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ABSTRACT

Splenic marginal zone lymphoma (SMZL) is a malignancy of mature B-cells 
that primarily involves the spleen, but can affect peripheral organs as well. Even 
though SMZL is overall considered an indolent malignancy, the majority of cases will 
eventually progress to be more aggressive. In recent years, the gene expression 
profile of SMZL has been characterized in an effort to identify:  1) the etiology of SMZL, 
2) biological consequences of SMZL, and 3) putative therapeutic targets. However, 
due to the vast heterogeneity of the malignancy, no conclusive target(s) have been 
deciphered. However, the role of miRNA in SMZL, much as it has in chronic lymphocytic 
leukemia, may serve as a guiding light. As a result, we review the comprehensive 
expression profiling in SMZL to-date, as well as describe the miRNA (and potential 
mechanistic roles) that may play a role in SMZL transformation, particularly within 
the 7q region.

INTRODUCTION

Splenic marginal zone lymphoma (SMZL) is a low-
grade, mature B-cell lymphoma, primarily involving the 
spleen with variable progression seen in the bone marrow 
and peripheral blood [1, 2]. SMZL accounts for less than 
2% of all lymphoid malignancies and is responsible for 
less than 1% of non-Hodgkin’s lymphoma cases [3–5]. 
SMZL is considered an indolent B-cell lymphoma as the 
median overall survival (OS) for SMZL cases is between 
8 and 11 years, but clinical presentations remain very 
heterogeneous [6–8]. Most importantly, it is estimated that 
70% of SMZL cases will at some point require treatment 
for worsening symptoms [2, 9], and approximately 
30% of SMZL patients will display a more aggressive 
prognosis with potential for progression to more lethal 
lymphomas and a decreased overall survival [1, 10–14]. 
Due to the limited number of available cases as well as 
the heterogeneous nature of SMZL, it is very difficult 
to differentiate indolent and aggressive SMZL cases, 
resulting in treatment inconsistencies and discrepancies 
among predicted clinical prognoses. Consequently, further 
investigations into the biological mechanism(s) that result 

in SMZL development are essential for improving the 
diagnostic and prognostic reliability.

Etiology of SMZL

In an effort to elucidate the biological mechanisms 
of SMZL, research involving gene expression analyses 
and chromosomal aberration studies have been conducted. 
Specifically, SMZL presents with genomic instability 
in approximately 75% of cases, resulting in one of the 
highest percentages compared to other B-cell lymphomas, 
and accentuating the variable nature of the disease 
[15]. This variability offers potential opportunities in 
identifying diagnostic and subsequent treatment targets. 
Thus far, the most common chromosomal abnormality is 
a 7q deletion occurring in 30% to 40% of patients. The 
loss of 7q regions is seen much more frequently in SMZL 
compared with similar B-cell neoplasms, and thus, it has 
been proposed as a primary diagnostic marker [16–19]. 
The primary region resulting in the loss of heterozygosity 
(LOH) has been identified between 7q21 and 7q33, but the 
precise chromosomal locations responsible, and resulting 
mechanisms, remain unknown [20–22]. Further, the direct 
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effects of the 7q deletion on SMZL pathogenesis also 
remains controversial.

In addition to the deletion within the 7q region, there 
are a plethora of other cytogenetic abnormalities identified 
in previous studies. These include various, inconsistent 
translocations, gains primarily in 3q, 4q, 5q, 9q, 11q, 12q, 
and 20q, and losses occurring in 6q, 8p, 13q, 15q, and 
17p [19, 23–27]. The many discoveries of chromosomal 
abnormalities have assisted in the identification of 
SMZL, but understanding the mechanistic progression 
of the disease has still eluded investigators in cytogenetic 
investigations.

Along with the challenge posed by the heterogeneity 
of chromosomal aberrations, finding patterns among 
other biological indicators has proven equally as difficult. 
While cytogenetic investigations have been cited for 
their importance, it has been suggested that targeting 
gene mutations will provide more clinical relevance than 
the former [28]. In an effort to identify crucial genetic 
abrogates, a number of genetic mutations and deletions 
have been investigated for their roles in the NF-κB 
pathway, cell communication, apoptosis, metabolism, cell 
cycle control, lymphocyte development, and chromosomal 
and transcriptional regulation (Table 1).

While each study puts forth potential genetic targets 
for unraveling the pathogenesis of SMZL, there are still 
wide discrepancies among which targets will be most 
fruitful for further investigations. The chromosomal and 
genetic abnormalities most commonly annotated, along 
with their frequencies seen across SMZL, are provided 
in Table 2. Insight into the abnormal genetic landscape 
and transcriptional regulation of SMZL has presented a 
plethora of candidates for diagnosing and elucidating 
SMZL, but similar to the results of cytogenetic studies, 
conclusions identified from DNA-level mutations do not 
provide transparent explanations for fully deciphering 
the biology behind the progression and heterogeneity of 
SMZL.

To better understand SMZL, studies into various 
regulatory mechanisms should be conducted as an attempt 
at explaining the heterogeneity among chromosomal and 
genetic aberrations. One mechanism of post-transcriptional 
regulation is via epigenetic modifications, primarily being 
methylation of DNA promotor sequences. Deregulated 
DNA methylation has been implicated in the development 
of similar B-cell malignancies [54–58], and hence, 
Arribas et al. published a genome-wide DNA-promoter 
methylation profiling study in an effort to characterize 
the differential patterns within SMZL [59]. A cohort 
of patients was identified with significantly increased 
promotor methylation, and it was associated with a 
decreased OS compared to patients without the increased 
methylation profile. Additionally, certain promoter 
methylation patterns were identified and shown to affect 
the same biological pathways that were implicated in the 
genetic studies. While methylation patterns provide one 

option for mechanistic regulation studies, there are other 
molecular components worthy of investigation as well in 
an effort to improve comprehension of SMZL pathology.

MicroRNAs and B-cell lymphomas

Non-coding RNA molecules are regulatory 
biological elements that warrant further investigation due 
to their well-established mechanistic impacts and their 
relationships with genetic and chromosomal aberrations. 
MicroRNAs (miRNAs), a type of non-coding RNA, are 20 
to 22 nucleotide post-transcriptional regulators that have 
been heavily researched and reported on for their role in 
various cancers over the past decade [60–62]. MicroRNAs 
function by targeting complementary messenger RNAs 
(mRNAs), allowing them to regulate almost any cellular 
process that is a result of translation. The idea that 
miRNAs could play a role in lymphomagenesis originated 
from evidence that the miR-15/16 cluster was frequently 
deleted in chronic lymphocytic leukemia (CLL), resulting 
in the loss of tumor suppression [63]. Following this 
breakthrough, a plethora of studies were conducted to 
identify other miRNA in CLL pathogenesis as well as 
other lymphomas [64–66]. By exposing the oncogenic 
role of miRNA, they became an option for new treatment 
targets [67], diagnostic and prognostic markers [68, 69], 
and mechanism manipulation candidates [68, 70].

Preliminary studies have been conducted on the 
miRNA profile of SMZL, but the role for specific miRNA 
on SMZL pathogenesis remains to be discovered. Previous 
investigations into miRNA signatures of similar neoplasms 
may be informative for deciphering mechanistic impacts of 
deregulated miRNA in SMZL. Fortunately, unlike SMZL, 
many B-cell lymphomas have had their miRNA profiles 
investigated and reviewed extensively. Some miRNAs that 
are recurrently deregulated among B-cell lymphomas have 
been elucidated due to their role in B-cell development, 
migration, or activation [71]. Additional miRNAs also 
repeatedly identified in B-cell lymphomas are deregulators 
of “hallmark” cancer functions such as increased 
proliferation, evasion of suppressors, mortality resistance, 
and others [72]. The miRNAs consistently identified across 
B-cell lymphoma studies to be abnormally expressed 
include: miR-34a, miR-155, the miR-17/92 cluster, miR-
21, and miR-150, with many more additional markers also 
discussed [62, 68, 71–74]. Many of these markers have 
also been found to be differentially expressed in SMZL 
miRNA profiles, but due to the exhaustive reporting on 
these miRNAs in B-cell lymphomas, no further discussion 
will be provided in this review regarding their potential 
role in lymphomagenesis. Instead, this review will provide 
an overview of the unique miRNAs hypothesized to play 
a role in SMZL pathogenesis. Furthermore, we propose 
why these miRNA targets warrant future investigations 
and discuss their oncogenic potential. A summary of all 
miRNAs reported to be relevant to the biology of SMZL 
is captured in Table 3.
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Table 1: Summary of significantly deregulated genes and their resultant affected pathways in SMZL

Pathway Deregulated genes Citation

NF-κB IKBKB, TNFAIP3 (A20), BIRC3, TRAF3, 
MAP3K14, CD40, SYK, BTK, PKCA, REL, 
TRAF5, PTPRC, PTPN1, TNFRSF5, LTB, 
MYD88, CARD11, FAS, CREBBP, NFKBIZ, KLF2

[6, 28-38, 41]

Cell Communication MS4A2, SYK, TOSO, SELL, LPXN, PTPRC, 
PTPN1, RASSF2, BIRC3, TNFRSF5, TRAF3, 
TRAF5, ENPP2, BTK, PDE4B, PLEXINA2, 
ARHGAP25, ARHGAP32, MYCBP2, FLNC, 
LCP1, CALU

[30, 33, 36, 37, 39, 43]

Apoptosis BIRC3, TNFRSF5, TRAF3, TRAF5, BTK, APAF-1, 
XPB

[30, 36, 39]

Metabolism UBD, SYK, E2F5, SP140, PFTK1, LPXN, PTPRC, 
PTPN1, TNFRSF5, EIF4B, BTAF1, AMPD3, 
POU2AF1, EGR2, ENPP2, BTK, ICSBP1

[30, 33]

Cell Cycle Control CDKN2A, CUL1, TP53, ARID3A, JUN, JUNB, 
JUND, FOS, EVI5, TMEM209, ZC3HC1

[27, 28, 33, 36-39, 41, 43]

Lymphocyte Development and 
Regulation

NOTCH2, NOTCH1, SPEN, DTX1, SWAP70, 
MAML2, BTK, CXCR4, ARID3A, KLF2, 
NOTCH3, NOTCH4, PAX5, MAP3K8, IRF5

[27, 28, 33, 34, 36, 37, 39-43]

Chromosomal and Transcriptional 
Regulation

MLL2, ARID1A, EP300, CREBBP, SIN3A, 
TBL1XR1, GPS2, SMYD1, MLL3, ARID4A, 
HIST1H1D, HIST1H1E, HIST1H2BI, HIST1H4H, 
SMARCA2, CHD2, BCOR, CBFA2T3, BCL6, 
POT1, ILF1

[27, 28, 33, 34, 36-38, 40]

Table 2: Molecular aberrations most prevalent in SMZL, and the frequency of occurrence in SMZL cases

GENETIC ABNORMALITIES

Gene Mutation frequency Citation

NOTCH2 ~ 40% [27, 28, 33, 34, 36, 37, 39, 40, 44]

KLF2 20% - 40% [28, 41, 42]

NF-κB pathway (CARD11, IKBKB, 
TNFAIP3, TRAF3, BIRC3, etc.) 35% - 45% [28, 29, 31, 33, 35-37, 41]

MYD88 10% - 15% [28, 33-35, 41]

TP53 10% - 20% [28, 37, 41, 45–47]

CHROMOSOMAL ABERRATIONS

Location Incidence Citation

7q Deletion 30% - 40% [10, 16, 19-27, 43, 48-53]

3q Gain 10% - 20%

Misc. Gains (6p, 8q, 9q, 12q, 18q) 8% - 18%

Misc. Losses (6q, 8p, 14q, 17p) 8% - 16%
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Table 3: Characterization of the miRNA expression (and their location) in SMZL, inclusive of all 
previously published, relevant studies

miRNA Location SMZL expression status Citation

miR-155 21q21.3 O [77–79]

miR-451 17q11.2 O, OL [73, 77]

miR-486 8p11.21 O, OL [73, 77]

miR-146a 5q33.3 O, OL [79, 80]

miR-494 14q32.2 O [79]

miR-34a 1p36.22 O [78, 79]

miR-193b 16p13.12 O [78]

miR-100 11q24.1 O [78]

miR-330 19q13.32 O [78]

miR-21 17q23.1 O, UL [77–79]

miR-144 17q11.2 OL [73]

miR-204 9q21.12 OL [73]

miR-212 17p13.3 OL [73]

miR-409-3p 14q32.31 OL [73]

miR-421 Xq13.2 OL [73]

miR-432 14q32.2 OL [73]

miR-487a/487b cluster 14q32.31 OL [73]

miR-520d 19q13.42 OL [73]

miR-542-3p Xq26.3 OL [73]

miR-574 4p14 OL [73]

miR-595 7q36.3 OL [73]

miR-650 22q11.22 OL [73]

miR-29a/29b-1 cluster 7q32.3 U [75–77]

miR-127 14q32.2 U, OL [73, 77, 78]

miR-139 11q13.4 U, OL [73, 77]

miR-335 7q32.2 U [21, 76, 77]

miR-411 14q32.31 U [77]

miR-593 7q32.1 U [21, 76]

miR-129-1 7q32.1 U [21, 76]

miR-139-5p 11q13.4 U [79]

miR-345 14q32.2 U [79]

miR-95 4p16.1 U, OL [73, 79]

miR-138 3p21.32 U [79]

miR-125a-5p 19q13.41 U [79]

miR-126 9q34.3 U, OL [73, 79]

(Continued )
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miRNA Location SMZL expression status Citation

miR-146b-5p 10q24.32 U [79]

miR-223 Xq12 U [80]

miR-377 14q32.31 U [78]

miR-27b 9q22.32 U [78]

miR-145 5q32 U [78]

miR-376a/376b cluster 14q32.31 U [78]

miR-381 14q32.31 U [78]

miR-494 14q32.31 U [78]

miR-382 14q32.31 U [78]

miR-154 14q32.31 U [78]

miR-410 14q32.31 U [78]

miR-758 14q32.31 U [78]

miR-485-3p 14q32.31 U [78]

miR-136 14q32.31 U, OL [73, 78]

miR-379 14q32.31 U [78]

miR-338 17q25.3 U [78]

miR-107 10q23.31 U [78]

miR-24 9q22.32 U [78]

miR-328 16q22.1 U [78]

miR-199a 19p13.2 U [78]

miR-483 11p15.5 U [78]

miR-589 7p22.1 U, UL [78]

miR-182/96/183 cluster 7q32.2 UL [21, 76]

miR-26b 2q35 UL [78]

miR-19b 13q31.3 UL [78]

miR-660 Xp11.22 UL [78]

miR-448 Xq23 UL [78]

miR-646 20q12.33 UL [78]

miR-323 14q32.31 UL [78]

miR-567 3q13.2 UL [78]

miR-141 12p13.31 UL [73]

miR-199b 9q34.11 UL [73]

miR-200c 12p13.31 UL [73]

miR-210 11p15.5 UL [73]

miR-663 20p11.1 UL [73]

miR-99a 21q21.1 UL [73]

Abbreviations: O, overexpressed compared to normal spleen; U, under-expressed compared to normal spleen; UL, 
underexpressed compared to B-cell lymphomas; OL, over-expressed compared to B-cell lymphomas.
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miRNAs in SMZL

The first study to propose a biological effect by 
miRNA on SMZL was published by Ruiz-Ballesteros 
et al. in 2007 and reported decreased expression levels 
of miR-29a and miR-29b-1 [75]. The two miRNA were 
chosen for the first study due to their proximity to the 
commonly deleted 7q region mentioned above, and miR-
29a is also known to have the potential to target and 
regulate TCL1A, a predicted oncogene in SMZL [30, 
81]. Subsequent studies followed, also investigating the 
association between miRNA levels and 7q mutational 
status. Watkins et al. reported a reduction in the 
expression of 7 miRNA located at 7q32, consistent with 
the chromosomal report of LOH at that location [21, 76]. 
This sentinel finding ignited curiosity within the scientific 
community regarding the role of miRNA and 7q LOH 
and should be further investigated to identify possible 
mechanistic connections.

The miRNA landscape of SMZL was also studied 
beyond the miRNA located at 7q32. Bouteloup et al. 
identified a significant variation in expression of 7 
miRNAs when comparing healthy samples to SMZL 
samples, with two of the identified miRNA being located 
at 7q [77]. Additionally, miR-21 over-expression was 
associated with the aggressiveness of SMZL cases in 
their study. A report published in 2012 investigated 
8 different B-cell lymphomas for specific miRNA 
signatures within each respective malignancy [73]. SMZL 
was included in this study, finding 26 different miRNAs 
to be differentially expressed in SMZL, with 20 being 
upregulated and 6 being downregulated in SMZL when 
compared to the other B-cell lymphomas. Arribas et al. 
conducted a more comprehensive analysis of the miRNA 
profile for SMZL, finding over 30 miRNAs differentially 
expressed when compared to reactive spleens, with 9 
miRNAs differentially expressed from similar B-cell 
lymphoma miRNA profiles [78]. Lastly, a study designed 
to investigate the SMZL miRNA profile, as well as the 
role of Hepatitis-C Virus on SMZL miRNA, determined 
a key role for 12 differentially expressed miRNAs in 
SMZL [79].

Incredibly, across each of the studies, very few 
miRNAs were found to be differentially expressed in 
multiple instances (Table 3). The variability among the 
miRNA profiles once again demonstrates the heterogeneity 
across SMZL, but due to the preliminary nature of the 
SMZL miRNA knowledge, as well as the vast regulatory 
ability of each miRNA, further investigation into their 
role on SMZL pathogenesis holds many opportunities. 
The identification of potential candidates for mechanistic 
studies is the next step to uncovering how post-
transcriptional regulation influences SMZL progression. 
Taken together, the following miRNA are proposed 
candidates for subsequent studies that should be conducted 
in an effort to elucidate the biology of SMZL.

Mechanistic impact of miRNA

The nearly infinite number of mechanistic roles 
performed by miRNA have been well established in 
the literature. Sifting through the abundance of the 
miRNAs for their role in diseases, however, can prove 
tedious. Hence, we took a reductionist approach by 
looking at the known role of miRNA in SMZL that are 
located within the 7q region and a select few of the 
miRNA that target caveolin-1 (CAV1). We listed each of 
the miRNA identified to be differentially expressed in 
SMZL signatures (Table 3), and we propose 7 of those 
miRNAs contain potential to be significant contributors 
to SMZL pathogenesis. These miRNAs are categorized 
into two different designations in an attempt to delineate 
the roles that these pathways may play on this specific 
lymphomagenesis (Table 4).

The miRNAs located at the 7q region have been 
hypothesized to play a role in SMZL progression, and due 
to the frequency of 7q chromosomal abnormalities seen in 
SMZL, should be investigated for their role. Hence, the first 
categorical designation will be miRNA that are transcribed 
within the 7q region. This includes miR-29a/b-1, miR-129-
1, the miR-183/96/182 polycistron, and miR-335.

The other category corresponds to miRNA that 
directly target the mRNA of CAV1, a gene located at 7q31 
that has been implicated in similar B-cell lymphomas. 
There were 9 miRNAs differentially expressed in previous 
studies that target CAV1, and of the 9, this review will 
discuss 3 of the miRNAs that could be crucial for 
exposing a role for CAV1 in SMZL pathogenesis. These 
miRNAs discussed below include: miR-199a, miR-376, 
and miR-485. The possibilities for the role of miRNAs in 
SMZL are almost limitless, but this review provides an 
evidence-based list of 7 miRNAs that could be crucial to 
understanding this malignancy.

miRNA located at 7q

The LOH near the 7q32 chromosomal region is a 
disruption unique to few lymphomas, and the loss seen 
in up to 40% of SMZL patients is the highest among 
B-cell lymphomas. As previously discussed, this unique 
aberration is being utilized in diagnostic techniques for 
SMZL, but the biological mechanisms behind these 
losses are difficult to identify. While some groups 
have hypothesized that miRNA could play a role in 
this LOH, and others have even looked at the miRNA 
expression profiles within the 7q32 region in SMZL 
tissues, the mechanistic role for these miRNA remains 
to be discovered. The 4 miRNAs below demonstrated 
significantly lower expression in SMZL cases against 
healthy samples or similar malignancies. This differential 
expression was seen across multiple studies in most cases, 
and the variable expression’s consequent downstream 
regulatory alterations may prove important for SMZL 
pathogenesis.
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miR-29a/b-1 cluster

The miR-29 family contains a two-member miRNA 
cluster located distally to a commonly deleted region of 7q, 
7q32. The miRNA family contains four members, miR29a, 
miR-29b-1, miR-29b-2, and miR-29c. While the cluster 
contains the same seed sequence, resulting in many of the 
same targets and regulations, only miR-29a and miR-29b-1 
are located on 7q. miR-29 is commonly under-expressed in 
SMZL spleens when compared with healthy tissues. This 
decrease of expression is consistent with the expression 
seen in similar B-cell neoplasms, CLL and mantle cell 
lymphoma (MCL), as well as many other malignancies 
[61, 67, 82–85]. The variable expression of miR-29 has 
been viewed with such importance that utilization in 
diagnostic, and more importantly prognostic, lymphoma 
designations have been proposed [86]. The regulatory 
role of miR-29 has been implicated in immune regulation, 
cell proliferation, differentiation and apoptosis pathways, 
metastatic interference, and even epigenetic modulation 
[87]. Due to the myriad of regulatory mechanisms and 
variable malignancies affected, miR-29 acts as a tumor 
suppressor in some situations while displaying oncogenic 
tendencies in others. The replicated under-expression of 
miR-29 seen in SMZL is consistent with miR-29 levels 
observed in similar B-cell malignancies, indicating that 
miR-29 primarily is acting as a tumor suppressor in 
SMZL. Further, in situations of LOH at or near the 7q32 
region, there could be complete loss of miR-29 transcripts 
resulting in possible loss of its tumor suppressive 
activity and a much more aggressive progression of the 
malignancy. Further studies are necessary to find the 
precise mechanistic role of 7q32 status on miR-29 and the 
overall impacts on SMZL progression.

Due to the established research into the role of miR-
29 in lymphomas similar to SMZL, the hypothesized 
mechanistic investigations have promising directionality. 
A primary target of miR-29a is the mRNA of TCL1A, 

and upon binding to the TCL1A mRNA it deactivates the 
oncogenic properties of the impending protein. TCL1A 
is an oncogene that has been shown to enhance cancer 
progression via its role in cell survival pathways, and it 
is commonly over-expressed in aggressive subtypes of 
many cancers. It has been shown that miR-29a acts as an 
inhibiting regulator of TCL1A in CLL [88], and as miR-
29 has a reduction in expression, TCL1A demonstrated the 
corresponding increase in expression in those cases. TCL1A 
has been shown to have increased expression among 
SMZL cases [30], and thus, a similar mechanistic role for 
miR-29 in SMZL is not out of the question. As mentioned 
above, in SMZL cases with which the 7q32 region is 
deleted, miR-29a could also be deleted. It has also been 
observed in former studies that miR-29a may be under-
expressed in SMZL cases, regardless of 7q mutational 
status [75]. This deletion or reduction in expression could 
result in a lack of TCL1A silencing, and consequently, 
would promote lymphomagenesis due to the down-stream 
protein’s increased activation and corresponding effects. 
Due to the multifaceted regulatory mechanisms of miR-
29, multiple cellular processes are disrupted upon its down 
regulation, as is seen in SMZL, but specific investigations 
into the tumor suppressive mechanisms, like the impact 
on TCL1A, are necessary for the exploitation of miR-29 in 
treatment and diagnostic opportunities.

miR-129-1

The miR-129 family is composed of miR-129-1 and 
miR-129-2, with the former being located at 7q32 within 
the region most commonly deleted in SMZL presentations. 
The two miRNA have almost identical seed sequences, 
resulting in similar functionalities. miR-129 has been 
primarily identified for its tumor suppressive role in various 
tumorigeneses, but oncogenic properties of the miRNA have 
been discovered as well. miR-129-1 was shown to have 
repressed expression of in SMZL. Thus, tumor suppression 

Table 4: Identification of the miRNA at the 7q region, or those that target the oncogene/tumor suppressor caveolin-1 

Category miRNA Regulation type Proposed SMZL 
regulation target

Transcribed at 7q miR-29a/b-1 cluster Tumor Suppressor TCL1A

miR-129-1 Tumor Suppressor BCL2

miR-182/96/183 cluster Tumor Suppressor or Oncogene FOXO1

miR-335 Tumor Suppressor Rb1, BCL-w

Target CAV1 miR-199a Tumor Suppressor IKKβ, CAV1

miR-376 Tumor Suppressor IGF1R, CAV1/IGF1R/SRC

miR-485 Tumor Suppressor CAV1

The proposed target of regulation within SMZL cells is also described.
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is most likely the route of regulation for this specific 
malady. Other cancers have also been found to display 
under-expression of miR-129, with a plethora of proposed 
mechanistic explanations from cell proliferation, cell cycle, 
apoptotic, metastatic, and autophagy pathway regulations 
[89]. Karaayvaz et al. investigated the regulation by miR-
129 as a tumor suppressor, finding that through direct 
targeting of B-cell lymphoma 2 (BCL2), miR-129 induces 
apoptotic mechanisms and inhibits cell proliferation via cell-
cycle arrest in colorectal cancer cells [90]. Consequently, 
upon decreased expression of miR-129, each of the 
tumor suppressive mechanisms are also stifled. A similar 
situation may occur in SMZL, as miR-129 shows decreased 
expression compared with healthy samples. Further, BCL2 
has been found to be over-expressed in SMZL signatures 
[78], providing additional evidence for the practicality of 
the miR-129 regulatory impact. Investigations into the role 
of miR-129-1 on SMZL pathogenesis and 7q LOH may 
prove beneficial based on reported information mentioned 
above, and thus, the mechanistic understanding of miR-129 
related to SMZL should be improved.

miR-182/96/183 cluster

The miRNA polycistron consisting of miR-182, 
miR-96, and miR-183 is considered a cluster due to the 
miRNAs’ proximity to one another. The miR-183 cluster 
is located at 7q32, and the miRNAs possess similar seed 
sequences, resulting in many shared functionalities. These 
miRNAs are typically seen over-expressed in various 
cancers, but under-expression has also been observed, 
demonstrating the dual tumor-suppressive and oncogenic 
role of the polycistron. More specifically, an increased 
expression of miR-183 was reported in lung cancer 
tissues [91], but in a separate study, miR-183 was found 
to have decreased expression in the peripheral blood of 
lung cancer cases [92], indicating miR-183 is utilized for 
contradictory mechanistic interactions in hematological 
and tissue malignancies. As for previously published 
miRNA data in SMZL, the miR-183 cluster has been 
shown to be under-expressed when compared to similar 
B-cell lymphoma samples [76]. The expression values 
when compared to control samples were unavailable, 
though. Thus, the under-expression seen in SMZL could be 
the result of an increase in tumor suppressive properties, 
or it could be an indication for a reduction in oncogenic 
effects compared to the B-cell lymphoma counterparts. 
A polymorphic mutation in approximately one quarter of 
SMZL cases has also been found at the region containing 
miR-182, indicating possible loss of function in some 
SMZL cases [76], but it has also been shown that the 
polymorphism can be found among healthy populations at 
an only slightly lower occurrence bringing into question 
its carcinogenicity [93]. This alteration in miR-182 
expression should first be investigated for the in-question 
dependence to the aforementioned polymorphism, but 

regardless, the under-expression of the entire miR-183 
cluster seen in SMZL indicate it should be assessed for its 
possible mechanistic role in the 7q deletion.

A variety of malignancies have been investigated 
for connections to the aberrant role of miR-183 cluster 
members on carcinogenesis, but conflicting mechanistic 
actions in varying tissues and malignancies make this 
evaluation inconsistent. The cluster is commonly over-
expressed in many solid tumors, but there has also 
been significant under-expression of the cluster in 
other malignancies [94]. Even among hematological 
malignancies expression is variable. MCL cases present 
with an increased miR-182 expression [95], but CLL cases 
showed a p53 regulated decrease in miR-182 expression 
[73, 96]. Mechanistic relationships between miR-183 
cluster members have stretched to many pathways and 
functions. There has been regulation in cell proliferation, 
cell apoptosis, cell migration, immune signaling, and 
DNA repair mechanisms, indicating the wide carcinogenic 
outreach of the cluster [97]. Connections to sonic 
hedgehog signaling pathways, Pro-apoptotic Programmed 
Cell Death (PDCD) family regulation, and regulation 
of Forkhead Box O (FOXO) subfamily signaling, just 
to name a few, have been published for explanations of 
the role the miR-183 cluster, or one of its’ members, has 
on various tumorigenesis processes [95, 98–109]. With 
such an impactful list of vetted carcinogenic targets, 
studies establishing the miR-183 cluster expression 
profile in SMZL against healthy/control tissues, and 
further investigation into the role of the cluster on SMZL 
pathogenesis, could renders vital for understanding the 
possible function of 7q LOH in SMZL overall progression.

miR-335

The final miRNA of interest located within the 7q 
region is miR-335. Similar to the other miRNA of interest, 
miR-335 was significantly under expressed in SMZL 
samples when compared to healthy controls. Research 
on miR-335 has been done primarily on solid tumor 
malignancies but the mechanistic conclusions in studies 
have the potential to be translated further [110]. miR-
335 has been discussed for its role as an oncogene, but 
it has contrarily been found to act as a tumor suppressor 
in other malignancies. Many of the cancers displaying an 
under-expression of miR-335, like SMZL, point to tumor 
suppressive mechanisms as its role in carcinogenesis.

One mechanism of action with far-reaching impacts 
demonstrated the role of miR-335 in p53 regulation. 
Scarola et al. found that miR-335 targets and represses 
retinoblastoma 1 (RB1) resulting in the up-regulation of 
p53 [111], but p53 pathway activation results in further 
up-regulation of miR-335, hence triggering a positive 
feedback loop. Thus, in a malignancy like SMZL when 
miR-335 is under-expressed, or in a case of 7q deletion 
possibly eliminating the coding regions for miR-
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335 rendering it almost nonexistent, there is no down 
regulation of RB1 and no downstream activation of p53, 
resulting in a huge decrease in the wide-spread tumor 
suppression. Additionally, TP53 deletions and mutations 
have been shown in 15% - 25% of SMZL cases [27, 
28, 38, 47], which would also result in disruption of the 
aforementioned positive feedback loop. Hence, this would 
provide an additional explanation for the decrease in miR-
335 expression. Further investigations into this mechanistic 
relationship may prove crucial for understanding miR-335 
as well as TP53 functioning in SMZL.

In other work, miR-335 has been shown to 
regulate BCL-w, a member of the BCL-2 protein family, 
suppressing its role in cell proliferation pathways, 
resulting in apoptosis of tumor cells [112, 113]. Again, 
as miR-335 is acting as a tumor suppressor, its under-
expression would result in less suppression of BCL-W 
allowing the tumor cells to proliferate much easier 
promoting their survival. Either of the aforementioned 
mechanisms could prove helpful in understanding SMZL, 
as p53 is a universal tumor suppressor that impacts all 
malignancies, and the B-cell lymphoma protein family is 
extremely homogeneous and miR-335 targeting of other 
BCL homologues should not be overlooked.

miRNA targeting CAV1 in SMZL

The LOH at 7q in SMZL has not been fully 
elucidated due to the many regulatory mechanisms that 
are possibly responsible or work in conjunction to impose 
the aberration. The fragile site FRA7G overlaps with part 
of the 7q region commonly deleted in SMZL, and within 
that site, at 7q31.2 to be exact, the tumor suppressor and 
oncogene, CAV1, resides. Therein other instances of LOH 

involving CAV1 resulted in malignant transformations 
[114, 115]. When CAV1 is coupled with an oncogene, 
CAV1 knockout mice appear more prone to progress to 
aggressive forms of cancers than in mice without the 
CAV1 knockout [116]. This impact could prove crucial for 
deciphering SMZL within an in vivo model and hence has 
been recently proposed [117]. The fragility and importance 
of the 7q region in SMZL almost certainly implicates 
CAV1 as a significant player in the disease etiology due to 
its crucial chromosomal location. Thus, the mechanisms 
and regulatory pathways extrapolating the role of CAV1 
in SMZL pathogenesis are worthy of further investigation.

There have been discrepancies among reported 
results regarding CAV1 status in SMZL cases. Ruiz-
Ballesteros et al. showed decreased expression of CAV1 
[30], but Watkins et al. found no differential regulation of 
CAV1 in SMZL samples [21]. These inconsistencies may 
be a result of additional molecular regulators and their 
impacts. There are 9 miRNAs reported to be aberrantly 
expressed in the SMZL profile, that have the ability to 
target CAV1, and thus, it would be no surprise if miRNAs 
regulation on CAV1 may be the culprit responsible for these 
discrepancies. Further, CAV1 expression has been reported 
to be independent of 7q mutation status also supporting the 
idea that regulatory mechanisms beyond chromosomal loss 
are almost certainly at work. CAV1 has been shown to be 
a crucial piece in immune functioning and dysregulation 
in malignancies similar to SMZL, and in order to decipher 
the role of CAV1 on SMZL, in cases of 7q LOH or in cases 
with 7q intact, miRNA regulation should be investigated 
for their impact. There are 3 miRNAs (miR-199a, miR-
376 cluster, and miR-485) that will be discussed next that 
present viable options for CAV1 regulation and, in turn, 
impact SMZL pathogenesis (Figure 1).

Figure 1: Graphical representation of affected region on 7q. The predominantly affected region of chromosome 7 frequently 
mutated or lost in splenic marginal zone lymphoma is depicted, inclusive of the miRNA within this region that target CAV1.
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miR-199a

The decreased expression of miR-199a seen in 
SMZL is consistent with previously published literature. 
In studies to this point, miR-199a has demonstrated 
tumor suppressive properties, and hence, has been 
under-expressed in many of the malignancies being 
investigated. Due to its importance as a tumor suppressor 
it has been studied for its prognostic significance and 
potential as a treatment target in solid and hematological 
malignancies [118]. Many studies have demonstrated 
the multifaceted, tumor suppressive properties of miR-
199a. The decreased expression of miR-199a induces an 
increase in IKKβ activity, further stimulating the NF-κB 
pathway, which results in an enhanced tumor environment 
and chemoresistance [119–121]. The proposed tumor 
suppressive mechanisms of miR-199a have also 
included downregulation of proto-oncogenes and their 
corresponding pathways [122], as well as regulation 
of mammalian target of rapamycin, cell migration, and 
apoptotic pathways [118]. In the malignancy most similar 
to SMZL, diffuse large B-cell lymphoma (DLBCL), the 
increased expression of miR-199a among patient cohorts 
has corresponded to a more favorable progression free 
survival and OS [118, 123].

While pathway regulation is important for 
elucidating the role of miR-199a, in order to exploit miR-
199a for more treatment and prognostic options precise 
mechanistic understanding must be improved. There 
has been research into the mechanistic relationship that 
miR-199a and the tumor suppressor and oncogene CAV1 
may have. miR199a has been shown to directly target 
CAV1 and, in turn, affect the resulting mechanisms in 
which CAV1 may be involved [124]. Subsequent studies 
further supported this relationship and have found miR-
199a significantly inhibits CAV1 expression and function 
[125]. Thus, when miR-199a is shown to have decreased 
expression in SMZL cases, an increased expression 
of CAV1 could be expected, which has shown to be 
detrimental in other cancers [126–130]. Experimental 
investigations into the relationship between CAV1 and 
miR-199a may not only prove beneficial for understanding 
its role in SMZL progression but could render fruitful for 
deciphering other malignancies and diseases as well.

miR-376 cluster

An additional target of CAV1, the miR-376 cluster, 
was also significantly under-expressed in SMZL compared 
to non-tumoral controls [78]. The miR-376 family has not 
been studied extensively, but it has been shown to act 
with oncogenic properties in some malignancies while 
displaying tumor suppressive functions in other cancers, 
resulting in proposed utilization as a biomarker [131–
133]. The decrease in miR-376 expression in SMZL cases 
indicates tumor suppressive properties, but the mechanistic 

understanding of miR-376 remains unknown. miR-376 has 
been shown to impact cancer progression via cell cycle 
progression, cell migration and invasion, and autophagy 
[134–136]. One mechanism of tumor suppression is the 
direct regulation of IGF1R by miR-376a and miR-376c, 
resulting in decreased migration and proliferation [134]. 
Thus, upon reduction of miR-376a expression, as is seen 
in SMZL, IGF1R becomes fully activated, promoting 
tumor progression. Additionally, IGF1R forms a complex 
with CAV1 and SRC in order to induce anti-apoptotic 
mechanisms [137]. When inhibition of CAV1 or IGF1R 
was applied, it corrupted the complex allowing apoptotic 
molecules to resume mitigating tumor development. This 
identifies another route that miR-376 may serve as a 
tumor suppressor, as it would be able to directly target and 
suppress CAV1, IGF1R, or both, to disrupt their oncogenic 
mission. Hence, the decrease in miR-376 in SMZL would 
limit the capacity for these tumor suppressive functions.

Arribas et al. hypothesized additional predicted 
targets of miR-376 that have been shown to act in 
tumorigenesis: CD44, MUM1, DLEU1, IL2RA, IL7, 
IRTA4, and FOXP1 [78], all of which could potentially 
be upregulated in SMZL. Upregulation of FOXP1, for 
example, has been demonstrated in SMZL [78]. It is 
similarly upregulated in DLBCL signatures, resulting in 
increased oncogenic activity [138]. This upregulation of 
FOXP1 and subsequent increase in malignant activity 
would be consistent with a decrease in miR-376 expression, 
and thus, this relationship should be further explored. 
Finally, miR-376 has been shown to undergo RNA editing, 
resulting in altered mRNA targets, in germinal center based 
B-cell lymphomas [139]. This alteration in targets can 
result in a multitude of aberrant regulations, possibly even 
becoming carcinogenic. And, while the cellular origin of 
SMZL is still controversial, it’s plausible that RNA editing 
within the miR-376 could assist in tracking etiology in a 
subset of cases. Each of the aforementioned mechanisms 
present the capability to contribute to SMZL pathogenesis 
understanding the impact of miR-376 on SMZL and other 
malignancies should be pursued.

miR-485

The final miRNA of interest in this review is 
miR-485. Arribas et al. demonstrated significant under 
expression of miR-485 in SMZL samples [78]. The 
decreased expression is consistent with many of the 
previously published findings on miR-485, and it indicates 
the miRNA exhibits primarily tumor suppressive properties 
on SMZL pathogenesis. Increased expression of miR-485 
has corresponded to enhanced treatment resistances in 
tumor cells [140, 141], and increased expression has also 
been shown to impact cell migration and invasion, colony 
formation, cell viability, and mitochondrial functioning 
in tumor cells, resulting in decreased cell viability [142, 
143]. Additionally, decreased expression of miR-485 
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has corresponded to less desirable outcomes in clinical 
studies indicating possible functionality as a biomarker 
[144, 145]. One proposed mechanism of the tumor 
suppressive role of miR-485 is the result of a single-
nucleotide polymorphism (SNP) at the miR-485 binding 
site [146]. This SNP abrogates the ability of the miRNA 
to accurately bind to target mRNAs resulting in loss of 
tumor suppressive function. Chen et al. also proposed 
that miR-485 targets pathways involved in topoisomerase 
inhibition, and through decreased expression of miR-
485, there is decreased sensitivity in related treatments 
[140]. The role of miR-485 on SMZL pathogenesis has 
yet to be investigated, but its interaction with CAV1, a 
predicted target of miR-485, is worthy of a further look. 
The previously proposed mechanisms from altered miRNA 
regulation due to SNPs or direct regulation of CAV1 
resulting in downstream effects are both viable possibilities 
and could be investigated in SMZL cellular environments.

CONCLUSIONS

Splenic marginal zone lymphoma is an indolent, 
non-Hodgkin lymphoma with an OS of over 10 years 
in most cases. Approximately a third of these cases 
become aggressive and possibly transform to a much 
more lethal lymphoma, cutting the OS almost in half for 
those patients. Mechanistic understanding behind this 
unfavorable prognosis remain unknown, despite a plethora 
of chromosomal and genetic investigations. The lack of 
cohesive results in much of the literature may be the result 
of additional regulatory mechanisms, resulting in abnormal 
functioning and interactions at the chromosomal and 
genetic levels. The role of miRNA in cancer is a growing 
investigative interest, as elucidation of their regulation has 
proven enlightening for deciphering various malignancies 
and their progression. This review discusses the 
discrepancies among current data regarding understanding 
of SMZL pathogenesis and proposes miRNA regulation 
to be a possible culprit. The regulation by 7 miRNAs 
previously identified to have altered expression in SMZL 
are discussed, and possible mechanisms for their impact 
on SMZL progression are proposed based on previous 
findings in other malignancies. The miRNA located 
within the most commonly effected chromosomal region 
in SMZL, 7q and the miRNA that target CAV1, a gene 
implicated in many cancers and located at 7q31, were 
also a focus of this review. Further investigations into the 
mechanistic role of miRNA in SMZL may provide insight 
into the disease etiology and could identify possible 
candidates for prognostic biomarkers and treatment 
targets, improving acumen for this disease entity.
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