
Oncotarget30225www.oncotarget.com

www.oncotarget.com                               Oncotarget, 2018, Vol. 9, (No. 54), pp: 30225-30239

High-throughput sequencing of murine immunoglobulin heavy 
chain repertoires using single side unique molecular identifiers 
on an Ion Torrent PGM

Jean-Philippe Bürckert1, William J. Faison1, Danielle E. Mustin1, Axel R.S.X. 
Dubois1, Regina Sinner1, Oliver Hunewald1, Anke Wienecke-Baldacchino1, Anne 
Brieger1,* and Claude P. Muller1,*

1 Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
* These authors share senior authorship

Correspondence to: Jean-Philippe Bürckert, email: jean-philippe.buerckert@lih.lu

Correspondence to: Claude P. Muller, email: claude.muller@lih.lu
Keywords: high-throughput sequencing; murine IG repertoire; unique molecular barcoding; database benchmarking; IMGT; Im-
munology
Received: August 31, 2017 Accepted: May 07, 2018 Published: July 13, 2018

Copyright: Bürckert et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC 
BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

ABSTRACT
With the advent of high-throughput sequencing (HTS), profiling immunoglobulin 

(IG) repertoires has become an essential part of immunological research. Advances 
in sequencing technology enable the IonTorrent Personal Genome Machine (PGM) 
to cover the full-length of IG mRNA transcripts. Nucleotide insertions and deletions 
(indels) are the dominant errors of the PGM sequencing platform and can critically 
influence IG repertoire assessments. Here, we present a PGM-tailored IG repertoire 
sequencing approach combining error correction through unique molecular identifier 
(UID) barcoding and indel detection through ImMunoGeneTics (IMGT), the most 
commonly used sequence alignment database for IG sequences. Using artificially 
falsified sequences for benchmarking, we found that IMGT’s underlying algorithms 
efficiently detect 98% of the introduced indels. Undetected indels are either located 
at the end of the sequences or produce masked frameshifts with an insertion and 
deletion in close proximity. The complementary determining regions 3 (CDR3s) are 
returned correct for up to 3 insertions or 3 deletions through conservative culling. 
We further show, that our PGM-tailored unique molecular identifiers result in highly 
accurate HTS data if combined with the presented processing strategy. In this regard, 
considering sequences with at least two copies from datasets with UID families of 
minimum 3 reads result in correct sequences with over 99% confidence. Finally, we 
show that the protocol can readily be used to generate homogenous datasets for bulk 
sequencing of murine bone marrow samples. Taken together, this approach will help 
to establish benchtop-scale sequencing of IG heavy chain transcripts in the field of 
IG repertoire research.

INTRODUCTION

The diversity of the immunoglobulin (IG) repertoire 
is the key feature of the adaptive immune system, 
enabling it to theoretically combat every possible antigen 
encountered during an individual’s lifetime [1]. With the 

development of high-throughput sequencing (HTS) it 
became possible to analyze the IG repertoire at high depth 
[2-6]. Studies, almost a decade ago, established Roche’s 
454 sequencer as the first tool of choice for exhaustive 
characterization of IG repertoires due to its superior 
read-length [7]. More recently, Illumina’s MiSeq and 

           Research Paper: Immunology



Oncotarget30226www.oncotarget.com

HiSeq sequencers as well as the Ion Torrent Personal 
Genome Machine (PGM, Thermo Fisher Scientific) 
provided improved sequencing technologies which can 
reach across the full V(D)J nucleotide sequence [8]. The 
different technologies of the sequencers result each in their 
specific error-rates and -types [7, 9-15]. Illumina’s optical 
sequencing produces mostly nucleotide (nt) transversions 
and transitions, which can be corrected by building 
consensus sequences [16]. The 454’s pyrosequencing 
chemistry and the PGMs semiconductor technique mainly 
introduce homopolymer repeats resulting in insertions 
and deletions of bases, which can be corrected by gene 
segment-wise reference alignment [17].

Most sequencing approaches use IG isotype specific 
constant (C) region primers to translate IG heavy-chain 
(IGH) (m)RNA into cDNA, which are subsequently 
amplified using a set of V-region specific primers in 
a multiplex PCR approach. However, this can result 
in skewed repertoire assessments due to biased PCR 
efficacy [8, 14, 18]. In addition, sequencing errors can 
falsify somatic hypermutation profiles, VDJ germline 
gene assignment and clonal grouping [8, 19]. Unique 
molecular identifiers (UID) which tag individual RNA 
molecules at cDNA transcription level have been used to 
obtain an unbiased view on the IG repertoire [20-23]. This 
method also allows thorough error correction by building 
consensus sequences, albeit at the cost of sequencing 
depth. In all cases, complex bioinformatic approaches 
are necessary to perform raw-read processing [24]. 
Subsequent alignments to germline genes to assign VDJ 
family genes are in general conducted using the V-QUEST 
or HighV-QUEST tools available at the ImMunoGeneTics 
(IMGT) database, which applies an error correction 
algorithm for insertions and deletions in the process [25, 
26].

After the initial proof-of-concept studies, the use of 
animal models to study the IG repertoire dynamics has 
been largely ignored [4, 6]. One major factor being the 
lack of a suitable IGH V-region primer set comparable 
to BIOMED-2, developed for the human IG repertoire 
[27]. Yet, animal models offer advantages over human 
studies, as they are not limited to peripheral blood and 
have a lower B cell diversity [28-30]. As IMGT provides 
germline repertoires for various species, we chose to 
develop a method to profile the IG repertoire of Balb/C 
mice, one of the most commonly used animal models. 

In the present study, the performance of the PGM 
sequencing platform together with the IMGT HighV-
QUEST tool for the assessment of murine IGH repertoires 
is evaluated. In this context, several novel aspects are 
examined: first, the IMGT’s indel detection and correction 
algorithm is benchmarked with a set of artificially 
falsified sequences. Second, a 16-nucleotide single side 
UID (ssUID) barcoding technique tailored to the PGM 
sequencing chemistry is introduced together with a swift 
1-day library preparation protocol. Third, the PGM’s 

error-rate for sequencing murine IG transcripts with our 
barcoding strategy and customized data processing is 
determined. 

RESULTS

Reference sequences

A set of 7 monoclonal Balb/C mouse hybridoma 
cell lines was used to investigate the distribution and 
influence of insertions and deletions (indels) produced 
by the IonTorrent PGM sequencing technology on 
murine IGH repertoire sequencing (Figure 1). Reference 
sequences were obtained from Sanger sequenced cDNA 
transcripts of monoclonal hybridoma RNA subsequently 
annotated, with native germline sequences identified (see 
Supplementary Table 1) and translated into amino acids by 
IMGT V-QUEST. 

Distribution of artificial insertions and deletions

To investigate the influence of indels on IMGT 
HighV-QUEST processing of an IGH sequence, we 
generated a benchmark dataset from the reference 
sequences that contained artificially introduced indels at 
random positions (Supplementary Table 2). To cover each 
position within a 300 nt sequence with minimum 90% 
certainty, at least 2398 erroneous variants are required 
[31]. Therefore, we generated 2500 artificial, randomly 
flawed sequences for each permutation of 0-3 insertions 
and/or deletions (indels, annotated as i1d0, i0d1, i1d1 … 
i3d3), resulting in a total of 37500 artificial sequences per 
original hybridoma sequence with indels ranging from 1 to 
6 events. Indels were homogenously present as determined 
by graphical reference alignment (Figure 2A). Uncovered 
positions resulted from indels within homopolymer 
stretches which were always assigned to the beginning of 
such a nucleotide repeat region (Figure 2B).

IMGT HighV-QUEST VDJ nucleotide error 
detection

As each sequence of the benchmark system 
contained indel errors, all sequences marked by IMGT 
HighV-QUEST as productive were falsely categorized 
as error free. In general, IMGT HighV-QUEST correctly 
recognized 97.9% (± 2.9%) of the introduced indels over 
all datasets and categorized the sequences then either as 
productive with detected indels, unproductive or unknown 
(Figure 2C). Interestingly, only the sets with one insertion 
and/or deletion (i1d0, i0d1 and i1d1) exhibited elevated 
numbers of unrecognized indels. For these IMGT HighV-
QUEST falsely returned 8% (±1.8%) of the sequences 
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as productive, whereas for all other datasets it was only 
0.7% (± 0.4%). Such undetected indels were found at 
the beginning and the end of the sequence or across the 
whole sequence for i1d1 datasets due to indels in close 
proximity to each other masking the frame-shifts (Figure 

2D, Figure 3, supplementary Figure 1 and 2). The number 
of unproductive sequences increased with the number of 
indel events, regardless of their composition. Accordingly, 
the number of productive sequences with detected indels 
decreased. Less than 50% of sequences with more than 

Figure 1: Study design. RNA was extracted from 7 monoclonal hybridoma cell lines and reverse transcribed into cDNA. cDNA 
sequences were determined by Sanger sequencing and submitted to IMGT V-QUEST to determine reference sequences. Reference 
sequences were artificially falsified using the indel_seq program, introducing up to 3 insertions and 3 deletions. 2500 artificial sequences 
were generated for each permutation and hybridoma and processed by IMGT HighV-QUEST. Post-IMGT HighV-QUEST sequences were 
aligned to the references to determine error detection and correction. RNA was also used to generate high-throughput sequencing (HTS) 
libraries in a three-step library preparation protocol. Single side unique identifiers (ssUID) were introduced during reverse transcription 
to tag each RNA molecule individually (see also supplementary Figure 3). Libraries were sequenced on an Ion Torrent PGM sequencer 
with all quality trimming options disabled in the Torrent Suite software. Untrimmed raw sequences were processed with a custom-made 
bioinformatics pipeline generating consensus sequences per UID family. Collapsed consensus sequences were submitted to IMGT HighV-
QUEST and post-IMGT HighV-QUEST sequences aligned to the reference sequences to determine error detection and correction. 
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3 indels, were retained. Indels were homogenously 
distributed in the uncorrected productive sequences with 

detected errors until about 4/5th of the sequence lengths 
while the opposite is true for the uncorrected unproductive 
sequences (Figure 2D, Figure 3 and supplementary 
Figure 2). This section of the sequence coincides with 
the IMGT IGH junction which encodes for the CDR3 
[32]. Accordingly, upon detecting an indel in the IGH 
junction, IMGT HighV-QUEST categorized the sequence 
as unproductive and no corrective attempts were made. 

IMGT HighV-QUEST VDJ nucleotide error 
correction

Upon detection of an indel, IMGT HighV-QUEST 
tries to correct it by alignment to its closest germline. The 
efficacy of this process was investigated by aligning the 
sequences with detected indels to determine the number 
of correctly resolved sequences (Figure 3, Figure 4 and 

Table 1: HTS hybridoma datasets pre-IMGT

Set Chip reads with 
MID

reads with 
primer & 
UID

consensus 
sequences

HYB1 A 207,753 206,929 4,159
HYB2 A 147,634 146,010 7,760
HYB3 A 222,929 222,100 1,431
HYB4 A 882,242 877,823 16,643
HYB5 B 747,827 733,258 7,319
HYB6 B 743,465 739,854 47,169
HYB7 B 204,348 201,619 5,426
BM1 C 679,600 581,983 37,877
BM2 C 592,044 533,839 37,388
BM3 C 566,441 517,149 32,748
BM4 C 722,267 643,847 38,635

Figure 2: Indels in the artificial dataset. A. Insertion and deletion events displayed as determined by graphical alignments of the 
reference sequence to the i1d0 and i0d1 dataset of hybridoma 1. Grey bars represent the actual detected indel and the black line presents 
the moving average over 4 neighbors. The dotted vertical lines represent the segment that is magnified in B. to visualize the problem of 
determining the position of indels within homopolymer repeats. C. Indel detection rates by IMGT HighV-QUEST processing shown as bar 
chart with error bars indicating the SD over all 7 datasets. D. Visualization of frame-shift masking indel proximity in Hybridoma 1 i1d1 
dataset. The nt positions of the first and second indel before correction are shown as scatterplot. Dotted lines indicate the position of the 
IMGT IGH junction. Productive sequences with detected indels are shown in light grey, unproductive sequences are shown in dark grey. 
Sequences without detected errors are shown in black. The remaining i1d1 indel proximity graphs are shown in the supplementary Figure 1.
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supplementary Figure 2). A thorough error reduction was 
observed for up to three insertion errors in datasets without 
deletions, returning 87% ± 3.2% (i1d0), 72% ± 5.5% 
(i2d0) and 56% ± 7.0% (i3d0) of productive sequences as 
correct (Figure 4). Within these sequences indels that were 
not corrected by the IMGT HighV-QUEST were mainly 
found at the beginning and end of the sequence (Figure 
3A, 3D, 3E). In the case of deletions, the IMGT HighV-
QUEST correction introduced a gap for the missing 
nucleotide as the original nucleotide was unknown. 
Consequently, the number of correct sequences found in 
datasets with mixed insertions and deletions is very low 
(i1d1: 1% ± 0.3%, i2d1: 2% ± 0.3%, i3d1: 2% ± 0.6%, 
i2d2 and i3d2 < 1%). Nevertheless, in these datasets, 
the insertions within the sequences were always reduced 
(Figure 3C and supplementary Figure 2). No correct 
sequence could be identified in deletion-only datasets 
(Figure 4). 

IMGT HighV-QUEST VDJ amino acid error 
correction

Theoretically, translated amino acids are less 
influenced by sequencing errors because of the redundancy 
of the genetic code. Thus, most amino acid translations 
were returned correctly in the case of insertion-only 
datasets and with slightly higher numbers compared to the 
nucleotide datasets (mean correct amino acid sequences 
for i1d0: 89% ± 2.9%, i2d0: 76% ± 4.7%, i3d0: 61% ± 
6.5%, Figure 4). Higher numbers of correct translations 
were observed in mixed indel datasets than for the 
corresponding nucleotide datasets (i1d1: 3% ± 0.7%, i2d1: 
4% ± 0.6%, i3d1: 4% ± 0.8%, i2d2 and i3d2 < 1%, Figure 
4). Interestingly, some amino acid translations were found 
to be correct for the i0d1 datasets (1% ± 0.5%, Figure 4). 

Deletion-affected datasets were usually returned with the 
wrong amino acid sequence by the underlying algorithm. 
During IMGT HighV-QUEST processing, nucleotide 
deletions rendered the whole codon triplet elusive and 
were translated as gaps in the amino acid sequence.

Remarkably, the CDR3 proved to be protected 
chiefly from insertions and deletions through a more 
conservative correction approach of the IMGT HighV-
QUEST algorithm for this part of the sequence. As 
mentioned above, detected indels within the IGH junction, 
and thus the CDR3, corrupted the entire sequence as 
unproductive (Figure 3 and supplementary Figure 2). 
Culling attempts by IMGT HighV-QUEST turned out 
to be largely successful (100% correct CDR3s for up 
to 3 insertions or 3 deletions). Even for the i3d3 indel 
permutation, IMGT HighV-QUEST returned 78% ± 
4.3% correct CDR3s (Figure 4), by removing all those 
sequences where indels were detected in the CDR3 
encoding nucleotides. Datasets with simultaneous 
insertions and deletions showed in general lower numbers 
of correct CDR3 sequences (range 78-97%). This 
resulted from sequences where indels were introduced 
in close proximity of each other, producing no detectable 
frameshift within the IGH junction (Figure 2D). While 
invisible for the IMGT HighV-QUEST algorithm, they 
were observed as variants of the correct CDR3 amino acid 
sequence. 

Taken together the above data show, that IMGT 
HighV-QUEST processing exhibits adequate detection of 
indels through frame-shifts in mouse IGH nt sequences. 
Consequently, frame-shift masking error compositions 
cannot be detected and result in amino acid changes in 
the translations. IMGT’s HighV-QUEST indel correction 
proved to be reliable for single insertions. However, 
the impossibility to correct for deletions and larger 
indel permutations makes consideration of sequences 

Table 2: HTS hybridoma hybridoma datasets classifications by IMGT HighV-QUEST
Set prod. seq. % prod. w. det. indel % unprod % unknown/ else %
HYB1 3,328 79.6% 622 14.9% 127 3.0% 102 2.4%
HYB2 4,866 62.7% 2,449 31.6% 250 3.2% 195 2.5%
HYB3 381 26.6% 62 4.3% 984 68.8% 4 0.3%
HYB4 13,515 81.2% 2,215 13.3% 329 2.0% 584 3.5%
HYB5 6,697 91.5% 281 3.8% 51 0.7% 290 4.0%
HYB6 43,767 92.8% 3,009 6.4% 287 0.6% 106 0.2%
HYB7 5,216 96.1% 111 2.0% 15 0.3% 84 1.5%
Mean 11,110 75.8% 1,250 10.9% 292 11.2% 195 2.1%
SD 13,842 22.6% 1,165 9.6% 303 23.5% 180 1.4%

Table 3: Ambiguous nt in HTS hybridoma datasets 
HYB1 HYB2 HYB4 HYB5 HYB6 HYB7 Mean SD

Amb nt 26 135 97 90 2289 148 464 817
% 0.8 2.6 0.7 1.3 5.2 2.8 2.2 1.6
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Figure 3: Artificial indel set alignments. Number of indels are shown per nucleotide position before and after IMGT HighV-QUEST 
error correction for artificially falsified Hybridoma 1 sequences separated by productivity as returned by IMGT HighV-QUEST. A. The 
number of indels for the i1d0 dataset are shown per nucleotide position as line plot (smoothened over 4 neighbors). The grey area marks 
the IGH VDJ junction. B.-E. like (A) but with different permutations as indicated. The remaining permutations are displayed in the 
supplementary Figure 2.
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categorized as “productive with detected indels” 
unfavorable. 

HTS of hybridoma ssUID libraries

Next, the IMGT HighV-QUEST tool and a PGM-
tailored data processing pipeline developed by our 
group were tested using real HTS datasets derived 
from 7 monoclonal hybridomas (Figure 1). The HTS 
libraries were prepared using an IonTorrent PGM tailored 
single-side UID approach (supplementary Figure 3) 
allowing for error correction through building consensus 
sequences from all reads within a UID family [33, 34]. 
The ssUID barcodes, together with the C-region primer 
and appropriate ‘GATC’ spacer, were correctly identified 
at the sequencing start site of 99.12% ± 0.56% of the 
usable reads containing a sample specific MID (Table 
1). Between 146,010 and 739,854 reads were obtained 
per sample, with varying ssUID family size distributions 
(Figure 5A). After raw data processing, 1,431 to 47,169 
consensus sequences were retained per hybridoma (Table 
1) and uploaded to IMGT HighV-QUEST. 

IMGT HighV-QUEST processing of HTS 
hybridoma datasets

The majority of the sequences returned by IMGT 
HighV-QUEST were categorized as productive (75.8% 
± 22.6%) and 10.9% (± 9.6%) were categorized as 
productive with detected indels (Table 2). The remaining 
sequences were either categorized as unproductive 
or unknown/else. To investigate the undetected or 
uncorrected errors within the two productive categories, 
sequences were aligned to their corresponding references. 
For Hybridoma 3, which had the poorest UID distribution 
(Figure 5A), only 26.8% of the sequences were classified 
as productive and 68.8% unproductive (Table 2). This 
hybridoma was therefore excluded from further analysis.

In the group of productive sequences with detected 
errors, the IMGT HighV-QUEST indel correction 
algorithm improved the number of correct sequences 
by 54.1% to on average 55.3% (± 32.0%, Figure 5B). 
As expected, IMGT HighV-QUEST corrected most 
sequences that contained single insertions efficiently, 
reducing these errors from average 25.2% (± 24.3%) to 
0.48% (± 0.72%, p-value = 0.0027, two-tailed t-test in 
Graphpad Prism, using Holm-Sidak’s method [35] to 
account for multiple testing with alpha = 5%, Figure 5B). 
Single deletions were found at somewhat higher rates 
than single insertions (29.9% ± 24.3%) of the sequences. 
They increased slightly after IMGT HighV-QUEST error 
correction (31.6% ± 24.1%), as insertions of higher indel 
permutations were corrected, leaving only deletions in 
the sequences. Accordingly, these higher permutations 
were found in 33.8% (± 23.8%) of the sequences before 
error-correction and reduced to 8.8% (± 6.3%) afterwards. 
While the detection of indel errors in the sequences by 
IMGT HighV-QUEST was efficient, the remaining errors 
after correction still affected 44.7% ± 32.2% of the 
sequences. As described for the benchmarking sequences 
above, this makes further consideration of sequences 
marked as “productive with detected indels” inadvisable. 

Sequences marked as productive without detected 
indels are not modified by IMGT HighV-QUEST but 
can nonetheless contain indel and nucleotide substitution 
errors. IMGT HighV-QUEST does not detect ambiguous 
nucleotides as errors but marks them as silent mutations. 
On average 2.2% (± 1.6%) of the consensus sequences in 
the productive dataset without detected indels contained 
ambiguous nucleotides (Table 3), which were discarded 
from the datasets. Most of the remaining sequences were 
indeed error -free (98.8% ± 0.5%, Figure 5C). The other 
1.2% contained on average 0.2% (± 0.1%) i1d1 indels 
in close proximity to each other, masking frameshifts. 
Some sequences showed single insertions (0.1% ±0.2%) 
and deletions (0.15% ± 0.13%), either at the beginning 
or the end, without detectable frameshift. The remaining 

Figure 4: Correction of artificially introduced indels by IMGT HighV-QUEST. The fraction of correct sequences after IMGT 
HighV-QUEST processing for each artificial indel permutation are shown as bar charts for nucleotide (nt), amino acid (aa) and CDR3 amino 
acid sequences. Error bars indicate SD over all 7 artificial datasets.
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false sequences contained nucleotide substitutions, with 
the majority being transversions (0.5% ± 0.3%) and very 
few transitions ( < 0.1%). As described by Shugay and 
coworkers, such substitutions originate from dominating 
polymerase errors occurring early during the amplification 

[33]. As polymerase errors are occurring at relatively 
random positions, it is stochastically unlikely, that the 
same errors are found repeatedly within a dataset and 
can thus be accounted for by considering only consensus 
sequences that appear more than once in the final dataset 

Figure 5: HTS data of monoclonal hybridomas libraries. A. UID family size distributions per sample. The number of UID 
families (log transformed) is plotted by the number of reads assigned to a ssUID per hybridoma. The amount of UID families containing a 
minimum of 3 reads are indicated as percentage value. B. Indel distributions on productive sequences with detected errors before and after 
IMGT HighV-QUEST processing. The amount of indel -free (i0d0), single insertions (i1d0), single deletions (i0d1), one single insertion 
and deletion (i1d1) and higher permutations (“higher”) are shown as fraction of productive reads with detected indels before (circles) and 
after (squares) IMGT HighV-QUEST error  correction. Statistical differences are indicated with **** p < 0.0001, * p < 0.05 determined 
by multiple two- tailed t -test with Holm- Sidak’s method to account for multiple testing. C. The influence of removing singletons on the 
number of error -free sequences in the productive dataset. The fractions of total sequences without detected indels are shown as boxplot with 
mean and ± SD. Data are shown for all nucleotide sequences (nt), amino acid sequences (aa) and CDR3s for all sequences and data without 
singleton sequences. CDR3* indicates that for this set, singletons were determined on the full-length amino acid sequences. P values are 
indicated *** p < 0.001, * < 0.05, One -way ANOVA with Sidak’s post -hoc test. All other differences were not statistically significant. D. 
Influence of UID family size on the number of correct sequences. The number of correct sequences are shown as black line per minimum 
UID family size (left y- axis). The number of consensus sequences are shown as dotted line per minimum UID family size (right y -axis). The 
UID family size at which all sequences are correct is indicated by a grey vertical line for Hybridoma 1,2,4,6 and 7, the dataset of Hybridoma 
5 does not reach 100% correct sequences.
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[33, 34]. Following this approach, the data was reassessed, 
excluding singleton consensus sequences. This reduced 
the number of total sequences in the datasets by 0.8% 
(± 0.4%). The number of transversions was reduced 
significantly by 0.3% to 0.16% (± 0.19%, p -value = 0.008, 
two- tailed t- test in Graphpad Prism, using Holm -Sidak’s 
method to account for multiple testing with alpha = 5%, 
data not shown). Consequently, the number of error- free 
sequences improved significantly by 0.7% to 99.5% (± 
0.3%, p -value < 0.0001, two- tailed t-test, using Holm -
Sidak’s method to account for multiple testing with alpha 
= 5%). 

The number of reads per UID, referred to as 
UID family size, is crucial to obtain reliable consensus 
sequences [34]. Increasing the minimum number of 
required reads per UID family improved the amount of 
correct sequences, reaching 100% for all hybridomas, 
except Hybridoma 5, albeit with different UID family 
sizes (Figure 5D). However, with increasing minimum 
UID family sizes, the number of sequences decreased 
exponentially. Consequently, at the point of reaching 100% 
correct sequences, on average only 7.9% (± 7.1%, excl. 
Hybridoma 5) of the sequences remained (Figure 5D). 
According to our data, keeping a minimum UID family 

size of 3 provided adequate accuracy and throughput when 
using an IonTorrent PGM. As expected, the number of 
correct amino acid sequences was higher (99.3% ± 0.3%) 
than the amount of correct nucleotide sequences (Figure 
5C). An average of 0.6% (± 0.4%) of the sequences was 
subject to amino acid changes. Excluding singleton amino 
acid sequences increased the number of correct amino acid 
sequences to 99.7% (± 0.2%), but this increase was not 
statistically significant. CDR3 amino acid sequences were 
returned almost entirely correct (99.85% ± 0.11%, Figure 
3C), increasing to 99.91% (± 0.08%) when singleton full-
length amino acid sequences were excluded. 

HTS and processing of bulk mouse BM samples

To verify our ssUID approach for bulk sequencing, 
mouse bone marrow samples from four mice were 
processed with C -region specific primers targeting mouse 
IgG and IgM isotype BCRs (Supplementary Table 3). 
The ssUID barcodes, together with C-region primers and 
‘GATC’ spacer, were identified at the sequencing start site 
of 89.1% ± 2.1% of the usable reads containing a sample 
specific MID (Table 1). All samples had homogeneous 
ssUID family size distributions for both isotypes (Figure 

Table 4: HTS BM datasets classifications by IMGT HighV-QUEST
Set prod. seq. % prod. w. det. indel % unprod % unknown/ else %
BM1 30,003 79.2% 5,585 14.7% 1,015 2.7% 1,274 3.4%
BM2 30,971 82.8% 5,214 13.9% 999 2.7% 204 0.5%
BM3 27,990 85.5% 3,777 11.5% 776 2.4% 205 0.6%
BM4 28,371 73.4% 8,747 22.6% 1,241 3.2% 276 0.7%
Mean 29,335 80,2% 5,832 15,7% 490 1.3% 1,008 2.7%
SD 1,210 4.5% 1,814 4,2% 454 1.2% 165 0.3%

Figure 6: HTS data on bulk BM libraries. A. UID family size distributions per sample. The number of UID families (log transformed) 
is plotted by the number of reads assigned to a ssUID per bulk BM library. The amount of UID families containing a minimum of 3 reads 
are indicated as percentage value. B. The number of sequences retained after excluding singleton for bulk BM HTS datasets. Bars represent 
the fraction of total sequences after excluding singletons for IgG (grey) and IgM (light grey), respectively. Error bars indicate the SD over 
all four datasets.
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6A). On average, 51.2% (± 2.5%) and 53.5% (± 1.5%) 
of the ssUID families for IgG and IgM, respectively, 
contained more than two sequences and were considered 
for consensus building. This resulted in 5,170 to 12,025 
consensus sequences were retained for IgG samples and 
25,825 to 31,612 consensus sequences for the IgM isotype 
per isotype after raw data processing (Table 4) which were 
subsequently uploaded to IMGT HighV-QUEST.

IMGT HighV-QUEST returned 80.2% (± 4.5%) of 
the sequences as productive and 15.7% (± 4.2%) of the 
sequences contained indels, as detected by the IMGT 
HighV-QUEST indel identification algorithm (Table 4). 
On average, 2.7% (± 0.3%) of the sequences were found 
unproductive and the remaining were categorized as 
unknown/else. After IMGT HighV-QUEST processing, 
most of the IgG sequences were found with two or more 
copies (94.7% ± 2.4%) and as expected, less for the IgM 
sequences (82.0% ±3.1%) (Figure 6B). As determined 
above, these singlet sequences should be removed from 
final data to obtain highly reliable sequencing results.

DISCUSSION

Investigation of IG repertoires by HTS is 
challenging both with respect to the library preparation as 
well as sequencing error assessment and data processing. 
Using artificially falsified sequences, we show here that 
the IMGT HighV-QUEST indel detection algorithm is 
efficient while the IMGT HighV-QUEST indel correction 
algorithm only corrects single insertions sufficiently. We 
confirm the utility of the IonTorrent PGM to assess murine 
IGH repertoires with high confidence, using a dedicated 
library preparation protocol with a PGM-tailored 16 nt 
single side unique identifier (ssUID) barcoding technique. 
Our data show that appropriate data processing reduced 
the error rate of PGM-sequenced IGH repertoires to less 
than 0.5% false nucleotide and amino acid sequences, and 
to less than 0.01% false CDR3 sequences per dataset. 

Sequencing of IGH repertoires requires a thorough 
assessment and correction of platform inherent sequencing 
errors [7, 9, 12-15]. Using the IMGT HighV-QUEST tool 
for reference alignment, the indel errors of the utilized 
Ion Torrent PGM sequencing platform can theoretically 
be detected through the resulting codon frame-shifts 
[17]. The VDJ structure of the IGH sequence facilitates 
indel detection by frame-shift, since gene segments can 
be aligned separately. In our study, the IMGT HighV-
QUEST algorithm successfully detects 97.9% of all 
indels, regardless of their composition, only single 
insertions or deletions at the beginning or the end of 
the sequences (7.9% and 7.5%, respectively), or i1d1 
compositions in close proximity to each other could 
not be identified (8.5%). IMGT HighV-QUEST tries to 
correct detected insertions subsequently by removing the 
false nucleotide(s) according to the predicted germline 
sequence. In the artificially falsified datasets of our 

study insertion-only errors were corrected by the IMGT 
HighV-QUEST algorithm with 87% (i1d0), 72% (i2d0) 
and 56% (i3d0) efficiency. Deletions, on the other hand, 
are more difficult to recover since the missing nucleotide 
cannot necessarily be inferred from the germline sequence 
with sufficient confidence. Consequently, artificially 
introduced deletions were not corrected by IMGT HighV-
QUEST. Also, for sequences with mixed insertions and 
deletions only the nucleotide insertions were corrected by 
IMGT HighV-QUEST leaving the sequence erroneous. 
Furthermore, indels could impair the alignment process 
by changing the identification of the closest germline. 
While we observed more potential germlines to be 
suggested by IMGT HighV-QUEST for the higher indel 
permutations, the selected assignment by IMGT HighV-
QUEST of the closest germline did not change even with 
the highest permutation of indels (i3d3) tested (data not 
shown). Taken together, these data indicate that detection 
of indels by IMGT HighV-QUEST is highly efficient and 
sequences categorized as “productive” without detected 
errors are almost entirely indel-free. The low efficiency of 
the indel correction algorithm makes it inadvisable to take 
productive sequences with detected indels into account for 
any downstream analysis. These correspond to about 10% 
of the final HTS consensus sequences in our study. 

HTS library preparation using multiple primers 
during template amplification can significantly bias the 
repertoire composition [14, 19]. This bias is essentially 
removed by UID barcoding, but the approach reduces 
sequencing depth at the same time [34, 36-38]. In our 
study, the raw sequencing depth does not influence the 
relative number of correct sequences while the average 
UID family size proved to be crucial. For instance, 
Hybridoma 3, although having only the 4th lowest amount 
of raw-reads, lacked eligible UID family sizes ( > 2 
sequences per UID). For Hybridoma 3, less than 1.7% of 
the UID families had more than 2 members, resulting in 
the poorest error correction rate during sample processing, 
potentially because of low amounts of IGH encoding 
mRNA molecules. While the UID family sizes for the 
presented Hybridoma sequencing datasets vary largely, 
the bulk sequencing experiment generated homogeneous 
datasets with around 50% eligible reads. We were unable 
to determine the original cause of the poor performance of 
Hybridoma 3 for HTS which demonstrates, that it is crucial 
to critically follow samples throughout the entire raw data 
processing. As for this Hybridoma 3, it became evident 
that the dataset had low quality only after IMGT HighV-
QUEST processing, returning just 26.6% of the consensus 
sequences as productive. Datasets of higher complexity 
than single sequence Hybridoma libraries could be even 
more elusive. We thus conclude from our data, that for 
applying a UID family-wise consensus building approach, 
samples with low numbers of eligible consensus reads 
after pre-IMGT HighV-QUEST processing or unusually 
high numbers of unproductive sequences ( > number 
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of productive sequences) post-IMGT HighV-QUEST 
alignment should be discarded from further analysis. 

For grouping reads by UID families, it is essential 
to identify the UID tags correctly [34, 38]. The PGM 
sequencing chemistry is unidirectional, starting with 
the sequencing adapter A. Comparable protocols for the 
Illumina sequencing platforms usually consist of UID tags 
at the beginning and the end of the amplicon sequence 
[39]. We chose to introduce the 16 random nucleotides 
of the UID tag at the sequencing start site as the PGM 
semiconductor technology is significantly less accurate 
towards the end of the sequence [40]. We included a 
4-nucleotide spacer as junction into the UID tag resulting 
in the N8-GATC-N8 ssUID layout of this study. Like 
this, we address that the PGM indel rate increases in 
homopolymer stretches with their length [41], in particular 
when homopolymers are longer than 8nt [42]. While 
breaking potential homopolymer patterns within the UID, 
this design also reduces the number of mistakes during 
primer synthesis and allows to generate sets of primers 
with individual spacers that could be used to tag different 
experiments.

Nucleotide substitution errors are the most difficult 
to account for in HTS IG repertoire approaches and can 
critically falsify somatic hypermutation profiles [16, 
24]. They can originate from mixed events of adjacent 
insertions and deletions, which cannot be detected by 
the IMGT HighV-QUEST algorithm or are introduced as 
mistakes by the sequencing platform. UID barcoded RNA 
transcripts allow us to address this problem [8, 33, 34, 
39]. B cells contain up to several thousands of identical 
IG RNA molecules that are each individually tagged by a 
UID [39, 43]. Therefore, a HTS run provides a snapshot 
of the relative abundance of RNA transcripts [16]. 
Comparable to procedures used for identification of single 
nucleotide polymorphisms (SNP), single occurrences 
of nucleotide substitutions can be ruled out as artifacts 
and only transcripts above a certain copy threshold 
should be retained [43]. Our data show that considering 
sequences with at least 2 copies in the final dataset 
improves the proportion of correct sequences by 0.7% to 
99.5% by reducing the number of sequences by merely 
0.8%. Compared to Hybridoma HTS datasets, more 
sequences are removed by this step from bulk BM IgG 
and IgM data, with IgM isotype exhibiting the strongest 
reduction of sequences (18%). This is expected by the 
higher diversity of these samples, with IgM isotype BCR 
carrying B cells being mainly naïve cells with little clonal 
expansion. However, as the sequences in the datasets from 
monoclonal Hybridomas are all derived from identical 
RNA molecules, it makes it stochastically more likely, 
that the same indel error appears several times. Thus, it 
can be expected that excluding singletons would increase 
the number of correct sequences in the bulk B cell derived 
datasets even more, where less sequences are derived from 
identical RNA molecules. 

For large scale HTS experiments spanning several 
treatment groups, it is essential to have a reliable library 
preparation protocol resulting in sequencing libraries with 
similar depth and limited variation to reduce potential 
batch effects. The presented workflow returned very 
homogeneous datasets for libraries prepared from bulk 
murine BM samples. Even with both isotype primers 
applied together during reverse transcription, the BM 
samples showed comparable numbers of reads and 
sequences throughout the entire data processing approach 
with little variation. Approximately half of the sequences 
are lost because they belong to ssUID-families with only 
a single member. As determined through HTS of the 
monoclonal hybridoma libraries, those sequences are 
not reliable and thus should be excluded from further 
processing. We tried to increase the number of eligible 
ssUID families by increasing the number of PCR cycles 
in the amplification step but found that it reduced overall 
sequencing depth as average family size increased 
drastically (data not shown). Overall, the presented 
workflow generates robust and homogeneous data for bulk 
sequencing approaches of murine BM samples. 

In conclusion, we have demonstrated that using our 
ssUID library preparation in combination with the IMGT 
database, the PGM sequencing platform can be efficiently 
used to assess murine IGH repertoires. Considering only 
consensus sequences with at least two copies in the final 
dataset improved the sequence quality considerably. Taken 
together, this approach allowed to obtain highly reliable 
IGH sequences, with more than 99% confidence in general 
and 99.9% confidence for the correct CDR3 sequences. 
The protocol and sample processing strategies described 
in this study will help to establish the benchtop-scale Ion 
Torrent sequencing technology of animal models in the 
field of immunoglobulin repertoire research.

MATERIALS AND METHODS

Animals

All animal procedures were in compliance with 
the rules described in the Guide for the Care and Use of 
Laboratory Animals and accepted by the ‘Comité National 
d’Éthique de Recherche’ (CNER, Luxembourg). Balb/c 
mice (10-week old, female) were obtained from Harlan 
(Horst, NL) and acclimatized for 1 week. Animals were 
kept under timed 12h light/dark cycles at 22 °C and 40% 
relative humidity with food and water available ad libitum. 

RNA extraction

RNA was extracted with Trizol LS/chloroform 
(Thermo Fisher Scientific, Waltham, USA) method 
from seven monoclonal hybridoma cell lines (produced 
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from Balb/C mice in house) with 106 cells each. DNA 
was digested using the DNAfree kit (Thermo Fisher 
Scientific), RNA was further purified using Agencourt® 
RNAclean XP beads (Analis, Suarlée, BE) and quantified 
on a NanoDrop® Spectrophotometer (ND1000, Isogen 
Life Science, De Meern, NL). RNA was either directly 
used for library preparation or stored at -80°C. For bulk 
bone marrow samples, lymphocytes were first isolated by 
density-gradient centrifugation (ficoll® Paque Plus, Sigma-
Aldrich) from bone marrow washes. Samples were then 
processed the same way as for the hybridomas.

Reference sequences

Hybridoma cDNA transcripts were obtained using 
mouse constant region IgG primer (Supplementary Table 
3) in a Superscript III (Thermo Fisher Scientific) reverse 
transcription following the manufacturer’s instructions for 
templates with high GC content. Transcripts were Sanger-
sequenced (3100 Avant, Thermo Fisher Scientific) using 
constant region IgG and V-region primers (Supplementary 
Table 3). Forward and reverse sequences were aligned 
and submitted to IMGT V-QUEST (http://www.imgt.org, 
[44]) to verify the nucleotide sequence and to translate 
into amino acids. These sequences were subsequently used 
as reference sequences in alignments and artificial error 
insertion experiments.

Datasets with artificial insertions and deletions

Artificial datasets were generated 
using the Biopieces indel_seq package                                                                      
(http://www.biopieces.org). For each of the original 7 
hybridoma sequences, 2500 error-containing sequences 
were generated by combining 0-3 insertions and 0-3 
deletions, obtaining a total of 37500 artificial sequences 
per hybridoma. For every set, indel-type and -position 
were determined by alignment to the original sequence 
to ensure homogenous error distributions. All artificial 
datasets were uploaded to IMGT HighV-QUEST and 
sorted by annotation: IMGT HighV-QUEST annotates 
correct sequences as productive. Sequences with a detected 
indel (frameshift, stop codon) are marked as “productive 
(see comment)” if the error can be corrected (referred to 
as “productive with detected errors”). Sequences with 
uncorrectable errors are classified as “unproductive”. If 
no fitting germline can be found sequences are marked as 
“unknown” or “no result” (referred to here as “unknown/
else”). The remaining indels on nucleotide level and amino 
acid changes were determined using the SeqAn library 
[45] in a custom-made C++ reference alignment program. 
For datasets with one insertion and one deletion (i1d1) 
the positions of the indels were determined by position-
wise mismatch detection using a custom made Biopython 
[46] script. Upon detection, the nucleotide positions 

were returned, and the process repeated with reverse 
complement sequences. 

Library preparation and HTS

Approximately 100ng (as determined by 
Nanodrop®) of total RNA per hybridoma or bone marrow 
was used for library preparation. We adapted the UID 
labeling method developed by Vollmers et al [39] to our 
PGM sequencing system (supplementary Figure 3). RNA 
was reverse transcribed using Superscript III reverse 
transcriptase, according to the manufacturer’s instructions, 
using multiplex identifiers (MID) and UID tagged mouse 
constant region (IGHγ) primers elongated by partial PGM 
sequencing adapter pA (Supplementary Table 3). The 
MID tag allowed multiplexing of several samples on one 
sequencing chip. The UID tag consists of two times 8 
random nucleotides separated by a “GATC” spacer (N8-
GATC-N8). With this UID tag each RNA molecule targeted 
by the primer is uniquely labeled (see [33, 39] for detailed 
theoretical descriptions). The RT reaction mixtures were 
split into two equal second strand synthesis reactions 
using Phusion® High-Fidelity DNA polymerase (NEB, 
Massachusetts, USA) with a mouse IGH V-region primer 
mix (Supplementary Table 3). The reaction conditions 
were as follows: 98°C 2min, 50°C 2min, 72°C 10 min 
in a single cycle reaction. Both reaction aliquots were 
combined and purified twice using Agencourt® AMPure® 
XP beads (Analis) in a 1:1 (v/v) ratio to remove primer 
traces. Libraries were subsequently amplified with a Q5® 
Hot Start High-Fidelity DNA polymerase (NEB) using the 
full-length Ion Torrent PGM sequencing adapters A and 
P1 as primers (Supplementary Table 3) with the following 
conditions: 98°C for 1min, 20 cycles of 98°C for 10s, 65°C 
for 20s, 72°C for 30 seconds. Final elongation was done 
at 72°C for 2 min. Amplified libraries were purified twice 
using equal volumes of AMPure® XP beads. Quality of the 
libraries as well as size of the amplicon and concentrations 
were determined using Agilent 2100 Bioanalyzer (Agilent 
Technologies, Diegem, BE) with the High Sensitivity 
DNA Kit (Agilent Technologies). 10 libraries were pooled 
equimolar on an Ion 316™ Chip (Thermo Fisher Scientific) 
and sequenced on a PGM sequencer, with all quality 
trimming options disabled on the Torrent Suite™ v4.0.2.

Data processing pipeline for the HTS datasets

Untrimmed raw reads were demultiplexed by 
their MIDs, retaining only sequences containing the 
full UID primer sequence for further analysis, with no 
mismatches allowed. The UID sequence was extracted 
and categorized in relation to the starting position of the 
detected primer including the GATC spacer and stored 
in the sequence identifier. After clipping the MID, UID 
and constant region primer, the trimmed reads were 
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quality controlled (80% of the bases Phred-like quality 
score above 20) and grouped into UID families. Using 
pagan-msa [47], a consensus sequence was generated 
for each UID-family containing more than 2 members. 
Afterwards, reverse primers were identified with up to 2 
mismatches and clipped. Subsequently, sequences were 
collapsed to unique reads, storing counts in the read 
identifier, and uploaded to IMGT HighV-QUEST for 
error detection, correction, annotation and translation into 
amino acids. Post-IMGT HighV-QUEST datasets were 
separated into four categories (“productive”, “productive 
with detected errors”, “unproductive” and “unknown/
else”) and processed separately. Data processing was 
performed using custom-made Python scripts (Python 
v2.7) employed in a parallelizing bash wrapper script 
using gnu-parallel [48] and the Biopieces framework                               
(http://www.biopieces.org/).

Graphs and statistics

All graphs and statistical analyses were performed 
using R base packages or GraphPad Prism 6. Average 
numbers are reported as mean ± standard deviation (SD) 
unless specified otherwise. 
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