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ABSTRACT
Identification of reliable and accurate molecular markers remains one of the 

major challenges of contemporary biomedicine. We developed a new bioinformatic 
technique termed OncoFinder that for the first time enables to quantatively measure 
activation of intracellular signaling pathways basing on transcriptomic data. Signaling 
pathways regulate all major cellular events in health and disease. Here, we showed 
that the Pathway Activation Strength (PAS) value itself may serve as the biomarker 
for cancer, and compared it with the “traditional” molecular markers based on the 
expression of individual genes. We applied OncoFinder to profile gene expression 
datasets for the nine human cancer types including bladder cancer, basal cell 
carcinoma, glioblastoma, hepatocellular carcinoma, lung adenocarcinoma, oral tongue 
squamous cell carcinoma, primary melanoma, prostate cancer and renal cancer, totally 
292 cancer and 128 normal tissue samples taken from the Gene expression omnibus 
(GEO) repository. We profiled activation of 82 signaling pathways that involve ~2700 
gene products. For 9/9 of the cancer types tested, the PAS values showed better 
area-under-the-curve (AUC) scores compared to the individual genes enclosing each 
of the pathways. These results evidence that the PAS values can be used as a new 
type of cancer biomarkers, superior to the traditional gene expression biomarkers.

INTRODUCTION

Identification of reliable and accurate molecular 
markers of cancer remains one the major challenges of 
contemporary biomedicine. Thousands of reports have 
been published communicating new RNA, protein and 
non-protein biochemical biomarkers sensitive to cancer 
development [1–7]. Most of these markers represent 
products of individual gene expression at the RNA or 
protein levels. Some of them are widely used in clinical 
practice, but there remains an overall unsolved problem of 
finding new cancer biomarkers with enhanced specificity 

and sensitivity scores compared to the existing ones. 
Another aspect of the same problem deals with the 
shortage of the cancer type-specific molecular markers, 
e.g. melanoma-specific, bladder or pancreatic cancer-
specific, etc. Association of the marker expression with 
the success of the medical treatment may provide clues 
to a more efficient, patient-oriented cancer treatment 
therapy [8].

Recently, we developed a new bioinformatic 
technique termed OncoFinder. This novel program 
enables the user to quantatively measure the activation 
of intracellular signaling pathways in a number of  
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cell/tissue physiological and pathological conditions 
including cancer. Signaling pathways regulate all major 
cellular events in health and disease [9–11].

OncoFinder takes transcriptome-wide gene 
expression levels, including microarray and next-
generation sequencing (NGS) data as input and calculates 
a quantitative measure of the signaling pathway activation 
strength (PAS) for the signaling pathways under 
investigation. The PAS is a measure of the cumulative 
value of perturbations of a signaling pathway and it may 
serve as a distinct indicator of pathological changes in the 
intracellular signalization machine at the cellular, tissue 
or organ levels.

The formula for PAS calculations include gene 
expression data and the information of the protein 
interactions in the pathway under investigation, namely, 
the protein activator or repressor of the pathway [12]; 
for the pathway p, ∑ )(⋅PAS = ARR CNRlgp np n

n
. Here 

the summation is done over all the gene products in a 
pathway, which represents the signal through a pathway p. 
The relative role of a gene product in signal transduction is 
reflected by a discrete flag activator/repressor role (ARR) 
which equals to 1 for an activator gene product; -1 for 
a repressor, and intermediate values -0,5; 0,5 and 0 for 
the gene products that have rather repressor, activator 
or unknown roles, respectively. The CNRn value (case-
to-normal ratio) is the ratio of the expression level of a 
gene n in the sample under investigation, to the average 
expression level in the sampling used as the norm for 
this comparison. The positive value of PAS indicates 
abnormal activation of a signaling pathway, and the 
negative value – its repression. With the exception of 
pediatric oncology, the majority of cancers are age-related 
[13]. The methods for calculating PAS, CNR and the 
drug score in cancer were proposed in the study of aging 
[12, 14]. In the investigations with the experimentally-
tracked data on the signaling pathway activation, we have 
previously confirmed the robustness of this formula and 
its adequacy to the analysis of intracellular signalization 
[12]. The above formula for PAS calculation was shown 
to dramatically diminish the discrepencies between the 
microarray and deep sequencing data obtained using 
various experimental platforms [15].

Calculations were made that take into account the 
relative importance of certain genes and their products 
according to the results of parameter sensitivity [16] 
and/or stiffness/sloppiness analysis [17] in terms of total 
concentrations of certain proteins using an approved 
kinetic model of signaling pathway activation [18].

Here, we investigated if the PAS value itself 
may serve as the biomarker for cancer, and compared 
it with “traditional” molecular markers based on the 
expression of individual genes. We applied OncoFinder 
to gene expression datasets for the nine human cancer 
types including bladder cancer, basal cell carcinoma, 

glioblastoma, hepatocellular carcinoma, lung 
adenocarcinoma, oral tongue squamous cell carcinoma, 
primary melanoma, prostate cancer and renal cancer. This 
covers 292 cancer and 128 normal tissue samples from 
the Gene expression omnibus (GEO) repository [19]. 
We profiled the activation of 82 signaling pathways that 
involve ~2700 individual gene products. For 9/9 of these 
cancer types, the SPA values showed significantly better 
area-under-the-curve (AUC) scores compared to the 
individual genes enclosing each of the pathways. These 
results provide evidence that the SPA values calculated 
using OncoFinder algorithm can be used as a new type 
of cancer biomarkers, superior to the traditional gene 
expression biomarkers.

RESULTS AND DISCUSSION

Profiling pathway activation strength (PAS) for 
cancer transcriptomes

Using the recently published algorithm for 
calculating PAS values [12] we profiled the large-scale 
transcriptomic data obtained for the nine types of human 
cancer and for the matching normal tissues (Table 1). In 
total we analized 292 cancer and 128 matching normal 
transcriptomes from the Gene expression omnibus (GEO) 
repository. This covered the following cancers; bladder 
cancer, basal cell carcinoma, glioblastoma, hepatocellular 
carcinoma, lung adenocarcinoma, oral tongue squamous 
cell carcinoma, primary melanoma, prostate cancer 
and renal cancer. All the transcriptomic datasets were 
synthesized using the same microarray platform 
Affymetrix Human Genome U133 Plus 2.0 [20–27].

We interrogated a total of 82 intracellular signaling 
pathways encompassing the products of ~2700 human 
genes (Supplementary dataset 1). Basing on the 
comparison of the cancer vs normal tissue transcriptomic 
data, we obtained the PAS profiles characteristic of 
the above cancer types (Supplementary datasets 2, 3). 
Positive and negative PAS scores reflect upregulated and 
downregulated signaling pathways, respectively, whereas 
zero PAS scores represent unaffected pathways acting 
similarly in cancer and in normal tissues.

We next calculated the area-under-curve (AUC) 
values [28] for the PAS scores of each of the pathways 
under investigation. The AUC value is the universal 
characteristics of biomarker robustness and it is dependent 
on the sensitivity and specificity of a biomarker. It 
correlates positively with the biomarker quality and 
may vary in an interval from 0.5 till 1. The AUC 
threshold for discriminating good and bad biomarkers 
is typically 0.7 or 0.75. The entries having greater AUC 
score are considered good-quality biomarkers and vice-
versa [29]. The AUC values were calculated when 
comparing each cancer type against the remaining eight 
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cancer types. Enhanced AUC values here meant that the 
corresponding signaling pathway is a good biomarker 
distinguishing an individual cancer type from the others 
(Supplementary dataset 4). This kind of AUC score will 
be referred here as AUC1 (Supplementary dataset 4). 
In parallel, we also calculated the analogous AUC 
scores for the individual gene products (namely, for the 
values of lg CNR for them, Supplementary dataset 5) 
including those involved in each signaling pathway. 
For these individual gene products involved in the 
pathways (a total of 2726 human gene products), we 
next calculated the average AUC scores characteristic 
of each signaling pathway/cancer type, referred here as 
AUC2 (Supplementary dataset 4). The AUC2 value for 
pathway p and cancer type n is the average of the cancer  
n-associated AUC scores for all the gene products 
involved in the pathway p. The outline of the data analysis 
is shown on the Figure 1.

Comparison of the AUC scores calculated for 
the pathway activation strength and for the 
individual gene expression levels

AUC1 reflects the quality of PAS as the biomarker 
for a given signaling pathway, and AUC2 is the integral 
characteristics of the biomarker quality for the expression 
of the genes which are involved in the same pathway. The 
results of the AUC calculations (Supplementary dataset 4) 
showed that among the good-quality biomarkers (AUC 
cut-off value 0.7 or 0.75) the values for AUC1 were 
higher than for the AUC2 for all cancer types (Table 2). 
For example, for the cut-off value 0.75 in all cancer types 
there were only 14 AUC2 (gene expression) markers, 
in contrast to 160 AUC1 (pathway activation) markers 

(Table 2). Moreover, for ten of these fourteen AUC2 
markers, the corresponding AUC1 values were greater 
(Table 2), thus suggesting the stronger biomarker potential 
of the AUC1 (pathway activation) markers.

Importantly, these data show that the pathway 
activation strength (PAS) – based biomarkers may serve 
efficiently to distinguish the different cancer types. 
Among the 82 signaling pathways profiled in this assay, 
75 showed a potential to serve as the strong cancer type-
specific biomarkers with the AUC > 0.75 (Supplementary 
dataset 4). For each cancer type, the number of these 
PAS biomarkers (AUC > 0.75) varied from 2 till 59 
(Table 2). The quality of these biomarkers was typically 
stronger than for the biomarkers purely based on the gene 
expression levels, as reflected by the comparison of AUC1 
vs AUC2 scores (Table 2). This suggests that during 
cancer progression the signaling pathway regulation 
is a more uniform process rather than the activation 
of certain individual genes. Indeed, an intracellular 
signaling pathway is a complex regulatory network that 
may include hundreds of different gene products [30–31]. 
Theoretically, expression of every gene in this network 
may have an influence on the overall functioning of the 
signaling pathway. Alterations in the expression profiles 
of many different genes can, therefore, lead to a similar 
result of a pathway activation or suppression during cancer 
development [32].

In this study, we for the first time quantitatively 
profiled the signaling pathway activation features in 
292 human cancer samples. The profiles obtained here for 
the bladder cancer, basal cell carcinoma, glioblastoma, 
hepatocellular carcinoma, lung adenocarcinoma, oral 
tongue squamous cell carcinoma, primary melanoma, 
prostate cancer and renal cancer are available in the 

Table 1: Transcriptomic datasets extracted from the GEO repository
Cancer type Number of cancer 

samples
Number of normal 
samples

Reference GEO dataset 
number

Basal cell carcinoma 15 4 [19] GSE7553

Bladder cancer 52 40 [20] GSE31189

Glioblastoma 34 13 [21] GSE50161

Hepatocellular carcinoma 10 10 [22] GSE29721

Lung adenocarcinoma 86 13 [23] GSE30219

Oral tongue squamous cell 
carcinoma 26 12 [24] GSE9844

Primary melanoma 14 4 [19] GSE7553

Prostate cancer (well 
differentialed) 20 20 [25] GSE32448

Renal cancer 35 12 [26] GSE7023
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Figure 1: Outline of the bioinformatics procedures used to calculate AUC1 and AUC2 values. 

Supplementary dataset 2. Further thourough analysis 
of these data is underway in our laboratory and will be 
published elsewhere. In this report, we want to discuss the 
pathway activation features that may serve to distinguish 
the different types of cancer (see the Supplementary 
dataset 6). These signaling pathways can be either 
upregulated or suppressed, with the characteristic values 
of PAS used as the distinguishing features. For example, 

with the AUC cut-off threshold 0.75, downregulation 
of the ATM pathway (average PAS~ -2) characterizes 
hepatocellular carcinoma, whereas its upregulation 
(avg PAS~3.7) is typical for the melanoma cells. Strong 
increase in Notch signaling (avg PAS~9) denotes glioma, 
mild upregulation of RNA polymerase II complex activity 
(avg PAS~1.4) – basal cell carcinoma, moderate decrease 
in IP3 signaling (avg PAS~ -1.9) – lung adenocarcinoma, 
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et cetera. It may be seen that any investigated tissue type 
has its unique profile of statistically significant pathway 
activation features, which provides a potent instrument for 
further analysis and specific targeting of various cancer 
types in the future.

It was shown previously that many intracellular 
signaling pathways actively participate in tumorigenesis 
[33–36]. Other pathways, in turn, are silenced in the 
transformed cells and tissues [37–38]. Intracellular 
regulation is also implicated in metastasing, drug 
resistance and tumor invasiveness [39–42]. We propose 
that the current bioinformatic approach based on the 
OncoFinder algorithm opens broad perspectives for 
finding tight associations of signaling pathway activation 
with the prognosis of disease progression and with the 
efficiency of anticancer treatment.

CONCLUSION

In this study, we provide evidence that the signaling 
pathway activation strength (PAS) values may serve as the 
biomarkers of different cancer types, frequently superior 
than the traditional molecular markers based on the 
expression of individual genes. We applied our original 

bioinformatical algorithm OncoFinder to gene expression 
datasets for the nine human cancer types. This includes 
292 cancer and 128 normal tissue samples taken from the 
Gene expression omnibus (GEO) repository. We profiled 
the activation of 82 signaling pathways that involve ~2700 
individual gene products. For 9/9 of the cancer types, the 
SPA values showed significantly stronger area-under-the-
curve (AUC) scores compared to the individual genes 
whose products are involved in the respective pathways. 
These results show that the SPA values calculated 
using OncoFinder algorithm may be used as a new type 
of cancer biomarker, superior to the traditional gene 
expression biomarkers. We also, for the first time, publish 
characteristic intracellular signaling pathway activation 
profiles for nine human types of cancer.

METHODS

Source datasets

Gene expression data used in this study were 
downloaded from the Gene Expression Omnibus (GEO) 
repository of transcriptomic information (http://www.ncbi 
.nlm.nih.gov/geo/). All the dataset were obtained using the 

Table 2: Comparison of the AUC1 and AUC2 scores calculated for 81 intracellular signaling 
pathways for nine human cancer types basing on the transcriptomic data
Cancer type AUC1 > 0.7a AUC2 > 0.7b AUC1/2 > 0.7; 

AUC1 > AUC2c
AUC1/2 > 0.7; 
AUC2 > AUC1d AUC1 > 0.75e AUC2 > 0.75f AUC1/2 > 0.75; 

AUC1 > AUC2g
AUC1/2 > 0.75; 
AUC2 > AUC1h

Basal cell 
carcinoma 40 5 40 1 23 0 23 0

Bladder cancer 20 23 15 15 10 9 8 4

Glioblastoma 66 68 66 12 59 5 59 0

Hepatocellular 17 0 17 0 7 0 7 0

Lung 
adenocarcinoma 32 2 32 1 21 0 21 0

Oral tongue 
squamous cell 
carcinoma

5 0 5 0 2 0 2 0

Primary 
melanoma 25 0 25 0 13 0 13 0

Prostate cancer 28 8 28 5 16 0 16 0

Renal cancer 19 10 19 6 10 0 10 0

aNumber of signaling pathways where AUC1 > 0.7
bNumber of signaling pathways where AUC2 > 0.7
cNumber of signaling pathways where AUC1/2 > 0.7, and AUC1 > AUC2
dNumber of signaling pathways where AUC1/2 > 0.7, and AUC2 > AUC1
eNumber of signaling pathways where AUC1 > 0.75
fNumber of signaling pathways where AUC2 > 0.75
gNumber of signaling pathways where AUC1/2 > 0.75, and AUC1 > AUC2
hNumber of signaling pathways where AUC1/2 > 0.75, and AUC2 > AUC1
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microarray platform Affymetrix Human Genome U133 
Plus 2.0 Array. The datasets used are listed on the Table 1. 
The normal tissue samples from each dataset were used as 
the controls in further calculations.

The signalome knowledge base developed 
by SABiosciences (http://www.sabiosciences.com/
pathwaycentral.php) was used to determine structures 
of intracellular pathways, which was used for the 
computational algorithm OncoFinder exactly as described 
previously [12, 14, 43]. For all the datasets, the data on 
gene expression levels for cancer and normal tissues 
were quantile-normalized. For each cancer sample, the 
logarithmic value of lg CNR was used for every gene in 
further calculations.

Functional annotation of gene expression data

We applied our original algorithm OncoFinder 
[12] for the functional annotation of the primary 
expression data and for the calculation of the PAS scores. 
The extracted raw microarray expression data were 
quantile normalized according to [44]. Our approach 
to the transcriptome-wide gene expression analysis 
applies processing of these results with the signalome 
knowledge base developed by SABiosciences (http://www 
.sabiosciences.com/pathwaycentral.php). The algorithm 
utilizes a scheme that takes into account the overall impact 
of each gene product in the signaling pathway but ignores 
its position in the pathway graph. The formula used to 
calculate the pathway activation strength (PAS) for a given 
sample and a given pathway p is as follows:

∑ )(Α ⋅ ⋅P S = ARR BTIF CNRlgp np n n
n

Here the case-to-normal ratio, CNRn, is the ratio 
of expression levels for a gene n in the sample under 
investigation to the same average value for the control 
group of samples. The Boolean flag of BTIF (beyond 
tolerance interval flag) equals zero when the CNR value 
has passed simultaneously the two criteria that demark the 
significantly perturbed expression level from essentially 
normal. The first criterion is the expression level for 
the sample lies within the tolerance interval, where 
p > 0.05. The second criterion is the discrete value of 
ARR (activator/repressor role) equals to the following 
fixed values: -1, when the gene/protein n is a repressor 
of pathway excitation; 1, if the gene/protein n is an 
activator of pathway excitation; 0, when the gene/protein 
n can be both an activator and a repressor of the pathway; 
0.5 and -0.5, respectively, if the gene/protein n is rather 
an activator or repressor of the signaling pathway p, 
respectively. The results for the 82 pathways were 
obtained for each sample (listed in the Supplementary 
dataset 2). The area-under-curve (AUC) values were 
calculated according to [28]. Statistical tests were done 
using the R software package.

ACKNOWLEDGEMENTS

This work was supported by the Russian Foundation 
for Basic Research grant 12-04-33094 and the Program 
of the Presidium of the Russian Academy of Sciences 
“Dynamics and Conservation of Genomes”. The authors 
thank The First Oncology Research and Advisory Center 
(Moscow, Russia) and “UMA Foundation” (Moscow) 
for their support in preparation of the manuscript and 
Dr. Kristen Swithers of Yale University for editing the 
manuscript.

REFERENCES

1. Koepke J.A. Molecular marker test standardization. Cancer. 
1992; 69:1578–1581.

2. Bast RC, Xu FJ, Yu YH, Barnhill S, Zhang Z, Mills GB. 
CA 125: the past and the future. Int J Biol Markers. 1998; 
13:179–187.

3. Krishnan STM, Philipose Z, Rayman G. Lesson of the 
week: Hypothyroidism mimicking intra-abdominal malig-
nancy. BMJ. 2002; 325:946–947.

4. Keshaviah A, Dellapasqua S, Rotmensz N, Lindtner J, 
Crivellari D, Collins J, Colleoni M, Thürlimann B, 
Mendiola C, Aebi S, Price KN, Pagani O, Simoncini E, 
Castiglione Gertsch M, Gelber RD, Coates AS, 
Goldhirsch A. CA15-3 and alkaline phosphatase as pre-
dictors for breast cancer recurrence: A combined analysis 
of seven International Breast Cancer Study Group trials. 
Annals of Oncology. 2006; 18:701–708.

5. Mathivanan S, Periaswamy B, Gandhi TK, Kandasamy K, 
Suresh S, Mohmood R, Ramachandra YL, Pandey A. 
An evaluation of human protein-protein interaction data in 
the public domain. BMC Bioinformatics. 2006; 7:S1.

6. Bagan P, Berna P, Assouad J, Hupertan V,  
le Pimpec-Barthes F, Riquet M. Value of cancer antigen 
125 for diagnosis of pleural endometriosis in females 
with  recurrent pneumothorax. Eur Respir J. 2008; 
3:140–142.

7. Kilpatrick ES, Lind M J. Appropriate requesting of serum 
tumour markers. BMJ. 2009; 339:b3111.

8. Blagosklonny MV. Common drugs and treatments for 
 cancer and age-related diseases: revitalizing answers 
to NCI’s provocative questions. Oncotarget. 2012; 
3:1711–1724.

9. Blagosklonny MV. MTOR-driven quasi-programmed 
aging as a disposable soma theory: blind watchmaker vs. 
 intelligent designer. Cell Cycle. 2013; 12:1842–1847.

10. Demidenko ZN, Blagosklonny MV. The purpose of 
the HIF-1/PHD feedback loop: to limit mTOR-induced  
HIF-1α. Cell Cycle. 2011; 10:1557–1556.

11. Blagosklonny MV. The power of chemotherapeutic 
engineering: arresting cell cycle and suppressing senescence 



Oncotarget7www.impactjournals.com/oncotarget

to protect from mitotic inhibitors. Cell Cycle. 2011; 
10:2295–2298.

12. Buzdin AA, Zhavoronkov AA, Korzinkin MB, Venkova LS, 
Zenin AA, Smirnov PhYu, Borisov NM. OncoFinder, a new 
method for the analysis of intracellular signaling pathway 
activation using transcriptomic data. Frontiers in Genetics: 
Bioinformatics and Computational Biology. 2014; 5:55.

13. Zhavoronkov A, Cantor CR. Methods for Structuring 
Scientific Knowledge from Many Areas Related to Aging 
Research. PLoS ONE. 2011; 6:e22597.

14. Zhavhavoronkov A, Buzdin AA, Garazha AV, Borisov NM, 
Moskalev AA. Signaling pathway cloud regulation for in 
silico screening and ranking of the potential geroprotective 
drugs. Frontiers in Genetics of Aging. 2014; 5:4.

15. Buzdin AA, Zhavoronkov AA, Korzinkin MB, 
Roumiantsev SA, Aliper AM, Venkova LS, Smirnov PhYu, 
Borisov NM. The OncoFinder algorithm for minimizing 
the errors introduced by the high-throughput methods of 
transcriptome analysis. Frontiers in Molecular Biosciences. 
2014; 1:89.

16. Kholodenko B, Kiyatkin A, Bruggeman F, Sontag E, 
Westerhof HV, Hoek JB. Untangling the wires: a strategy 
to trace functional inter actions in signaling and gene 
networks. PNAS. 2003; 20:12841–12846.

17. Daniels BC, Chen YJ, Sethna JP, Gutenkunst RN, 
Myers CR. Sloppiness, robustness and evolvability in 
systems biology. Curr Opin Biotechnol. 2008; 19:389–395.

18. Kuzmina NB, Borisov NM. Handling complex rule-based 
models of mitogenic cell signaling (On the example of ERK 
activation upon EGF stimulation). Intl Proc Chem Biol 
Envir Engng. 2011; 5:76–82.

19. GEO Profiles, a National Center of Biotechnology 
Information database. URL: http://www.ncbi.nlm.nih.gov/
geoprofiles.

20. Riker AI, Enkemann SA, Fodstad O, Liu S, Ren S, 
Morris C, Xi Y, Howell P, Metge B, Samant RS, 
Shevde LA, Li W, Eschrich S, Daud A, Ju J, Matta J. 
The gene expression profiles of primary and metastatic 
melanoma yields a transition point of tumor progression and 
metastasis. BMC Med Genomics. 2008; 1:13.

21. Urquidi V, Goodison S, Cai Y, Sun Y, Rosser CJ. 
A candidate molecular biomarker panel for the detection of 
bladder cancer. Cancer Epidemiol Biomarkers Prev. 2012; 
21:2149–2158.

22. Griesinger AM, Birks DK, Donson AM, Amani V, 
Hoffman LM, Waziri A, Wang M, Handler MH, 
Foreman NK. Characterization of distinct 
immunophenotypes across pediatric brain tumor types. 
J Immunol. 2013; 191:4880–4888.

23. Stefanska B, Huang J, Bhattacharyya B, Suderman M, 
Hallett M, Han ZG, Szyf M. Definition of the landscape 
of promoter DNA hypomethylation in liver cancer. Cancer 
Res. 2011; 71:5891–5903.

24. Rousseaux S, Debernardi A, Jacquiau B, Vitte AL, 
Vesin A, Nagy-Mignotte H, Moro-Sibilot D, Brichon PY, 
Lantuejoul S, Hainaut P, Laffaire J, de Reyniès A, Beer DG, 
Timsit JF, Brambilla C, Brambilla E, Khochbin S. Ectopic 
activation of germline and placental genes identifies 
aggressive metastasis-prone lung cancers. Sci Transl Med. 
2013; 5:186ra66.

25. Ye H, Yu T, Temam S, Ziober BL, Wang J, Schwartz JL, 
Mao L, Wong DT, Zhou X. Transcriptomic dissection 
of tongue squamous cell carcinoma. BMC Genomics. 
2008; 9:69.

26. Derosa CA, Furusato B, Shaheduzzaman S, Srikantan V, 
Wang Z, Chen Y, Seifert M, Ravindranath L, Young D, 
Nau M, Dobi A, Werner T, McLeod DG, Vahey MT, 
Sesterhenn IA, Srivastava S, Petrovics G. Elevated 
osteonectin/SPARC expression in primary prostate cancer 
predicts metastatic progression. Prostate Cancer Prostatic 
Dis. 2012; 15:150–156.

27. Furge KA, Chen J, Koeman J, Swiatek P, Dykema K, 
Lucin K, Kahnoski R, Yang XJ, Teh BT. Detection of 
DNA copy number changes and oncogenic signaling 
abnormalities from gene expression data reveals MYC 
activation in high-grade papillary renal cell carcinoma. 
Cancer Res. 2007; 67:3171–3176.

28. Green DM, Swets JA. Signal detection theory and 
psychophysics. (New York: John Wiley & Sons Ltd, 1966. 
ISBN 0-471-32420-5.

29. Boyd JC. Mathematical tools for demonstrating the clinical 
usefulness of biochemical markers. Scand J Clin Lab Invest 
Suppl. 1997; 227:46–63.

30. Munshi A, Ramesh R. Mitogen-activated protein kinases 
and their role in radiation response. Genes Cancer. 2013; 
4:401–408.

31. Demchenko YN, Brents LA, Li Z, Bergsagel LP, 
McGee LR, Kuehl MW. Novel inhibitors are cytotoxic 
for myeloma cells with NFkB inducing kinase-dependent 
activation of NFkB. Oncotarget. 2014, Jun 23.

32. Morgenroth A, Vogg AT, Ermert K, Zlatopolskiy B, 
Mottaghy FM. Hedgehog signaling sensitizes Glioma 
stem cells to endogenous nano-irradiation. Oncotarget. 
2014, Jun 20.

33. Ferrari L, Pistocchi A, Libera L, Boari N, Mortini P, 
Bellipanni G, Giordano A, Cotelli F, Riva P. FAS/FASL 
are dysregulated in chordoma and their loss-of-function 
impairs zebrafish notochord formation. Oncotarget. 2014; 
5:5712–5724.

34. Thakur N, Gudey SK, Marcusson A, Fu JY, Bergh A, 
Heldin CH, Landström M. TGFβ-induced invasion of 
prostate cancer cells is promoted by c-Jun-dependent 
transcriptional activation of Snail1. Cell Cycle, 
2014; 13:Jun 19.

35. Davis NM, Sokolosky M, Stadelman K, Abrams SL, 
Libra M, Candido S, Nicoletti F, Polesel J, Maestro R, 



Oncotarget8www.impactjournals.com/oncotarget

D’Assoro A, Drobot L, Rakus D, Gizak A, Laidler P, 
Dulińska-Litewka J, Basecke J, Mijatovic S,   
Maksimovic-Ivanic D, Montalto G, Cervello M, 
Fitzgerald TL, Demidenko Z, Martelli AM, Cocco L, 
Steelman LS, McCubrey JA. Deregulation of the EGFR/
PI3K/PTEN/Akt/mTORC1 pathway in breast cancer: 
possibilities for therapeutic intervention. Oncotarget. 2014; 
5:4603–4650.

36. Yap YS, McPherson JR, Ong CK, Rozen SG, Teh BT, 
Lee AS, Callen DF. The NF1 gene revisited - from bench to 
bedside. Oncotarget. 2014, Jul 9.

37. Geng J, Fan J, Ouyang Q, Zhang X, Zhang X, Yu J, Xu Z, 
Li Q, Yao X, Liu X, Zheng J. Loss of PPM1A expression 
enhances invasion and the epithelial-to-mesenchymal 
transition in bladder cancer by activating the TGF-β/Smad 
signaling pathway. Oncotarget. 2014; 5:5700–5711.

38. Vignarajan S, Xie C, Yao M, Sun Y, Simanainen U, Sved P, 
Liu T, Dong Q. Loss of PTEN stabilizes the lipid modifying 
enzyme cytosolic phospholipase A2α via AKT in prostate 
cancer cells. Oncotarget. 2014, Jul 9.

39. Patil AA, Sayal P, Depondt ML, Beveridge RD, 
Roylance A, Kriplani DH, Myers KN, Cox A, Jellinek D, 
Fernando M, Carroll TA, Collis SJ. Oncotarget. 
2014, Jul 16.

40. Li Q, Li J, Wen T, Zeng W, Peng C, Yan S, Tan J, Yang K, 
Liu S, Guo A, Zhang C, Su J, Jiang M, Liu Z, Zhou H, 
Chen X. Overexpression of HMGB1 in melanoma predicts 

patient survival and suppression of HMGB1 induces cell 
cycle arrest and senescence in association with p21 (Waf1/
Cip1) up-regulation via a p53-independent, Sp1-dependent 
pathway. Oncotarget. 2014, Jul 15.

41. Bao YN, Cao X, Luo DH, Sun R, Peng LX, Wang L, 
Yan YP, Zheng LS, Xie P, Cao Y, Liang YY, Zheng FJ, 
Huang BJ, Xiang YQ, Lv X, Chen QY, Chen MY, 
Huang PY, Guo L, Mai HQ, Guo X, Zeng YX, Qian CN. 
Urokinase-type plasminogen activator receptor signaling 
is critical in nasopharyngeal carcinoma cell growth and 
metastasis. Cell Cycle. 2014; 13:1958–1969.

42. Sokolosky M, Chappell WH, Stadelman K, Abrams SL, 
Davis NM, Steelman LS, McCubrey JA. Inhibition of  
GSK-3β activity can result in drug and hormonal resistance 
and alter sensitivity to targeted therapy in MCF-7 breast 
cancer cells. Cell Cycle. 2014; 13:820–833.

43. Spirin PV, Lebedev TD, Orlova NN, Gornostaeva AS, 
Prokofjeva MM, Nikitenko NA, Dmitriev SE, Buzdin AA, 
Borisov NM, Aliper AM, Garazha AV, Rubtsov PM, 
Stocking C, Prassolov VS. Silencing AML1-ETO gene 
expression leads to simultaneous activation of both 
pro-apoptotic and proliferation signaling. Leukemia. 
2014, Apr 14.

44. Bolstad BM, Irizarry RA, Astrand M, Speed TP. 
A comparison of normalization methods for high density 
oligonucleotide array data based on variance and bias. 
Bioinformatics. 2003; 19:185–193.


