [9], but this is 
not accurate enough to make clinical decisions. As a 
consequence, many patients suffer the toxicity of useless 
neoadjuvant chemotherapy.

This study has been carried out using probabilistic 
graphical models, providing insights into the molecular 
biology of tumor response, allowing its use as a predictive 
model for response. These statistically inferred networks 
provide a deeper level of biological understanding in two 
main directions: giving support to previously identified 

biological observations, and giving new insights regarding 
novel biological interactions. Moreover, the transcriptional 
network approach has proven to be useful to unveil 
transcriptional regulation in breast cancer [10, 11]. The 
objective of this study was to evaluate differences in gene 
expression patterns of breast cancer tumors from patients 
who had undergone neoadjuvant chemotherapy through a 
Systems Biology perspective.

RESULTS

Patient’s characteristics

279 patients with histologically-confirmed primary 
non-metastatic breast adenocarcinoma from phase II 
trial (NCT00455533) [12] were included. They all had 
untreated tumors of at least 2 cm in size (T2-3, N0-3) 
regardless of hormone receptor or HER2 expression 
status. Clinical data were obtained from phase II trial 
(NCT00455533). Patient’s clinical characteristics are 
provided in Table 1. On the basis of ER, PR and HER2 
status, 111 tumors patients (39.78%) were ER+ or PR+ 
and Her2- (ER+ for now on), 28 (10.04%) were HER2+ 
and 140 (50.18%) were classified as TNBC. Patients 
received sequential neoadjuvant therapy starting with 4 
cycles of doxorubicin/cyclophosphamide (AC), followed 
by 1:1 randomization to either ixabepilone or paclitaxel. 
All patients underwent definitive breast surgery 4 to 6 

Figure 1: Breast cancer network. Probabilistic graphical model from 279 tumors gene expression data divided in eighteen functional 
nodes harboring one or two predominant biological functions. Each node (box) represents one gene and each grey line (edges) connects 
genes with correlated expression.
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weeks after the last dose of ixabepilone or paclitaxel, 
consisting of either a lumpectomy with axillary dissection 
or modified radical mastectomy. Regarding pathological 
response, 40 (14.34%) patients achieved a complete 
response (CR), 161 (57.71%) achieved a partial response 
(PR), 64 (22.94%) had stable disease (SD) and 5 (1.79%) 
had progressive disease (PD).

Molecular stratification of tumors

Molecular subtypes were defined by PAM50 
assignment [13]. Of the initial 279 patients, 116 (41.58%) 
patients were classified as Basal-like subtype, 15 patients 
(5.38%) as HER2+, 66 (23.66%) as Luminal A, 62 
(22.22%) as Luminal B, and 15 (5.38%) as Normal-like. 
Five patients could not be assigned due to Spearmn’s rank 
correlation were not statistically significant for neither of 
the molecular subgroup centroids. A sub-classification of 
TNBCs was performed based on Lehmann’s classification 
as previously described [14]; 25 (8.96%) TNBC tumors 
were Basal-like 1, 83 (29.75%) Basal-like 2 subgroup, 
6 (2.15%) Luminal Androgen Receptor, and 26 (9.32%) 
Mesenchymal.

Breast cancer systems biology

Gene expression data from all tumor samples 
were used to build a probabilistic graphical model, with 
no other a priori information. The resulting graph was 
divided in eighteen branches (functional nodes) and a 
main function was assigned to each node by gene ontology 
analysis. The structure of the probabilistic graphical model 
clearly reflected different biological functions (Figure 
1) Functional node activities were then calculated as 

previously showed [10, 15].

Functional structure of response to neoadjuvant 
chemotherapy

Patients were classified according to pathological 
response regardless of their tumor molecular subtype 
to study the response to neoadjuvant chemotherapy. 
Significant differences between functional node activities 
were observed in “Immune response (MHCII)” (node 
9), “Immune response (B cell)” (node 11) and “Immune 
response (Interferon)” (node 12) nodes, in which, tumors 
attaining a complete response had higher activation 
(Figure 2). Blown up pictures of the genes in the red boxes 
are provided in Supplementary Figures 1-5. A progressive 
decrease in the activity of immune functional nodes was 
seen depending on the response, being higher in tumors 
obtaining a CR and absent in those having a progression. 
Additionally, the relationship of immune nodes activities 
with the pathological response was evaluated using an 
ordinal logistic regression analysis. This analysis revealed 
that an increment of one unit in node 9, 11 and 12 activities 
increased the probability of a favorable response 1.739, 
1.435 and 1.629 times respectively. By contrast, one unit 
increase in the activity of node 10 increased 0.519 times 
the probability of having an unfavorable response. On the 
other hand, PD tumors showed higher functional activity 
in “Cell cycle 1” (node 17) and “Cell cycle 2” (node18), 
followed by CR tumors.

Functional characterization of molecular subtypes 

Patients in the network were further classified 
according to their molecular subtype (Basal-like, Luminal 

Table 1: Patient’s clinical characteristics
Characteristic Patients (n) Patients (%) Characteristics Patients (n) Patients (%)

Age Pathological response
Mean age 48.63 CR 40 14.34%
≤50 166 59.50% PR 161 57.71%
>50 113 40.50% PD 5 1.79%
Tumor size (T) SD 64 22.94%
< 2 cm 3 1.08% Unassigned 9 3.23%
2 - 5 cm 174 62.37% ER status
> 5 cm 99 35.48% ER+ 108 38.71%
Unassigned 3 1.08% ER- 171 61.29%
Nodal classification (N) PR status
N0 122 41.40% PR+ 99 35.48%
N1 136 46.10% PR- 179 64.16%
N2 30 10.20% Unknown 1 0.36%
N3 7 2.40% HER2 status
Neoadjuvant treatment HER2+ 28 10.04%
Ixabepilone 138 49.46% HER2- 251 89.96%



Oncotarget27589www.oncotarget.com

Figure 2: Breast cancer network by pathological response groups. A. Detail of nodes with the highest activity in each of the 
subgroups. Genes with an expression below 0 were represented in green; genes with an expression around 0 were represented in grey and 
genes with an expression above zero were represented in red. B. Functional node activities differences between pathological response 
groups: Box-and-whisker plots are Tukey boxplots. All p-values were two-sided and p < 0.05 was considered statistically significant. 
P-value < 0.05 (*); p-value < 0.01(**). A.U: arbitrary units.
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A, Luminal B, HER2+ and Normal-like). Basal-like 
tumors were also classified according to Lehmann’s 
subtypes. “Immune response (MHCII)” (node 9) node 
activity was higher in Luminal A and Normal-like subtypes 
while Basal-like tumors showed higher functional node 
activity in “Immune response (chemotaxis)” (node 10), 
“Immune response (B cell)” (node 11) and “Immune 
response (Interferon)” (node 12), as well as in “Cell cycle 
1 and 2” (nodes 17 and 18) nodes (Figure 3). 

Concerning TNBCs sub-classification, BL2 subtype 
showed a higher functional activity in “Immune response” 
(nodes 9, 10, 11 and 12) nodes whereas it was observed 
higher “Cell cycle 1 and 2” (nodes 17 and 18) nodes 

activities in BL1 tumors.
In order to evaluate the functional implications 

between molecular subtypes and response to neoadjuvant 
therapy, data from patients of the same molecular subtype 
were mean centred and analysed independently. Luminal 
A group included no PD, whereas only one PD was found 
in Luminal B group, and was excluded from this analysis. 
Normal-like and HER2+ tumors were insufficient to 
perform subsequent analyses.

Concerning Luminal A and Luminal B subtypes, 
“Immune response (MHCII)” (node 9), “Immune 
response (chemotaxis)” (node 10), “Immune response 
(B cell)” (node 11) and “Immune response (Interferon)” 

Figure 3: Breast cancer network by breast cancer molecular subtypes. A. Detail of nodes with the highest activity in each of 
the subgroups. Genes with an expression below 0 were represented in green; genes with an expression around 0 were represented in grey 
and genes with an expression above zero were represented in red. B. Functional node activities differences between molecular subtypes: 
Box-and-whisker plots are Tukey boxplots. All p-values were two-sided and p < 0.05 was considered statistically significant. P-value < 0.05 
(*); p-value < 0.01(**); P-value< 0.001 (***); P-value <0.0001 (****). A.U: arbitrary units.
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(node 12) functional nodes activities were higher in 
tumors attaining a CR, although differences were not 
statistically significant. As in the case of Basal-like 
tumors, a progressive decrease of activity in these nodes 
was observed from CR to SD. 

In Basal-like subtype, tumors attaining a CR showed 
significant differences in “Immune response (B cell)” 
(node 11) and “Immune response (Interferon)” (node 
12) nodes activities while “Immune response (MHCII)” 
(node 9) node activity was higher in tumors showing a 
PR. PD tumors showed a higher functional node activity 
in Cell cycle 1” (node 17) and Cell cycle 2” (node 18). 
Regarding TNBC, in the BL1 subtype, the activity of 
nodes “Immune response (B cell)” (node 11) and “Immune 
response (Interferon)” (node 12) was higher in CR than in 
PR. “Immune response (MHCII)” (9), “Immune response 
(chemotaxis)” (node 10) node activities also were higher 
in CR tumors but without statistics differences. In the BL2 
subtype, CR tumors showed a significant higher activity 
in “Immune response (MHCII)” (node 9) and “Immune 
response (B cell)” (node 11). However, SD tumors showed 
a higher activity in “Immune response (chemotaxis)” 
(node 10). In Mesenchymal subtype, CR tumors showed 
higher activity in “Immune response (MHCII)” (node 
9) and “Immune response (B cell)” (node 11) nodes but 

without being statistically significant. 
Three separate probabilistic graphical models were 

built for Basal-like, Luminal-A and Luminal-B subtypes. 
As in the global network, tumors experiencing a CR had 
an increased activity of immune response-related nodes, 
although differences were not statistically significant. 

Immunological markers

Markers of tumor-infiltrating lymphocytes were 
analysed to further characterize response according to the 
immune status. For that, patients were separated according 
to their pathological response and marker gene expression 
levels were compared between groups. Tumors obtaining 
a CR showed significantly higher expression levels of 
cell lineage markers (CD4, CD8 and CD20) as well as 
immune-activating (IGKC, CXCL9, CCL5, CXCL13) 
and immunosuppressive markers (IDO1, PD1) compared 
to the rest of tumors (Figure 4). 

DISCUSSION

In this work, a gene expression-based probabilistic 
graphical model analysis of breast cancer showed that 

Figure 4: Immunological markers expression. Immune-activating, immunosuppressive and cell lineage markers gene expression 
between pathological response groups. Box-and-whisker plots are Tukey boxplots. All p-values were two-sided and p < 0.05 was considered 
statistically significant. P-value < 0.05 (*); p-value < 0.01(**); p-value < 0.001 (***); p-value <0.0001 (****). A.U: arbitrary units.



Oncotarget27592www.oncotarget.com

immune functional nodes were related to pathological 
response to neoadjuvant chemotherapy. This correlation 
did not depend on the molecular subtype, indicating that 
a Systems Biology approach complements knowledge 
obtained from other research methods. Non-directed 
probabilistic graphical models allow managing large gene 
datasets and underscoring lots of gene interactions, many 
of which have not been previously described.

The activity of immune nodes was higher in 
tumors attaining a CR and decreased with the intensity 
of response. Tumors progressing on chemotherapy also 
showed increased activity in the nodes “Cell division 
1” (node 17) and “Cell division 2” (node 18). These 
results suggest that the patient’s immune system plays a 
crucial role in the response to neoadjuvant chemotherapy. 
Previous studies suggest that conventional therapies are 
effective in patients exhibiting some degree of immune 
activation in the tumor [16], supporting our findings. 
Chemotherapy may mediate the “immunogenic” death of 
tumor cells, thus facilitating an immune response against 
the disease [17].

As expected, all tumors attaining a CR- regardless 
of molecular subtype- showed significantly higher levels 
of cell lineage markers (CD4, CD8 and CD20) as well as 
immune-activating (IGKC, CXCL9, CCL5, CXCL13) and 
immunosuppressive markers (IDO1, PD1), suggesting a 
greater infiltration of immune cells High tumor-infiltrating 
lymphocytes (TILs) levels have been associated with 
increased CR rates in ER+ HER2+/- tumors [18] and also 
in TNBC [19]. However, high levels of PD-1+ TILs or 
Foxp3+ TILs have been related with poor prognosis [18]. 
Therefore, immune cell subpopulation profiles could help 
to predict response to neoadjuvant chemotherapy.

Basal-like and HER2+ subgroups have been 
associated with highest CR rates as opposed to Luminal 
and Normal-like tumors. However, the genes that were 
associated with CR in Basal-like subgroup were not 
associated with CR in the HER2+ subgroup, suggesting 
that different sets of genes are associated with CR in 
the different molecular subtypes [20, 21]. In the present 
cohort, Basal-like tumors had the highest CR rate, as 
expected. However, the CR rate was poor in HER2+ 
tumors, probably because these patients did not receive 
anti-HER2 targeted therapy. On the other hand, BL1 
tumors achieved a CR more commonly than other TNBC 
subtypes, as previously described [22]. Although node 
“Immune response (MHCII)” (node 9) had higher activity 
in Luminal A and Normal subtypes, the remaining nodes 
related to immune response showed increased activity 
in Basal-like tumors. This agrees with the fact that, in 
general, there are far fewer TILs in luminal disease 
than in HER2 or TNBC subtypes [23]. In fact, even 
though increased TILs concentrations are associated 
with increased frequency of response to neoadjuvant 
chemotherapy in all breast cancer subtypes, there is a 
different effect of TILs on survival in TNBC and luminal 

breast cancer. Increased TILs concentrations are associated 
with longer survival in TNBC and HER2+ disease, but not 
in luminal-HER2-negative tumours [24], suggesting again 
a differences in the biology of the immunological infiltrate 
across molecular subtypes. 

One possible explanation of the higher “Immune 
response (MHCII)” (node 9) activity in Luminal A subtype 
could be the contribution of different immune cell types. 
Most types of immune cells were increased in TNBC 
compared with luminal-HER2- negative breast cancer. 
In TNBC, the presence of many immune cell subtypes, 
including B cells, T cells, and macrophages, were linked 
to improved survival [24]. By contrast, in luminal-HER2-
negative breast cancer, the presence of T cells was not 
prognostic for survival and the only cell types linked to 
improved prognosis were B and myeloid dendritic cells 
[24], which are MHCII presenting cells. Taking this into 
account, it would be interesting to perform further studies 
about MHCII presenting cells infiltration in luminal 
subtypes. 

On the other hand, Basal-like tumors also had the 
highest activity in the node “Cell cycle” (nodes 17 and 
18), which is in accordance with the fact proliferation 
renders tumor cells more sensitive to chemotherapy [6]. 

The neoadjuvant setting is appealing in the field 
of drug development because it allows early evaluation 
of efficacy. However, not all patients benefit from this 
approach, so markers predicting response to neoadjuvant 
chemotherapy are clearly necessary, as neoadjuvant 
therapy may have some drawbacks, such as promoting 
metastasis in some cases [25]. Our results suggest that 
immune activation in the tumor may identify responders. 
Although validation is needed, the use of these markers 
can help to determine the future use of neoadjuvant 
chemotherapy in breast cancer.

MATERIALS AND METHODS

Patient’s and samples origin and characteristics

A breast cancer tumor dataset, including gene 
expression and clinical data, was obtained from the Gene 
Expression Omnibus (GSE41998) and from a phase II 
trial (NCT00455533). Gene expression profiling was 
measured using an Affymetrix GeneChip, normalized and 
log2 transformed. Surgical specimens were evaluated by 
a pathologist at each study site. The pathological response 
was evaluated as the primary endpoint. A pathological 
complete response (CR) was defined by no histologic 
evidence of residual invasive adenocarcinoma in the breast 
and axillary lymph nodes, with or without the presence of 
ductal carcinoma in situ [12]. Responses were categorized 
as complete, partial, stabilization or progression.
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Gene expression data preprocessing

The PAM50 method was used as previously 
described to assign a molecular subtype to each sample 
[13]. Lehmann subtypes for TNBC were assigned in two 
steps [14]. First, samples were assigned to Lehmann’s 
seven subtypes using centroids constructed from 77 
previously assigned tumors in GSE31519 dataset. Then, 
the IM and MSL groups were redefined as previously 
described [14]. 

Probabilistic graphical models construction

A functional structure was developed using 
undirected probabilistic graphical models (PGMs) as 
previously described [10]. Briefly, PGMs compatible 
with high-dimensionality were chosen. The result is an 
undirected graphical model with local minimum Bayesian 
Information Criterion. DAVID 6.8 was used to assign a 
biological function to each node in the networks, using 
“homo sapiens” as background list and selecting only 
GOTERM-FAT and Biocarta and KEGG pathways 
categories. Functional activity of each node was calculated 
by the mean expression of the genes in each node. To 
visualize node activities, data from all tumors used to 
construct the network were mean centred prior to its 
inclusion into the network.

Statistics and software suites

Differences between groups were assessed using 
Kruskal-Wallis test, Mann-Whitney test and Dunn`s 
multiple comparisons test using GraphPad Prism 6. 
Box-and-whisker plots are Tukey boxplots. All p-values 
were two-sided and p<0.05 was considered statistically 
significant. Ordinal logistic regression analysis was 
performed in SAS using logistic procedure. Network 
analyses were performed in MeV and Cytoscape 3.2.1 
software suites.
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