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Combined HAT/EZH2 modulation leads to cancer-selective cell 
death

Francesca Petraglia1,*, Abhishek A. Singh2,*, Vincenzo Carafa1,*, Angela Nebbioso1, 
Mariarosaria Conte3, Lucia Scisciola1, Sergio Valente4, Alfonso Baldi5, Amit Mandoli2, 
Valeria Belsito Petrizzi6, Concetta Ingenito6, Sandro De Falco7, Valeria Cicatiello7, 
Ivana Apicella7, Eva M. Janssen-Megens2, Bowon Kim2, Guoqiang Yi2, Colin Logie2, 
Simon Heath8, Menotti Ruvo9, Albertus T.J. Wierenga10, Paul Flicek11, Marie Laure 
Yaspo12, Veronique Della Valle13, Olivier Bernard13, Stefano Tomassi14, Ettore 
Novellino14, Alessandra Feoli15, Gianluca Sbardella15, Ivo Gut8, Edo Vellenga10, 
Hendrik G. Stunnenberg2, Antonello Mai4,16,  Joost H.A. Martens2,1 and Lucia Altucci1
1Dipartimento di Medicina di Precisione, Università degli Studi della Campania Luigi Vanvitelli, Napoli 80138, Italy
2Department of Molecular Biology, Radboud University, HB Nijmegen 6500, The Netherlands
3IRCCS SDN, Napoli 80143, Italy
4Dipartimento di Chimica e Tecnologie del Farmaco ‘Sapienza’ Università, Roma 00185, Italy
5Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università della Campania ‘Luigi Vanvitelli’, 
Caserta 81100, Italy

6Ospedale Umberto I, Nocera Inferiore 84014, Italy
7Istituto di Genetica e Biofisica, Napoli 80131, Italy
8Centro Nacional de Análisis Genómico, Barcelona, Spain
9Istituto di Biostrutture e Bioimmagini, Napoli, Italy

10 Department of Hematology, University of Groningen and University Medical Center Groningen, RB Groningen 9700, The Netherlands 
11 European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, 

United Kingdom 
12Max Planck Institute for Molecular Genetics, Berlin, Germany 
13Institute Gustave Roussy, Equipe labellisée Ligue Nationale contre le Cancer (LNCC), Universtité Paris-Saclay, INSERM 

U1170, Paris, France
14Dipartimento di Farmacia, Università di Napoli ‘Federico II’, Napoli 80131, Italy
15Dipartimento di Farmacia, Università degli Studi di Salerno, Fisciano I-84084, Italy
16Pasteur Institute, Cenci-Bolognetti Foundation, Sapienza University of Rome, Roma 00185, Italy
*These authors contributed equally to this work

Correspondence to: Joost H.A. Martens, email: j.martens@ncmls.ru.nl 
Lucia Altucci, email: lucia.altucci@unicampania.it

Keywords: cancer; epigenetics; apoptosis; acetylation; methylation

Received: March 15, 2018    Accepted: May 02, 2018     Published: May 22, 2018
Copyright: Petraglia et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 
3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and 
source are credited.

www.oncotarget.com                               Oncotarget, 2018, Vol. 9, (No. 39), pp: 25630-25646

ABSTRACT

Epigenetic alterations have been associated with both pathogenesis and 
progression of cancer. By screening of library compounds, we identified a novel hybrid 
epi-drug MC2884, a HAT/EZH2 inhibitor, able to induce bona fide cancer-selective cell 
death in both solid and hematological cancers in vitro, ex vivo and in vivo xenograft 
models. Anticancer action was due to an epigenome modulation by H3K27me3, 
H3K27ac, H3K9/14ac decrease, and to caspase-dependent apoptosis induction. 
MC2884 triggered mitochondrial pathway apoptosis by up-regulation of cleaved-BID, 
and strong down-regulation of BCL2. Even aggressive models of cancer, such as  
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p53–/– or TET2–/– cells, responded to MC2884, suggesting MC2884 therapeutic potential 
also for the therapy of TP53 or TET2-deficient human cancers. MC2884 induced 
massive apoptosis in ex vivo human primary leukemia blasts with poor prognosis 
in vivo, by targeting BCL2 expression. MC2884-treatment reduced acetylation of the 
BCL2 promoter at higher level than combined p300 and EZH2 inhibition. This suggests 
a key role for BCL-2 reduction in potentiating responsiveness, also in combination 
therapy with BCL2 inhibitors. 

Finally, we identified both the mechanism of MC2884 action as well as a potential 
therapeutic scheme of its use. Altogether, this provides proof of concept for the use 
of epi-drugs coupled with epigenome analyses to ‘personalize’ precision medicine.

INTRODUCTION

Massive parallel sequencing of cancer genomes 
has identified a myriad of mutant epigenetic enzymes 
responsible for histone acetylation and methylation, 
and DNA methylation [1]. Deregulation of the complex 
interplay between genome and epigenome thus provides a 
fertile ground for cancer development and progression [2], 
implicating epigenetic ‘writers’ [3–5], ‘erasers’ [5, 6], and 
‘readers’ [7–12]. Since aberrant expression of epigenetic 
enzymes plays a causative role in tumorigenesis, the 
reversal of these modifications has emerged as a potential 
strategy for cancer treatment [13–15]. Genome sequencing 
of de novo AML revealed the presence of at least one non-
synonymous mutation in 44% of DNA methylation-related 
genes and 30% of chromatin-modifying genes [1, 16]. This 
astonishing finding highlights the dual etiology - epigenetic 
and genetic - phenomena driving leukemogenesis [17, 
18] and likely other cancers [19]. As a result, a number of 
therapeutic compounds targeting epigenetic enzymes have 
been developed [20–28]. However, because cancer relapse 
due to acquired resistance to treatments remains a major 
concern, novel classes of ‘epi-drugs’ are urgently needed. 
The evidence that histone methylation is deregulated 
in cancer, identified lysine methyltransferases and 
demethylases as potential targets for new anticancer drugs. 
Indeed, inhibitors targeting the methyltransferases DOT1L, 
EZH2 or the demethylase LSD1 are in clinical trials [29]. 
Whether more of these selective or more general chromatin 
regulators are needed is still under investigation [30]. In 
some cancers the presence of mutated chromatin enzymes 
has led to the development of epidrugs active preferentially 
on the mutant form. On the other hand, a broader acting 
drugs or hybrid molecule might prove more useful when 
concomitant alterations of different epi-targets are involved 
in the tumorigenic process. This might also apply to tumor 
heterogeneity.

Here, we identify and characterize a novel small 
molecule displaying inhibitory actions on both EZH2 
and acetyltransferases. To the best of our knowledge this 
compound is the first displaying this hybrid activity in 
the low micromolar range. We characterize its anticancer 
action on a panel of cell lines, in vivo tumor models and 
ex vivo patient’s blasts. We identify the mechanism of 
anticancer action as causal activation of mitochondrial 

apoptotic players such as modulating the expression of 
BCL2 (and related homologues) at the chromatin level. 
We found that the new molecule is able to exert apoptosis 
in very aggressive models of cancer. We propose both 
diagnostic tools and potential therapeutic strategies to turn 
this knowledge into practice by using the new inhibitor 
together with available drugs.

RESULTS

MC2884 induces cancer-specific cell death

To identify novel epigenetic drugs with hybrid 
actions, we screened a panel of compounds of natural or 
synthetic origin harboring potential chromatin activity (see 
Supplementary Information, Chemistry and SAR studies) 
and identified MC2884 (Figure 1A) as a promising 
candidate. Its possible therapeutic use was supported by 
its high stability in cell culture media whereby it showed 
a half-life of 10 h and a time for total degradation of 72 h 
(Figure 1B). Based on structural modeling, MC2884 was 
suggested to act as a modulator of EZH2 activity [31]. 
MC2884 has profound anti-proliferative effects on a 
variety of cancers. As a first screen, we investigated the 
effects of MC2884 on cell death induction in several 
cancer cell lines derived from leukemias (NB4, HL-60, 
U937) or solid tumors, such as colon (HCT116) and breast 
(MDA-MB231, MCF7) (Figure 1C).  Similar data were 
obtained in cervix (HeLa) and brain (Kelly, U87) cancer 
cell lines (Supplementary Figure 1A).

MC2884 induced dose-dependent cell death after 
a 30-hour treatment. While all cancer cell-lines respond 
to MC2884, leukemic cells, despite some differences 
depending on their origin, appear generally the most 
responsive. Next we evaluated the cytotoxic effect of 
MC2884 on two different immortalized non-cancer 
cell systems, endometrial stromal cells [32] and the 
mesenchymal progenitor model MePR2B  [33, 34] 
(Figure 1D) revealing that both ‘normal cell’ models 
were insensitive to the treatment. These data indicate 
that inhibitory action of MC2884 on the cell growth is 
potentially tumor selective. 

To assess whether and when MC2884 would 
affect both proliferation and invasiveness of cancer, we 
performed proliferation and migration analyses using 
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HCT116 cells in real-time mode treated with different 
concentrations (1 to 5 μM) (Figure 1E–1F). An inhibitory 
effect of MC2884 on proliferation was already evident 
at early time points (7–9 h), suggesting that the anti-
proliferative action of MC2884 is early occurring. Similar 
data were obtained in NB4 cells (Supplementary Figure 
1B–1C). The migration inhibitory effect of MC2884 
evaluated by slope analysis [35] showed a strong decrease 
of migration rate after 24 h of treatment (Figure 1F), 
suggesting a strong anti-invasion effect of the drug. These 
data strongly imply wide-ranging anti-proliferative, anti-
invasiveness and apoptotic effects of MC2884 in low 
micromolar ranges.

MC2884 PRC2 and HAT inhibitory activities 
contribute to its anticancer effects

To decode the basis of MC2884 anticancer effects, 
the methyltransferase activity of EZH2 was evaluated 
in the presence of MC2884. In vitro assays showed that 
MC2884 is a genuine inhibitor of the EZH2 enzyme in 
a dose-dependent manner, reaching values of inhibition 
of about 40% and 80% at 5–25 μM, respectively (Figure 
2A). To address the MC2884 inhibitory action on histone 
acetylation, HAT assays were performed on total cell 
extracts in both NB4 and HCT116 (Figure 2B), showing 
that MC2884 decreased histone acetyltransferase activity 
in living cells. In addition, MC2884 was able to decrease 
the acetyltransferase activity of immunoprecipitated p300 
and CBP (Figure 2C), suggesting a HAT inhibition at low 
micromolar range. Modulation of the methyltransferase 
and HAT inhibitory action was time and dose dependent 
as corroborated by H3K27me3, H3K27ac and H3K9/14ac 
decrease (Figure 2D and Supplementary Figure 2A) as 
well as by the reduction of EZH2 at RNA and protein 
levels (Figure 2D and Supplementary Figure 2B). Note 
that when tested for HDAC or SirT modulating action, 
MC2884 showed no activity (Supplementary Figure 2C), 
strengthening its specificity towards EZH2 and HATs. 
To examine whether both epigenome targeting actions 
contribute to MC2884 anticancer effects, we used the p300 
inhibitor C646 and the EZH2 antagonist GSK126, either 
separately or in combination. Our analysis revealed the 
compounds had a synergic effect on cell death, while no 
effects were seen when using the single inhibitors (Figure 
2E). Taken together these results suggest that MC2884 
modulates the epigenome through inhibition of EZH2 and 
HAT actions in the low μM range giving rise to decreased 
histone acetylation and H3K27me3 in different cancer cell 
lines.

MC2884 induces caspase- and mitochondrial-
dependent cancer-selective apoptosis

To gain mechanistic insight into the cell death 
induced by MC2884, caspase-3/7, -8 and -9 activities 

were analyzed in leukemic NB4 cells. MC2884 treatment 
induced caspase-3/7 activity in a dose-dependent manner 
as well as the activation of both caspase-8 and -9 (Figure 
3A). This activation was blocked by the pan-caspase 
inhibitor Z-VAD, showing the key role of caspases in 
MC2884-mediated apoptosis (Figure 3A). To support 
these findings, we examined cell death in NB4 upon 
the co-treatment of MC2884 with IETD and LEHD that 
specifically inhibit caspase-8 and 9, respectively. This 
analysis corroborated and extended our finding that 
MC2884-mediated apoptosis is fully caspase-dependent 
(Figure 3B). Preliminary evidence of mitochondrial 
damage by caspase-9 activation suggested the induction 
of oxidative stress in cells treated with MC2884. To 
investigate this further, we treated NB4 cells with MC2884 
and the antioxidant N-acetylcysteine (NAC). NAC was 
able to block apoptosis induced by MC2884, indicating 
that MC2884-induced apoptosis is associated with ROS 
production, which is causally related to the mechanism 
of cell death (Figure 3C). Data with double Annexin 
V-propidium iodide (PI) staining strongly confirmed that 
MC2884, like staurosporine, only induced apoptosis cell 
death (Figure 3D).

To further identify and characterize the molecular 
pathways affected by MC2884, protein levels of crucial 
players of the apoptosis pathway were investigated in 
NB4 cells (Figure 3E). MC2884 induced activation of the 
mitochondrial pathway by up-regulation of cleaved-BID, 
and strong down-regulation of BCL2 (Figure 3E–3F) and 
BCL2-XL. In accordance with caspase-3/7 activation, 
MC2884 was able to induce activation of PARP, in 
particular after 24 h. The fact that TRAIL regulation, if at 
all, was weak, whereas RIP up-regulation was relatively 
late occurring, suggests that especially the intrinsic 
pathways associated with caspase-9 and apoptosome 
activation may play an essential role in cancer cell death 
induction. Taken together, this data indicates that MC2884 
is able to induce strong apoptosis by activating caspase-
dependent pathways.

MC2884 displays anticancer action in both 
hematological and solid cancer in vivo models

To assess the anti-leukemic activity of MC2884 
in vivo, immune-compromised mice were retro-orbitally 
injected with U937 or NB4 cells, and were treated 
three times weekly with intra-peritoneal administration 
of MC2884 1 mg/kg (Figure 4A, left). The mice were 
sacrificed 16 days post-xenograft and displayed a 
normalized weight of 94%, and 90% of their initial weight, 
for control mice and MC2884-treated mice, respectively, 
suggesting that the MC2884 was well tolerated in these 
settings. The bone marrow of each mouse was examined 
by flow cytometry and human NB4 and U937 xenografted 
cells were discriminated by human CD45+ versus mouse 
CD45+ staining. This in vivo experiment demonstrated 
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Figure 1: MC2884 induces time- and dose-dependent cancer cell apoptosis. (A) Chemical structure and (B) half-life in 
culture medium of MC2884. (C) Cell death evaluation by FACS, induced by MC2884 in hematological and solid cancer cells, and (D) 
in normal cells at the indicated times and concentrations. (E) Anti-proliferative action of MC2884 in colon cancer cells measured in real 
time. (F) Migration inhibitory action of MC2884 measured in colon cancer cells as Slope (1/h). MC2884 was used at indicated time and 
concentrations. Curves and graph presented showed the mean of at least two different experiments with an error bars indicating standard 
deviation.
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Figure 2: Chromatin modulating effects of MC2884 in vitro and in cancer cells. (A) MC2884 inhibits EZH2 activity in vitro. 
(B) MC2884 inhibits HAT activity in total cell extracts. (C) MC2884 inhibits the indicated HATs in vitro. (D) Western blot analyses for 
H3K27me3, H3K27ac, EZH2 and H3K9/14ac indicate that MC2884 is able to modulate their expression in NB4 APL cells. *indicates that 
the MC2884 has been added a second time after 10 h. Histone H1 and tubulin represent loading controls. (E) Simultaneous but not single 
inhibition of EZH2 and p300 displays anticancer effect in NB4 APL cells, as shown by FACS analysis (top). Western blot analyses for 
H3K9/14ac, H3K27me3 and EZH2 showing the efficacy of the indicated treatments (bottom). MC2884 was used at indicated time and 
concentrations. Graph showed the mean of three independent experiments with error bars indicating standard deviation.
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Figure 3: MC2884 induces caspase-dependent apoptosis accompanied by ROS production. (A) FACS analyses of caspase 
3/7, 8 and 9 activation upon MC2884 and caspase inhibitors as indicated. SAHA has been used as positive control. (B) FACS analysis of 
pre-G1 phase in NB4 cells upon treatment with MC2884 in presence of the Caspase 8 and 9 inhibitors, as indicated. (C) FACS analysis of 
pre-G1 phase in NB4 cells in presence of NAC at the indicated concentration. H2O2 has been used as positive control. (D) FACS analysis of 
apoptosis (left) and necrosis (Annexin/PI) (right) assays following treatment with MC2884, staurosporine or vehicle for 30 h in NB4 cells. 
(E) Western blot analyses for cleaved BID, BAX, BCL2, BCLX(L), PARP, TRAIL and RIP expression levels in NB4 treated with MC2884 
at the indicated time. *indicates that the MC2884 has been added a second time after 10 h. ERK has been used as reference for loading; 
(F) RT-PCR analysis of BCL2 RNA expression levels in NB4 treated with MC2884 for 48 hours. MC2884 was used at indicated time and 
concentrations. Graph showed the mean of three independent experiments with error bars indicating standard deviation.
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the high anti-proliferative activity of MC2884 in both 
leukemic models: in NB4 cells human CD45+ cells reduced 
to 17%, while in U937 to 24% in the bone marrow (Figure 
4A, right), suggesting a strong in vivo anti-leukemic 
action. These results could be further strengthened using 
NB4 cells expressing luciferase (Supplementary Figure 
3A). The fact that NB4 cells allowed to grow for 5 days 
prior to the start of drug treatment still responded similarly 
to MC2884 suggested that there was no major impact on 
homing and engraftment due to time of cell and drug 
injection (Figure 4A, right).

MC2884 also displayed a strong anticancer effect 
in a xenograft model of HCT116 colon carcinoma. Mice 
treated with 10 mg/Kg MC2884 showed a markedly 
reduced cancer growth as highlighted by a decrease in 
tumor mass (Figure 4B). Notably, this MC2884-mediated 
tumor volume reduction was 90% of that of untreated mice 
on day 19. In line with this effect, immunohistochemical 
analyses showed that MC2884 was able to induce strong 
apoptosis as revealed by TUNEL assays, and a block of 
cell proliferation as revealed by Ki67 staining (Figure 
4C, top). In addition, and corroborating the effect on 
the epigenome of MC2884 obtained in cancer cell 
lines, MC2884 displayed a strong down-regulation of 
both H3K9/14ac and H3K27me3 as shown (Figure 4C, 
bottom) and statistically quantified (Figure 4D). Similar 
effects were observed in a HCT116p53−/− xenograft model 
(Supplementary Figure 3E). 

In a separate analysis, we examined genome-wide 
H3K27ac in HCT116 cells and observed a decrease after 
treatment with MC2884 (Figure 4E), for example at the 
anti-apoptotic gene BIRC5 (Figure 4F). In addition, when 
using DNMT1/DNMT3B double knock out HCT116 cells 
(HCT116 DKO), which are characterized by increased 
acetylation [36], we again observed decreases in H3K27ac 
after MC2884 treatment specifically at those regions 
hyperacetylated in HCT116 DKO as compared to normal 
HCT116 (Figure 4G; see Supplementary items for GO 
analysis). These results strengthen MC2884 anticancer 
action in both hematological and solid cancer in vivo 
models and its connection to epigenomic modulation.

MC2884 induces apoptosis in aggressive cancers 
and in primary leukemic blasts 

To further strengthen our findings in primary 
human cells, cell death was evaluated in 6 AML patient 
blasts (Figure 5A). In all cases, 24-hour treatment with 
MC2884 correlated with induction of cell death, revealed 
as percentage of cells in pre-G1 phase, to similar or even 
higher levels as with SAHA and MS275, used as cell death 
positive controls. In addition, MC2884 treatment led to 
death in ex vivo primary blasts derived from one acute 
lymphoblastic leukemia (ALL) (Figure 5B). Accordingly, 
MC2884 was able to induce an apoptotic response in 
Tet2−/− APL murine cells, a mouse model for aggressive 

human APL (Figure 5C), and in HCT116-p53−/− colon 
cancer cells (Figure 5D), which also displays a very 
aggressive behavior, suggesting MC2884 therapeutic 
potential also for TP53 or TET2-deficient human cancers.

In full agreement with our findings, H3K27ac 
ChIP-seq analysis of MC2884 treated APL-Tet2−/− 
and APL-wt murine cells showed a strong H3K27ac 
reduction in both (Figure 5E–5F; see Supplementary 
items for GO analysis).

MC2884-treatment targets BCL2 and synergizes 
with BCL2 inhibitors

In agreement with our earlier results (Figure 3D–3E), 
decreased BCL2 RNA expression was observed upon 
MC2884 treatment in primary blasts derived from an APL 
sample derived from a high risk APL (pt#8) (Figure 6A) 
described in the accompanying manuscript. Inversely, 
ATRA induced an up-regulation of BCL2. Notably, in 
an ATRA sensitive APL sample (pt#9), ATRA induced a 
down-regulation of BCL2, suggesting a key role for BCL-2 
reduction in allowing good responsiveness. 

Importantly, MC2884-structurally related compounds 
inactive in inducing both anticancer effects and epigenome 
modulation were not able to down-regulate BCL2 (see 
Supplementary SAR studies). In line with reduced BCL2 
expression, MC2884 reduced BCL2 promoter acetylation 
(Figure 6B). Moreover it decreased BCL2 expression more 
than a p300 and EZH2 inhibitor combination (Figure 6C), 
suggesting the combination of the epigenetic inhibitory 
activities in one molecule makes it more potent. 

To assess the contribution of BCL2 to the antitumor 
action of MC2884, the effects of an inhibitor of BCL2 
(ABT-737) were analyzed (Figure 6D). The anti-leukemic 
action of ABT-737 was strongly potentiated, reaching 
up to 60% of cell death, by addition of MC2884 at 
concentrations that alone induced little apoptosis. This 
synergistic antitumor effect was also reproduced in the 
resistant NB4-MR4 [37], suggesting that MC2884 has 
potential for combination therapy in a wide range of 
leukemias. 

DISCUSSION 

Currently approved treatments focusing on 
deregulation of epigenetic components are often based 
on the use of HDACi [38, 39] or DNA demethylating 
agents, aiming at chromatin opening by increasing 
acetylation levels or lowering DNA methylation, 
respectively. However, conceptually many pathways 
that increase stemness and cancer cell survival should 
rather be switched off. We here describe such an opposite 
approach and as such a potential ‘paradigm shift’, where 
hyperacetylation of chromatin areas together with selective 
H3K27 methylation (and consequently transcriptome and 
methylome remodeling) are targets for cancer therapy.
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Figure 4: MC2884 displays anticancer action in both hematological and solid cancer in vivo. (A) In vivo experimental design 
for leukemia xenografts treated with MC2884 (1 mg/Kg). At day 16, bone marrow (BM) cells were isolated. MC2884 antiproliferative 
action was evaluated by FACS analysis of the % of human CD45+ cells in the isolated population. (B) Colon cancer (HCT116) xenograft. In 
vivo growth expressed in volume of tumors induced. (C) Immunohistochemical analyses and statistical evaluation for the apo-index, Ki67, 
H3K9/14ac, H3K27me3 showed significant alterations (increased apo-index and decreased Ki67, H3K9/14ac, H3K27me3) in MC2884-
treated versus control (vehicle) cells (p = 0.002). (D) Ki67 (proliferation index) and TUNEL (apoptotic index) scores were analyzed at the 
end of treatment. The proliferation index was significantly lower in tumors of treated mice compared to controls (p = 0.002). Apoptotic 
index was significantly higher in tumors of MC2884-treated mice (p = 0.002). (E) Boxplot of H3K27ac levels at hyperacetylated regions 
in HCT116 cells before and after treatment for 16 h with MC2884; (F) H3K27ac levels at the BIRC5 locus before and after treatment 
with MC2884; (G) Boxplot of H3K27ac levels at hyperacetylated regions in HCT116-DKO cells before and after treatment for 16 h 
with MC2884. Curves and graph presented showed the mean of at least two different experiments with an error bars indicating standard 
deviation.
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MC2884, selected from a collection of newly 
synthesized chromatin-modulating drugs for its strong 
anticancer potential, seems highly effective in the treatment 
of solid and hematopoietic cancers, including relapsed 
cancers and those that are resistant to standard treatments. 
It unbalances histone acetylation acting as a bona fide 
HAT inhibitor in the low micromolar range. Displaying 
also an inhibitory action towards EZH2, it potentially 
targets and counteracts both pathologically opened and 
activated loci by inhibiting the acetyltransferases, and 

regions closed by increased H3K27me3 by the histone 
methyltransferase EZH2. MC2884 results in down-
regulation of anti-apoptotic drivers such as BCL2 and 
BCLX(L), mitochondrial modulation and in activation of 
related death pathways that kill cancer cells in a selective 
manner. In vivo, AML, APL and colon cancer xenograft 
models suggest a very robust anticancer potential, which 
is most likely related to chromatin modulation. Excitingly, 
both TP53−/− colon cancer and Tet2−/− APL cells, which 
show a highly aggressive behavior [40–42], displayed high 

Figure 5: MC2884 induces anticancer action in ex vivo AMLs, ALL and aggressive models of cancer. (A–B) FACS 
analysis of cell death induced by MC2884, HDACi (MS275 and SAHA) and ATRA in ex vivo AML and ALL (24 h). (C) Analysis of 
apoptosis in APL-Tet2WT and APL-Tet2−/− cells upon treatment with various concentration of MC2884. Shown is the proportion of 
dying cells, normalized to non-treated conditions. Statistical significance is indicated by stars; (D) FACS analysis of cell death induced 
by MC2884 in HCT116 p53–/– colon cancer cells. (E) Boxplot of H3K27ac levels at hyperacetylated regions in APL-wt (left) and APL-
Tet2–/– (right) cells either not (control) or MC2884 treated. (F) ChIP-seq analysis of H3K27ac levels at two genomic loci in APL-wt (top) 
and APL-Tet2−/− (bottom) cells either not (control) or MC2884 treated. MC2884 was used at indicated time and concentrations. Graph 
showed the mean of three independent experiments with error bars indicating standard deviation
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sensitivity to MC2884, suggesting that as a consequence 
of the MC2884-mediated induction of hypoacetylation, 
patients with aggressive cancer phenotypes (that may be 
in an overall hyperacetylated state) might benefit from this 
type of approach. 

The mechanism of apoptosis induction by 
MC2884 treatment pointed to BCL2 mediated 
regulation; acetylation at BCL2 chromatin regions is 
reduced in MC2884-treated hrAPLs and in accordance 
BCL2 expression is decreased. Furthermore, BCL2 is 
oppositely regulated by ATRA in ‘normal’ APLs and 
hrAPLs being down- and up-regulated, respectively, 
suggesting a link to ATRA (and HDACi) resistance. 
Strikingly, the use of the BCL2 protein inhibitor (ABT-
737) together with the chromatin modulation exerted 
by MC2884 on BCL2 is a successful combination that 
synergistically kills both ATRA-sensitive and -resistant 

APL cells. This suggests that hrAPL and other  patients 
might benefit from a personalized, therapeutic strategy. 
Since the BCL2i ABT-737 is in clinical trial for different 
types of cancers [43], this approach should be feasible in 
not too long a time. 

MATERIALS AND METHODS

Chemicals

SAHA (Merck), MS-275 (Alexis) and MC2884 
were dissolved in dimethyl sulfoxide (DMSO) (Sigma); 
ATRA was obtained from Sigma. 

Chemistry

For general procedures see Supplementary Information. 

Figure 6: Epigenetic changes upon MC2884 treatment result in reduced BCL2 expression. (A) BCL2 expression by RT-
qPCR in acute promyelocityc leukemia sensitive and resistant to standard treatments. (B) ChIP in NB4 cells using H3K27ac antibodies 
and primers for the BCL2 promoter with the indicated treatments. (C) BCL2 expression by RT-qPCR (top) and western (bottom) after 
the indicated treatments. (D) FACS analysis of % of AtRA responsive (NB4) and AtRA resistant (NB4-MR4) cells in pre-G1 upon the 
indicated treatments. MC2884 was used at indicated time and concentrations. Graph showed the mean of three independent experiments 
with error bars indicating standard deviation.
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Stability of MC2884 in cell culture

The compound was dissolved in DMEM at 50 
µM and its concentration was measured by RP-HPLC 
using a ONYX 50 × 2 mm ID C18 column operating at 
600 µL/min. The gradient applied was from 1% solvent 
B to 70% solvent B in 10 minutes. Solvent A was 
water with added 0.1% trifluoroacetic acid (TFA) and 
solvent B was acetonitrile with added 0.1% TFA. The 
eluate was monitored using a diode array detector with 
wavelengths set between 200–320 nm. The compound 
was eluted at 11.1 min. Peak integration was carried 
out on the chromatogram extracted at 326 nm, which is 
one of the compound absorbance maxima. A calibration 
curve was built by injecting solutions of the compound 
in DMSO at concentrations ranging between 1.5 µM 
and 200 µM. After incubation in DMEM compound 
concentration was determined at time points ranging 
between 0 and 72 hrs. As shown, half of compound was 
degraded after 10 h. At 72 hrs it was fully degraded 
under these conditions.

Cell culture

U937, NB4, HL-60, MCF7, MDA MB-231, 
HCT116, HeLa, Kelly and U87 tumor cell lines were 
purchased by DSMZ (NB4) and American Type Culture 
Collection (ATCC). Cell lines have been tested and 
authenticated following manufacturer’s instruction. 
All cell lines were maintained in an incubator at 37° 
C and 5% CO2. The human leukemia cells were grown 
in RPMI-1640 (Sigma-Aldrich) while human breast 
cancer cells in Dulbecco’s Modified Eagle Medium 
(DMEM) (Sigma) culture media, in presence of phenol 
red (GIBCO), 1% L-glutamine (EuroClone), 10% heat-
inactivated Fetal Bovine Serum (FBS) (Sigma) and 
antibiotics. Endometrial Stromal Cells (ESC) were 
grown in DMEM-F12 culture medium with 10% FBS, 
2mM L-glutamine and antibiotics. MePR2B were 
grown as previously reported [33].

Cell proliferation, cell cycle and cell death 
analyses

For colorimetric exclusion the cells (2 × 105 
cells/mL) were plated in multiwells in triplicate. After 
stimulations at different times and concentrations, cells 
were diluted in the ratio 1:1 in Trypan Blue (Sigma) and 
counted with an optical.

For cell cycle analyses, cells were plated (2 × 105 
cells/mL) and after stimulation (performed as indicated 
in the text) were harvested, centrifuged at 1200 rpm for 
5ʹ and resuspended in 500 μL of a hypotonic solution 
containing 1X PBS, Sodium Citrate 0.1%, 0.1% NP-40, 
RNAase A and 50 mg/mL Propidium Iodide (PI). After 
30’ at room temperature (RT) in the dark, samples were 
acquired by FACS-Calibur (BD Bioscences, San Jose, 

CA, USA) using CellQuest software (BD Biosciences). 
The percentage in different phases of the cell cycle was 
determined by ModFit LT V3 software (Verity). All 
experiments were performed in triplicate.

Cell death was measured as percentage of cells 
in pre-G1 phase as in [44] Apoptosis vs necrosis was 
measured using apoptosis/necrosis kit as suggested by the 
supplier (Enzo life sciences).

Proliferation and migration analysis in real time

Proliferation and migration analysis were performed 
by xCELLigence technology (Roche) following standard 
procedures and as reported in [35]. 

Enzymatic assays

EZH2 assays were performed following BPS 
Biosciences instructions and as previously described [31].

Cell-based HAT assay. Protein extracts from the 
indicated cells were obtained in TAP buffer (Tris HCl 
pH 7.0 50 mM, NaCl 180 mM, NP-40 0.15%, glycerol 
10%, MgCl2 1.5 mM, NaMO4 1 mM, NaF 0.5 mM) with 
protease inhibitor cocktail (Sigma), DTT 1 mM and 
PMSF 0.2 mM). Transfection with pCMX-Flag CBP and 
pP300 were performed in HEK293-FT cells and then 
proteins extracted. 1000 µg were diluted in TAP buffer 
and IPed with anti-p300 (Millipore, 2 µg) and anti-CBP 
(Santa Cruz, 2 µg) following standard procedures. As 
a negative control, purified IgG rabbit (Santa Cruz, 2 
µg) and IgG mouse (Santa Cruz, 2 µg) were also used. 
All samples were washed in HAT Assay Buffer 1X 
(DTT 1 mM in PBS 1X) and the HAT radioactive assay 
was carried out. According to supplier’s instructions 
(Millipore), 10 µL of HAT Assay Buffer, 3 µL (2 µg) 
of Core Histones and 5 µL of the diluted [3H]-Acetyl-
CoA were added to the beads. MC2884 was tested at 
the final concentration of 3 µM. All the components 
were incubated for 60 minutes at 37° C in gently rock/
shake. Samples were spotted on P81 paper, washed 
three times with 10% trichloroacetic acid and once with 
acetone, transferred to a scintillation vial containing  
5 mL scintillation cocktail and read in a scintillation 
counter. Anacardic Acid (AA, ENZO LIFE) was used 
directly on incubation mix, as positive control. 

For HAT in vitro assay, MC2884 activity 
was also tested in vitro and IC50 was calculated as 
indicated in the scheme. MC2884 was tested in a 10-
dose IC50 mode with 2-fold serial dilution, in singlet, 
starting at 200 μM. Anacardic Acid or C646, were 
tested in 10-dose IC50 mode with 3-fold serial dilution 
starting at 100 μM. Reactions were carried out at 3 
μM Acetyl-CoA. Empty cells indicate no inhibition 
or compound activity that could not be fit to an IC50 
curve.
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Acetyltransferase:
Substrate:

Compound 
IC50(M)     

CBP GCN5 KAT5 p300 pCAF

Histone H3 Histone 
H3

Histone 
H2A Histone H3 Histone 

H3

MC2884 3,27E-06  8,35E-07 4,56E-07  

C646 7,87E-08  2,04E-05 1,54E-07  

Anacardic Acid  3,86E-05   3,88E-05

The HDAC1 and SIRT1 assays were performed as 
described previously [45, 46].

Transfections

MCF7 cells were transfected with lipofectamine 
(Invitrogen) as previously described [47]. The following 
plasmids were used: 1245 pCMVb p300 was a gift from 
William Sellers (Addgene plasmid # 10717), MSCV-
FlagmuEzh2deltaset-Hygro was a gift from Tobias Neff 
(Addgene plasmid # 49403), pCMVβ-p300. DY-myc was 
a gift from Tso-Pang Yao (Addgene plasmid # 30490) 
and pCMV-VSV-G-Ezh2 wt was a gift from Kristian 
Helin (University of Copenhagen). After induction with 
MC2884, cells were diluted 1:1 in Trypan blue (Sigma) 
and counted. 

Total protein, histone extraction and western 
blot analyses

The procedures were performed as described in [44, 
48]. Primary antibodies used were: H3K27me3 (Abcam); 
H3K9-14ac (Millipore); H3K27ac, EZH2, PARP, TRAIL, 
RIP (Abcam); BID, BAX, BCL2 (Cell Signaling); BCL-
XL (BD Biosciences); ERKs (Santa Cruz) and α-tubulin 
(Sigma) were used to normalize the total protein extracts, 
while H1 (Abcam) to normalize histone extracts.

Caspase assays

Caspase activity was detected within living cells using 
B-BRIDGE Kits with cell-permeable fluorescent substrates 
following manufacture’s instructions. The fluorescent 
substrates for caspase-3, 7, -8, and -9 were FAM-DEVD-FMK, 
FAM-LETD-FMK, and FAM-LEHDFMK, respectively. 
Cells were washed twice in cold PBS and incubated for 1 h 
in ice with the corresponding substrates, as recommended 
by suppliers. Cells were analysed using Cell Quest software 
applied to a FACScalibur (BD Biosciences). Experiments were 
performed in triplicate and values expressed in mean ± SD.

Reagents

Z-VAD (R&D), Caspase-8 Inhibitor Z-IETD-FMK 
(R&D) and Caspase-9 Inhibitor Z-LEHD-FMK (R&D) 
were used at 100 µM respectively. N-Acetyl cysteine 
(NAC) (Sigma) was used at 20 µM. ABT-737 (BCL2i) 
(Selleckchem) was used at 1 µM; GSK126 (EZH2i) 

(Selleckchem) was used at 10 µM; C646 (HATi) (Sigma) 
was used at 5 µM.

RNA extraction and RT-PCR

Total RNA was extracted with Trizol (Invitrogen) 
and converted into cDNA using SuperScript® VILO™ 
cDNA Synthesis Kit (Invitrogen) as described by supplier. 
RT-PCR was performed with 10–100 ng of cDNA template 
in a 25 μl total reaction volume (12.5 μl Bio-Rad iTaq 
Universal SYBR Green supermix (2×), 0.5 mM of each 
gene-specific primer, H2O up to volume). Reactions were 
carried out on a Bio-Rad CFX-96 real-time PCR system. 
Each reaction was run in triplicate.

For amplification the following primers were used: 
EZH2, forward (5ʹ-CATCATAGCTCCAGCTCCCG-3ʹ) 
and reverse (5ʹ-CATCCCGGAAAGCGGTTTTG-3ʹ); 
EED, forward (5ʹ-CGATTTGCGACAGTGGG-3ʹ) and 
reverse (5ʹ-CAGGTGCATTTGGCGTG-3ʹ); SUZ12, 
forward (5ʹ-GTCCTGCTTGTGAAAGTTTGC-3ʹ) and 
reverse (5ʹ-CAAATGTCTTTTCCCCATCCT-3ʹ); BCL2, 
forward (5ʹ-GAACTGGGGGAGGATTGTGG-3ʹ) and 
reverse (5ʹ-CAGCCTCCGTTATCCTGGAT-3ʹ); GAPDH, 
forward (5ʹ-TCAACGGGAAGCCCATCACCA-3ʹ) and 
reverse (5ʹ-ACGGAAGGCCATGCCAGTGA-3ʹ). 

Xenograft in vivo experiments

AML xenografts

Xenograft studies using NB4 and U937-AML 
cells were performed in NOG SCID mice under specific 
pathogen–free conditions [49, 50]. Cells (0.2 × 106 in 
100 µL) were injected intravenously (retro orbital vein). 
Injected mice were randomly assigned to receive intra-
peritoneal MC2884 (1 mg/kg) or vehicle for two weeks  
(8 doses) (10 mice per group). All animal procedures were 
performed in accordance with protocols approved by the 
local Committee for Animal Experimentation and with the 
permission of the Italian Health Ministry (n° 626/2015). 
At 16 days after injection, mice were sacrificed and the 
femurs and spleens were collected. Bone marrow (BM) and 
spleen cells were analyzed by FACS. To avoid non-specific 
stain, cells were mixed with mouse IgG and incubated with 
indicated antibodies for 30’. The mixture was depleted of 
erythrocytes and fixed (BD Pharmingen). NB4 and U937-
AML cells were examined with FITC-anti-human CD45 
antibody (eBioscence) and APC-conjugated anti-mouse 
CD45 antibody (Miltenyi). NB4-luc xenografts were 
performed by using a clone of NB4 luciferase transduced 
and by injecting 1 × 106 cells (IP). Injected mice were 
randomly assigned to receive intra-peritoneal MC2884  
(10 mg/kg) or vehicle for 4 weeks (every second day for the 
first 2 weeks; every third day for the rest). Tumor growth 
was monitored by weekly bioluminescence imaging (BLI) 
acquisitions using an IVIS 3D Imaging System (Caliper 
Alameda, USA). To quantify bioluminescence, the 
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integrated fluxes of photons (photons per s) within each 
area of interest were determined using the Living Images 
Software Package 3.2 (Caliper, Alameda, USA). Emission 
data were collected and normalized to bioluminescence of 
the injection day. Efficacy of drug treatment was assessed 
as inhibition of BLI emission comparing those MC2884 
treated mice group and vehicle groups.

Colon cancer xenografts

HCT116 cell line was grown in McCoy’s medium, 
supplemented with 10% inactivated FBS, 2 mM glutamine 
and standard concentration of antibiotics. 7- to 8-week-
old male CD1 nude athymic mice were purchased from 
Charles River and under pathogen-free conditions in 
accordance with European Directives no. 2010/63 and with 
Italian D.L. 26/2014. Mice were injected subcutaneously 
into the right flank with 4 × 106 of HCT116 cells; tumor 
volume (mm3) was evaluated three times a week by 
caliper using the formula Dmax x dmin^

2/2, where ‘d’ and ‘D’ 
are the shortest and the longest diameters, respectively. 
For all experiments, mice were randomly divided (n = 
7) and intra-peritoneal injected by day five every day 
with: vehicle sesame oil/DMSO 6%; MC2884 10 mg/
Kg in sesame oil/DMSO 6%. Mice were sacrificed after 
20 days of drug treatment and tumors explanted for 
immunohistochemical analyses. For HCT116-DKO colon 
cancer [51], 6 × 106 cells were injected.

Histology, Immunohistochemical analyses and 
TUNEL assay in vivo (xenograft)

The biopsy specimens were fixed in 10% 
buffered-formalin and paraffin-embedded. Sections 
of 5 μM were stained with haematoxylin-eosin, and 
haematoxylin-van Gieson. For immunohistochemistry, 
specimens were incubated in a microwave oven for  
15 min in 10 mM buffered citrate pH 6.0 followed by the 
immunohistochemical procedure for Ki67 (Santa Cruz 
Biotechnology Inc., CA, USA), H3K27me3, H3K9/14ac 
(Diagenode). The conventional avidin-biotin complex 
procedure was applied according to manufacturer’s 
protocol (Dako Carpinteria, CA, USA) and incubated with 
secondary antibody. Positive staining was revealed by DAB 
chromogen, according to supplier’s instructions followed 
by counterstaining with Mayer’s hematoxylin. Slides were 
cover-slipped with a xylene-based mounting medium. 
Staining was scored as percentage of positive nuclei per 
high power field 10 × 40. Negative controls for each tissue 
section were performed omitting the primary antibody. 
Positive controls included in each experiment consisted of 
tissue previously shown to express the antigen of interest. 
TUNEL reaction was performed using the peroxidase-
based Apoptag kit (Oncor, Gaithersburg, MD, US). 
TUNEL positive cells were detected with DAB and H2O2 
according to the supplier’s instructions. The experiments 

were repeated on different sections for each specimen 
(two to four). For all immunohistochemical markers, 100 
random fields (250×) per section were analysed (12.5 mm2). 
Mann–Whitney and Wilcoxon tests were used to assess the 
relationship between ordinal data. Two-tailed P value was 
considered significant when ≤ 0.05. SPSS software (version 
10.00, SPSS, Chicago, IL, USA) was used for statistical 
analysis.

Chromatin immunoprecipitation (ChIP) 

ChIP extracts preparation and procedures have been 
carried out following IHEC procedures using Diagenode 
antibodies and as reported [48, 52, 53]. The fold 
enrichment of H3K27ac and H3K27me3 ChIP’ed DNA 
was evaluated. Primer sequences were as follows: BCL2 
promoter region (at -410 and -282 from +1), forward (5ʹ- 
GTG TTC CGC GTG ATT GAA GAC-3ʹ) and reverse 
(5ʹ- CAG AGA AAG AAG AGG AGT TAT AA-3ʹ); for 
chr21:44496353–44496918/CBS region, forward (5ʹ- 
CGC AGA ACA GTC GCC TTG-3ʹ) and reverse (5ʹ- GTC 
CAG AGC ACG ATG TTT GG-3ʹ); for chr17:4938577–
4939058/SLC52A1 region, forward (5ʹ- CGA GTT GGA 
GAG GGG AGT G-3ʹ) and reverse (5ʹ- AAC AAA ACC 
CCA GCT GTG TG-3ʹ).

ChIP-sequencing

For ChIP-seq peak calling the BAM files were first 
filtered to remove the reads with mapping quality less 
than 15, followed by fragment size modeling (http://code.
google.com/p/phantompeakqual-tools/). The peak-calling 
algorithm MACS2 (http://github.com/taoliu/MACS/) 
was used to detect the binding sites for the three studied 
histone marks at default q-value (5.00e-02). H3K27ac 
peaks were called using the default (narrow) setting. 
H3K27ac tracks in mouse APL cells and human HCT116 
cells were analyzed similarly. 

The intensity graphs were generated using the 
in house script makeColorprofiles.pl. Discriminating 
hyperacetylated regions were identified using DESEQ 
(http://bioconductor.org/packages/release/bioc/html/
DESeq.html). Box plots were generated using the 
normalized read counts (corrected for sequencing depth 
and region length) and DESEQ was used to calculate for 
statistical significant differences. For comparisons either 
the Welch T-test or the Mann Whithey U test were used. 
Functional analysis was performed using GREAT: http://
great.stanford.edu/public/html/.

Primary samples 

Blasts cells were purified by the Ficoll-Hypaque 
gradient separation method (GE Healthcare). RNA was 
obtained by using TRIzol (Life Technologies) according 
to the manufacturer’s recommendations. Isolation of 
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genomic DNA has complied the FlexiGene DNA protocol 
(Qiagen).

ChIP extracts preparation has been carried out following 
IHEC procedures and as reported in [47, 48, 53, 54].

Tet2−/−APL experiments

MSCV backbone was used to express human 
PML-RARA fusion (a kind gift from H De Thé) and 
used to transduce marrow progenitors from 5FU-treated 
5-week-old mice wild type or inactivated for Tet2. 
After engraftment in irradiated recipient and malignant 
development, leukemic cells were grown in vitro, in 
standard M3434 methylcellulose conditions. For the 
experiments, cells were transferred in liquid culture and 
treated with MC2884. After 16 h of treatment, apoptotic 
cells were stained with Annexin V/APC and 7-AAD 
(Beckton Dickinson) and analyzed on a FACS CantoII 
(Beckton Dickinson). FACS data were analyzed by 
FlowJo Software (v8.8.7).

Patient characteristics

Number Blueprint ID Leukemia karyotype
pt#1 n/a AML  NK
pt#2 n/a AML  NK
pt#3 n/a AML  del(2)
pt#4 n/a AML  +8
pt#5 n/a AML  +8
pt#6 n/a AML inv3 
pt#7 284 APL t(15;17)
pt#8 289 APL t(15;17)
pt#9 302 APL t(15;17)
pt#10 n/a ALL  
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