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ABSTRACT

Glioblastoma (GBM) is the most common and the deadliest type of primary 
brain tumor, with a median survival time of only 15 months despite aggressive 
treatment. Although most patients have an extremely poor prognosis, a relatively 
small number of patients survive far beyond the median survival time. Investigation 
of these exceptional responders has sparked a great deal of interest and is becoming 
an important focus in the field of cancer research. To investigate the molecular 
differences between typical and exceptional responders in GBM, comparative analyses 
of somatic mutations, copy number, methylation, and gene expression datasets 
from The Cancer Genome Atlas were performed, and the results of these analyses 
were integrated via gene ontology and pathway analyses to assess the functional 
significance of the differential aberrations. Less severe copy number loss of CDKN2A, 
lower expression of CXCL8, and FLG mutations are all associated with an exceptional 
response. Typical responders are characterized by upregulation of NF-κB signaling 
and of pro-inflammatory cytokines, while exceptional responders are characterized 
by upregulation of Alzheimer’s and Parkinson’s disease pathways as well as of genes 
involved in synaptic transmission. The upregulated pathways and processes in typical 
responders are consistently associated with more aggressive tumor phenotypes, 
while those in the exceptional responders suggest a retained ability in tumor cells to 
undergo cell death in response to treatment. With the upcoming launch of the National 
Cancer Institute’s Exceptional Responders Initiative, similar studies with much larger 
sample sizes will likely become possible, hopefully providing even more insight into 
the molecular differences between typical and exceptional responders.
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INTRODUCTION

Glioblastoma (GBM) is the most common and 
deadliest type of primary brain tumor [1]. It is highly 
malignant and nearly uniformly fatal, with a median 
survival time of only approximately 15 months despite 
aggressive treatment [2], including surgical resection 
followed by concurrent radiation and chemotherapy 
with temozolomide [1, 3]. Although most patients have 

an extremely poor outcome, a small number of patients 
survive far beyond the median survival time [4].

Recently, there has been a great deal of interest in 
investigating the molecular characteristics of exceptional 
responders in cancer [5]. Exceptional responders are 
patients who have a unique response to treatments that 
are not effective for most other patients. They typically 
achieve a complete or partial response that only up to 10% 
of patients experience, and they sustain that response for 
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a much longer duration than the median response. The 
National Cancer Institute (NCI) is currently developing 
a new genomics database, the Exceptional Responders 
Initiative (ERI) to identify molecular features of these 
exceptional responders [6]. Several studies on this topic 
have already been published [5] which have helped 
uncover molecular alterations and mechanisms of 
resistance. With the recent shift of focus to exceptional 
responders in the field of cancer research, it is important 
to incorporate this concept into survival studies in cancer, 
particularly in cancers like GBM, in which most patients 
respond poorly to treatment but an exceptional few 
respond very positively.

In this study, we aim to analyze and integrate the 
results of somatic mutation, copy number variation, 
methylation, and gene expression analyses utilizing data 
from The Cancer Genome Atlas (TCGA) for typical 
and exceptional responders in GBM. These response 
groups were defined utilizing cutoff parameters specific 
to characteristics of GBM and guided by the concept of 
exceptional responders, with the goals of providing a clearer 
understanding of the molecular basis for these patients’ 
positive response to standard GBM therapy and revealing 
possible therapeutic targets or prognostic markers for GBM.

RESULTS

Sample selection and defining response groups

After the application of the inclusion criteria 
to ensure that all patients in the analysis have known 
survival times and tumor samples taken prior to radiation 

and chemotherapy, 408 patients remained in the dataset. 
The Kaplan–Meier survival curve (Figure 1) for those 408 
patients shows a steep drop in the first two years, with 
the survival time for the vast majority of patients within 
one year of the median 345 days, which is consistent with 
the median survival reported in the literature during the 
time period that most of the samples were obtained [7], 
primarily in the first decade of the 2000s. The curve levels 
off between two and three years, and a relatively small 
number of patients survive beyond that time. The patients 
within that range are in roughly the top 10% for survival 
time, which is the defining factor for the exceptional 
responders group.

After investigating potential confounding variables 
with linear regression models, age and sex were 
determined to be confounding. An age cutoff of ≥30 years 
was applied, which reduced the exceptional responders 
group by five patients and corrected for the confounding 
variable of age. Ethnicity was the same for all patients in 
this group (not Hispanic or Latino) and Karnofsky score, 
age, race, and diagnosis method were not significant 
predictors of survival. However, sex was predictive of 
outcome, with female patients enriched in the exceptional 
responders group (regression model p = 0.021, chi-
squared test p = 0.034). Sex is only associated with 
survival in the typical and exceptional response groups, 
not in the full dataset of 408 patients, and was addressed 
in the methodology of each analysis.

The final dataset included 40 typical responders 
and 35 exceptional responders (Table 1, Supplementary 
Table 1). Males are more highly represented in the typical 
response group, and the exceptional responders tend to be 

Figure 1: Survival curve for TCGA GBM dataset. This curve includes the 408 TCGA GBM patients that met the inclusion criteria. 
The curve is characterized by a steep drop off centered around the median of 345 days, with a relatively small number of patients surviving 
beyond approximately 2.5 years. Typical responders are labeled in blue and exceptional responders are labeled in green.
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younger with a mean age of 49.8 years compared to the 
typical responders’ mean age of 58.7 years. However, this 
age difference is not statistically significant. The median 
survival for the typical group is the same as the full dataset 
(345 days) with a range of 320-378 days. Median survival 
for the exceptional group is 1282 days (approximately 
3.5 years) with a range of 864-3881 days (approximately  
2.4–10.6 years).

Somatic mutations

Only one gene, FLG (filaggrin) was found to have 
a significantly different distribution of patients affected 
by somatic nonsynonymous mutations (chi-squared test 
p = 0.041). Just one typical responder (4.2%) harbored 
any somatic mutations in FLG, while six exceptional 
responders (25%) had one mutation each in FLG 
(Supplementary Table 2). All six of the mutations in the 
exceptional responders are missense variants that are 
predicted to have a moderate impact, and an equal number 
of males and females are affected.

Copy number

Utilizing a log2 ratio cutoff of ±0.25 to define copy 
number gains/losses [8], several regions were identified 
as altered relative to normal (Table 2). Of the 1812 probes 
that meet the definition of copy number gain/loss, 1752 
of them are losses, and 1201 of those have a greater 
magnitude in typical responders. Only 60 of these indicate 
copy number gains, and the magnitude is greater in typical 
responders for all 60 of them. Overall, 69.6% of the gains 
and losses have a larger magnitude in typical responders.

The mean log2 ratios across the genome for each 
response group (Figure 2A) indicate that gains and losses 

in the same regions mostly occur consistently in both 
response groups, although the magnitude of the gain or 
loss typically appears to be larger in typical responders. 
Five genes were determined to be differentially 
altered between the response groups, including losses 
in CDKN2A-AS1, OR4M2, and OR4N4 and gains in 
VSTM2A and VSTM2A-OT1. The sex-specific analyses 
did not yield any significant results. A more detailed 
look at two of the regions surrounding these significantly 
differentially altered genes (Figure 2B) confirms that the 
magnitude of gain or loss is greater in typical responders 
and reveals that several genes known to be associated 
with GBM [9] are immediately adjacent to some of the 
significantly differentially altered genes. Namely, EGFR 
(epidermal growth factor receptor) is adjacent to VSTM2A 
and VSTM2A-OT1, while CDKN2A-AS1 overlaps 
with CDKN2A (cyclin dependent kinase inhibitor 2A) 
and is adjacent to CDKN2B (cyclin dependent kinase  
inhibitor 2B).

Due to their proximity to genes with significantly 
differentially altered copy numbers as well as their 
established connection to GBM [10], the rates of gains/
amplifications (log2 ratio > 0.25/0.8) and losses/deletions 
(log2 ratio < 0.25/0.8) in EGFR, CDKN2A, and CDKN2B 
were investigated in the two response groups. While the 
copy number analysis described above was a genome-
wide investigation of the continuous variable “log2 ratio,” 
this analysis focused on three genes of interest and was 
based on the categorical variables “gain/amplification” 
and “loss/deletion.” Typical responders were significantly 
more likely than exceptional responders to experience loss 
or deletion of CDKN2A (chi-squared test p = 0.038), but 
there was no significant difference between the response 
groups in the distribution of gains/amplifications of EGFR 
or losses/deletions of CDKN2B.

Table 1: Descriptive statistics for the full dataset and response groups
All Typical responders Exceptional responders

Patients (n) 408 40 35
Male 253 29 17
Female 155 11 18

Age (years)
Mean 58.7 58.0 49.8
Range 10–89 33–73 30–74

Survival (days)
Mean 459 347 1600
Median 345 345 1282
Range 3–3881 320–378 864–3881

Statistics on sample size, age, and survival time are included for the full group of patients that met the inclusion criteria 
as well as for the typical and exceptional response groups. Typical responders closely resemble normal characteristics for 
GBM in general, while exceptional responders tend to be younger (though this is not statistically significant) and have an 
equal representation of males and females as opposed to the usual higher proportion of males.
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Methylation

A total of 41 differentially methylated CpG sites 
corresponding to 37 unique genes were identified, 39 
of which had a higher degree of methylation in the 
exceptional response group (Supplementary Table 3). 
A modified volcano plot (Figure 3A) indicates which of 
these sites are outliers with the highest ∆β values and 
the lowest p values. In the promoter analysis, a total of 
five differentially methylated promoters were identified, 
all with a higher degree of methylation in exceptional 
responders (Supplementary Table 4).

There are 45 CpG sites with a ∆β value greater 
than 0.2 between the typical and exceptional response 
groups, 41 of which are also present in the normal dataset 
(obtained from a 2014 study on methylation in neurons and 
glia [11]). Histograms for each of these groups (Figure 3B) 
show larger proportions of hypomethylated (β < 0.3 [12]) 
sites in the typical and normal groups and more moderate 
β values (0.3 < β < 0.7) in the exceptional group. This 
observation was investigated further with Kolmogorov-
Smirnov (KS) tests and cumulative distribution plots 
for each group (Figure 3C). There is no difference in the 
distribution of β values between typical responders and 

Table 2: Regions of copy number gain and loss
Gains

Region and Gene(s) Response Group Affected
7p11.2
HPVC1, VSTM2A*, LOC285878*, SEC61G, EGFR, 
EFGR-AS1, LANCL2, VOPP1, FKBP9L, SEPT14, 
MRPS17, GBAS, PSPH, CCT6A, SNORA15, SUMF2, 
PHKG1, CHCHD2, and NUPR1L

typical; exceptional to a lesser extent

7q21.2
AKAP9, CYP51A1, LRRD1, KRIT1, ANKIB1, 
GATAD1, PEX1, RBM48, MGC16142, FAM133B, and 
CDK6

typical

7q34
PRSS3P2 and PRSS2 typical

Losses
Region and Gene(s) Response Group Affected
1q21.3
LCE3C exceptional

8p11.22
ADAM3A typical

9p21.3, 9p21.2
FOCAD, MIR491, PTPLAD, IFNB1, IFNW1, 
IFNA21, IFNA4, IFNA7, IFNA10, IFNA16, IFNA17, 
IFNA14, IFNA22P, IFNA5, KLHL9, IFNA6, IFNA13, 
IFNA8, IFNA1, MIR31HG, IFNE, MIR31, MTAP, 
CDKN2A-AS1*, CDKN2A, CDKN2B-AS1, CDKN2B, 
DMRTA1, FLJ35282, ELAVL2, IZUMO3, TUSC1, 
LOC100506422

typical; exceptional to a lesser extent

entirety of chromosome 10 typical and exceptional
11p15.4
OR52N5 typical

13q14.2
DLEU2, MIR16-1, MIR15A, DLEU1, and ST13P4 exceptional

15q11.2
OR4M2* and OR4N4* exceptional

Regions of copy number gain (mean log2 ratio > 0.25) and loss (mean log2 ratio < 0.25) are shown with lists of specific 
genes affected in each region. Genes in bold and labeled with a * reached statistical significance following multiple testing 
correction (q < 0.1) based on t-tests comparing typical and exceptional responders.
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normal glial cells (p = 0.127), but the exceptional response 
group β value distribution is significantly different from 
both of the other groups (p < 0.0001 in both cases). The 
D statistic, a measure of the magnitude of the difference 
between two datasets, is 0.622 for the typical versus 
exceptional comparison and 0.734 for the normal versus 
exceptional comparison.

Gene expression

The analysis identified four significantly differentially 
expressed genes (Supplementary Table 5) between typical 
and exceptional responders. All four of them were identified 
in the full analysis and in each of the sex-specific analyses. 
ETNPPL (ethanolamine-phosphate phospho-lyase) and 

SH3GL2 (SH3 domain containing GRB2 like 2, endophilin 
A1) were more highly expressed in exceptional responders, 
while CXCL8 (interleukin 8) and CCL20 (chemokine ligand 
20) were more highly expressed in typical responders. Based 
on a known synergistic relationship between CXCL8 and 
CCL20 that promotes poor survival outcome in colorectal 
cancer [13], these two genes were further investigated as 
possible prognostic factors in GBM. Linear regression 
models built with the full TCGA GBM dataset indicate that 
CXCL8 (but not CCL20) is predictive of survival time, with 
increased expression of CXCL8 associated with reduced 
survival time. The overall model is statistically significant  
(p < 0.001), as is the CXCL8 term (p < 0.001). The 
equation for the model is survival time (days) = 812–40.1 * 

normalized signal of CXCL8. 

Figure 2: Copy number alterations in typical and exceptional responders relative to normal. Mean log2 ratios for typical 
(blue) and exceptional (green) responders are shown. (A) Mean log2 ratios assessed at approximately 40,000 probes genome-wide, 
excluding sex chromosomes. The most prominent alterations are gains in chromosome 7 and losses in chromosome 9p and 10. Peaks tend 
to be of a greater magnitude in the typical response group. (B) Mean log2 ratios in regions that include differential copy number alterations 
between typical and exceptional responders. Both groups are characterized by gains in 7p11.2 and losses in 9p21.2 and 9p21.3, but in both 
cases the magnitude is greater in typical responders. Genes in bold (VSTM2A, VSTM2A-OT1, and CDKN2A-AS1) have differential mean 
log2 ratios that reach statistical significance.
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Figure 3: Differential methylation patterns between typical and exceptional responders. Typical responders are shown in 
blue, exceptional in green, and normal in grey. (A) Modified volcano plot of significantly differentially methylated CpG sites between 
typical and exceptional responders. Each axis is skewed to reflect the cutoffs made to assess significance (p > 0.05 and ∆β > 0.2). Sites 
with a lower degree of methylation in typical responders are shown in blue and sites with a lower degree of methylation in exceptional 
responders are shown in green. Sites with the largest ∆β values and smallest p values are labeled with their associated gene name. (B) 
Histograms of β values in normal glial cells and each response group. The response group histograms include mean β values for the  
45 CpG sites with ∆β values larger than 0.2, and the normal histogram includes β values for 41 of those sites (the remaining 4 sites were not 
assessed in the normal arrays). The distribution of β values in typical responders closely resembles the distribution for normal glial cells, 
while the exceptional responders are characterized by a shift towards larger β values. (C) Kolmogorov-Smirnov (KS) tests and cumulative 
distribution plots of β values. KS tests indicate that the distribution of β values for the CpG sites with ∆β > 0.2 is significantly different 
from both the typical and normal distributions (p < 0.0001). There is no difference between the distributions for the typical and normal 
groups. Cumulative distribution plots are shown for each of the three groups, indicating a clear shift in exceptional responders toward 
higher β values.



Oncotarget28427www.oncotarget.com

Gene set enrichment analysis

Gene set enrichment analysis (GSEA) identified four 
gene sets enriched in exceptional responders and one gene 
set enriched in typical responders (Supplementary Table 6). 
The four gene sets enriched in exceptional responders 
(regulation of synaptic vesicle transport, regulation of 
neurotransmitter transport, positive regulation of calcium 
ion dependent exocytosis, and neurotransmitter secretion) 
are all associated with synapse function. The gene set 
enriched in typical responders was “negative regulation of 
cytokine biosynthetic process.” There were no significantly 
enriched gene sets identified when the analysis was divided 
by sex.

Manual inspection of the genes implicated by these 
enriched gene sets (Table 3) revealed several consistent 
trends in each response group. Multiple genes upregulated 
in typical responders were associated with the IL-17 
and TNF signaling pathways. As expected based on the 
enriched gene sets, genes upregulated in exceptional 
responders were frequently associated with synaptic 
transmission and plasticity, but several were also associated 
with neurodegenerative diseases like Alzheimer’s and 
Parkinson’s.

Gene ontology and pathway analyses

Utilizing the list of differentially altered genes 
identified in the copy number, methylation, and gene 
expression analyses in this study for each response 
group (Table 3), enriched gene ontology (GO) terms 
were identified in each response group. The GO term 
“cellular response to interleukin-1” was enriched in typical 
responders due to the presence of CCL20 and CXCL8, 
while “intracellular transport” and “synaptic vesicle 
uncoating” were enriched in exceptional responders due 
to CDKN2A and SH3GL2.

KEGG pathway analyses performed with the 
same gene lists identified four pathways associated with 
the upregulated genes CCL20 and CXCL8 for typical 
responders, and no upregulated pathways in exceptional 
responders. The four KEGG pathways enriched in typical 
responders are the IL-17 signaling pathway, cytokine-
cytokine interaction, chemokine signaling pathway, and 
rheumatoid arthritis.

DISCUSSION

Although sex was a confounding variable for survival 
between the typical and exceptional response groups, it 
was not confounding in the full dataset. The incidence of 
GBM is higher in males, but sex has not been found to 
be predictive of prognosis or survival in GBM [14]. For 
these reasons, it seems likely that the identification of 
sex as a confounding variable occurred by chance for the 
selected response groups and is not actually predictive of 

survival. Although it is unlikely that sex is truly predictive 
of survival in GBM, the distribution of sexes between the 
two response groups was significantly skewed and had to be 
accounted for. When possible, this problem was addressed 
by performing sex-specific analyses in addition to the full 
analysis of typical versus exceptional responders, and 
then only results identified in all three analyses or only in 
the full analysis and not in the sex-specific analyses were 
included in the final results. When there was not a sufficient 
number of samples to perform sex-specific analyses, sex 
chromosomes were excluded from the analysis. These 
efforts seem to have been successful in controlling for the 
differential distribution of sex in the response groups. Prior 
to performing the methods to control for sex, many results 
were genes on the X or Y chromosome or were otherwise 
associated with sex. This was particularly true in the 
methylation analysis, in which 44% of significant sites and 
57% of significant promoters were on the X chromosome 
prior to controlling for sex (data not shown). After the 
methods to control for the differential distribution of sexes 
were applied, the final results for all the data types were 
largely biologically relevant and not associated with any 
sex-specific biological processes.

The somatic mutation analysis indicated that 
exceptional responders are more likely to have 
nonsynonymous mutations in FLG. Overexpression of FLG 
is associated with low immune cell infiltration and early 
patient mortality in melanoma and ovarian cancer [15], 
while loss of function mutations in FLG are associated with 
lower cancer risk among some subpopulations [16]. This 
suggests that the high rate of nonsynonymous mutations in 
FLG in exceptional responders confers a prognostic benefit 
possibly related to immune cell infiltration.

Two of the significantly differentially altered 
genes identified in the copy number analysis, OR4M2 
and OR4N4, are olfactory receptors. There is huge 
variation in copy number among the general population 
in approximately 50% of olfactory receptors [17], so the 
appearance of these olfactory receptors in the significant 
results is likely an artifact and not actually associated 
with survival in GBM. The other significant copy number 
results led to the identification of the tumor suppressor 
[18] CDKN2A as a prognostic factor, with loss or deletion 
of this gene more likely to occur in typical responders than 
in exceptional responders. 

A key finding of the methylation analysis was that 
among CpG sites that have a Δβ greater than 0.2, the 
typical group closely resembles the beta value distribution 
in normal glial cells, while the exceptional group is 
characterized by a higher level of methylation. Nearly 
all (95%) of the differentially methylated CpG sites and 
100% of the differentially methylated promoters have a 
higher degree of methylation in exceptional responders. 
Histograms and cumulative distribution plots show 
a strong shift towards higher β values in exceptional 
responders, and this difference is statistically significant 
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based on KS tests. This hypermethylation in exceptional 
responders relative to typical responders and normal 
glial cells suggests an increased level of transcriptional 
control that may confer a protective effect to exceptional 
responders.

Of the four genes that are differentially expressed 
between the response groups, CXCL8, CCL20, and 
SH3GL2 have clear biological relevance. CXCL8 is 
an angiogenic factor in many cancers [19, 20], CCL20 
promotes malignancy [21, 22], and together they synergize 
to promote a poor survival outcome via induction of 
epithelial-mesenchymal transition in colorectal cancer 
[13]. Both of those genes were overexpressed in typical 
responders relative to exceptional responders, and that 
is likely contributing to a poorer prognosis. CXCL8 in 
particular is significantly predictive of survival time, and 
the linear regression model suggests that for every one 
unit increase in CXCL8 expression, there is an associated  
40-day reduction in survival. SH3GL2 is a positive 
prognostic factor in head and neck squamous cell 
carcinoma [23] and is more highly expressed in 

exceptional responders. SH3GL2 is targeted by mir330, 
which promotes malignancy in glioma cell lines, 
suggesting that reduced expression of SH3GL2 results 
in more aggressive tumors [24]. The overexpression of 
SH3GL2 in exceptional responders is consistent with a 
more positive prognosis.

Six of the genes contributing to the enriched gene 
sets in exceptional responders (STXBP1, DNM1, SYNJ1, 
KCNB1, PLCB1, and CACNA1A) are among a group 
of genes that have been implicated in early infantile 
epileptic encephalopathy (EIEE) [25], an extremely 
debilitating disorder characterized by uncontrollable 
seizures and severe mental retardation [26]. Mutations in 
these genes are associated with EIEE, but it appears that 
overexpression of these genes is associated with a positive 
prognosis in GBM.

The results from several analyses suggest that 
typical responders are characterized by aberrations of 
a greater magnitude than exceptional responders. The 
copy number analysis revealed that while most copy 
number alterations are consistent across both response 

Table 3: Significantly differentially altered genes across all analyses
 Typical responders Exceptional responders

 Copy number

VSTM2A
LOC285878

OR4M2
OR4N4

CDKN2A-AS1
CDKN2A

 Methylation

SLC15A3
TTC12

LRRC8E
SUSD3

LRRC61

 Gene 
expression

CXCL8
CCL20

ETNPPL
SH3GL2

 GSEA

LAG3
SFTPD
INHBA
TRIB2
KLF4
NMI

NFKB1
INHBB

IL6
RNF128

BCL3

NLGN1
STXBP1
DNM1
PINK1
SYNJ1
CDK5

SCAMP5
CACNA1I

SYT1
KCNB1
PLCB1

CDK5R2
NOS1

CPM6B
TOR1A

CAMK2A

CACNA1A
RIMS1

KCNMB4
SNCG

MEF2C
SNCAIP
SYT11

ACCN2
NF1

RAB3A
RIMS3
SNCA
SYN1

RAB5A
RAB3GAP1

PFN2
The genes are separated by response group according to which group they are upregulated in. “Upregulated” for each data 
type is defined as: larger magnitude copy number gains/smaller magnitude copy number loss, lower promoter methylation, 
higher gene expression, and enrichment in GSEA.
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groups, the magnitude is consistently larger in the typical 
responders. Methylation levels at CpG sites with a large 
degree of variation between the response groups are 
almost invariably lower in typical responders, suggesting 
that exceptional responders have increased gene silencing 
and transcriptional control. The somewhat lower level of 
disorder in exceptional responders may be contributing to 
their better prognosis.

Several pathways and biological processes were 
implicated in one response group or the other throughout 
this study. These include the upregulation of NF-κB 
and cytokine signaling in typical responders and the 
upregulation of key players in synaptic plasticity and 
neurodegenerative diseases in exceptional responders.

NF-κB was determined to be upregulated in typical 
responders relative to exceptional responders. NFKB1, a 
key player in the NF-κB pathway [27], was implicated 
in the GSEA analysis. Several other genes associated 
with NF-κB signaling were present in the significant 
results for typical responders, including IL6, BCL3, and 
TRIB2. Activation of NF-κB in GBM has been shown to 
contribute to angiogenesis and temozolomide resistance 
[29]. Enrichment of this pathway in typical responders 
may be partially responsible for their worse prognosis.

Cytokine signaling was upregulated in typical 
responders as well. Several pro-inflammatory cytokines 
and their associated pathways, which are known to 
promote cancer cell proliferation in many cases [30], 
were implicated in typical responders throughout this 
study, including IL6, CCL20, CXCL8, TNF signaling, 
and IL-17 signaling. Both of those signaling pathways are 
associated with more aggressive tumor phenotypes when 
they are upregulated [28, 31]. CXCL8 and CCL20 are 
perhaps the most prominent of these results, as they were 
the only two genes with significantly higher expression 
in typical responders compared to exceptional, and they 
are the two genes responsible for the only enriched GO 
term and all of the enriched KEGG pathways in typical 
responders. CXCL8 was also found to be predictive of 
survival outcome in the full TCGA GBM dataset, with 
increased expression associated with significantly shorter 
survival times. Typical responders are characterized by 
upregulation of pro-inflammatory cytokine signaling, and 
exceptional responders do not share this trait. This lack of 
pro-inflammatory signaling in exceptional responders may 
result in a better prognosis.

One of the enriched GO terms and all the GSEA 
gene sets enriched in exceptional responders are directly 
related to synaptic transmission and synaptic plasticity. 
Autophagy pathways and synaptic plasticity pathways 
have a lot of overlap, and it has been proposed that 
autophagy plays a direct role in synaptic plasticity 
[32, 33]. Perhaps the upregulation of genes related to 
synaptic transmission in exceptional responders leaves 
their tumor cells more susceptible to autophagic cell 
death. Glioblastoma cells are more likely to respond to 

autophagy-inducing therapies than to apoptosis-inducing 
therapies [34], and it is possible that this characteristic of 
exceptional responders increases this positive response 
even further. It may also be the case that some other aspect 
of synaptic transmission and synaptic plasticity confers a 
benefit to exceptional responders.

Both Alzheimer’s disease and Parkinson’s disease 
pathways were implicated in exceptional responders 
based on the GSEA results. Both of these diseases are 
characterized by cell death through autophagy and/or 
apoptosis [35, 36]. The implication of Parkinson’s disease 
is of particular interest, as several epidemiological studies 
indicate an inverse association between cancer risk and 
Parkinson’s disease [37]. While activation of these 
pathways is certainly detrimental in neurodegenerative 
diseases, in cancer it may result in increased sensitivity 
to treatment. Tumors of exceptional responders with 
upregulation of these pathways may retain the ability 
to undergo cell death in response to treatment, granting 
exceptional responders a better prognosis.

The results generated in this study have provided 
some insight into the molecular differences between 
typical and exceptional responders in GBM. Upregulated 
pathways and processes in typical responders are 
consistently associated with more aggressive tumor 
phenotypes that may be partly responsible for the poor 
response to treatment that most GBM patients exhibit. 
Upregulated pathways and processes in exceptional 
responders may indicate that the small number of patients 
who respond very well to treatment have retained the 
ability to undergo cell death via autophagy in response to 
treatment. As the interest in exceptional responders grows, 
and with the upcoming launch of the ERI, similar studies 
with much larger sample sizes will likely be performed, 
which will provide even more insight into the molecular 
differences between exceptional and typical responders. 
Ideally this will ultimately lead to improved treatments 
and more positive outcomes for GBM patients.

MATERIALS AND METHODS

Sample selection and defining response groups

Inclusion criteria were applied utilizing clinical 
information contained within the TCGA Biotab files for 
GBM. Only untreated samples from patients with known 
survival times were included in the survival analysis to 
ensure that no samples in the study had been exposed to 
radiation or other treatments that may influence results. 
Only primary GBM samples were included in order to 
avoid statistical noise from secondary GBM samples. 
The top 10% of patients with the longest survival times 
were designated as “exceptional responders” based on 
the Kaplan–Meier survival curve, and the median 10% 
of patients were classified as “typical responders” so that 
the sample sizes matched. Linear regression models were 
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generated to investigate possible confounding variables 
that may influence survival, including sex, race, ethnicity, 
diagnosis method, age, and Karnofsky score.

Statistics

Linear regression models were created with XLSTAT. 
The term with the highest non-significant p-value was 
removed and the model was regenerated until the overall 
model and each term were significant (p < 0.05). All 
t-tests performed were Welch’s unequal variances t-tests 
and multiple testing was performed using the Benjamini-
Hochberg false discovery rate (FDR) method [38] (q < 0.1 
in all cases except for the gene set enrichment analysis, 
which was set to the default of q < 0.25). Chi-squared tests 
were performed when comparing categorical variables  
(p < 0.05). Kolmogorov-Smirnov (KS) tests were 
performed to compare distributions.

Somatic mutations

Variant Call Format (VCF) files were acquired from the 
GDC on April 10, 2017 for 24 patients in each response group 
using curl (v. 7.52.1) via the GDC Application Programming 
Interface (API) using “data_type” = “Raw Simple Somatic 
Mutation”, workflow_type = “MuSE”, and sample_type = 
“Primary Tumor” as filters. Following this, the VCF files 
were annotated using snpEff (v. 4.3k) and human genome 
version GRCh38.d1.v1 which is the same genome used by 
the TCGA GBM project to identify variants in these samples. 
To assess the number of impactful mutations found per 
group, six classes of variations were used: loss of a start 
codon (coded as “start_lost” by snpEff), loss of a stop codon 
(stop_lost), gain of a stop codon (stop_gained), modification 
of a splice acceptor site (splice_acceptor), modification of 
a splice donor site (splice_donor), and missense mutations 
(missense). Using custom scripts, the mutations were then 
pooled such that, if a gene were mutated in a sample, it would 
only be counted once, even in the rare cases where, in a single 
patient, a gene had multiple mutations. The number of genes 
mutated per group was calculated and a cutoff was applied 
in which a gene had to have been mutated in at least three 
patients in one group to be worth further consideration.

Copy number

Affymetrix Genome-Wide Human SNP Array 6.0 
CEL files were obtained from the GDC Legacy Archive 
on April 15, 2017 for 38 typical responders and 34 
exceptional responders. The files were divided into four 
groups based on response group and sex, and they were 
processed with the R tool Rawcopy [39]. Log2 ratio 
values (relative to normal) obtained from the genelist files 
generated by Rawcopy were compared between typical 
and exceptional responders to identify any differential 
gains or losses. A log2 ratio cutoff of ± 0.25 was used to 
define a copy number gain/loss and a cutoff of ± 0.8 was 

used to define amplification/deletion [8]. Only probes 
where the mean log2 ratio indicated a gain or loss for at 
least one of the response groups were included in the 
analysis. An additional cutoff was applied in which the 
difference in the mean log2 ratio between typical and 
exceptional responders must be > 0.2. Redundant probes 
(probes for the same gene with the same log2 ratio value) 
were removed. Following the full analysis, sex-specific 
analyses were performed with sex chromosomes excluded.

Methylation

Illumina HumanMethylation27 idat files were 
acquired from the GDC Legacy Archive on September 
27, 2016 for 16 typical responders and 16 exceptional 
responders. The analysis was performed with the R 
package RnBeads [40]. The arrays were normalized with 
the beta-mixture quantile normalization method and the 
Greedycut algorithm was utilized for filtering. There 
was not an adequate number of samples to perform sex-
specific analysis, so sex chromosomes were excluded 
from the analysis. The resulting lists of CpG sites and 
promoters were narrowed further with a ∆β (the absolute 
value of the difference between mean β values for typical 
and exceptional responders) cutoff of 0.2 [41–43]. The 
“normal” dataset was obtained from a 2013 study in 
which Illumina HumanMethylation450 experiments were 
performed for glial cells of six different subjects, with two 
experiments for each subject [11]. Mean β values were 
calculated from the signal intensities for all 12 sets.

Gene expression

Affymetrix HT Human Genome U133 DNA 
microarray CEL files were obtained from the GDC Legacy 
Archive on August 5, 2016 for 33 exceptional responders 
and 34 typical responders. The arrays were normalized 
with GCRMA [44] and filtering was performed using the 
nsFilter function of the genefilter package in R [45]. Quality 
control tests were performed, including boxplots of probe 
intensities and density versus intensity histograms, before 
and after normalization. Differential expression analysis 
was performed with limma [46]. A log2 fold change cutoff 
of ± 1.5 was applied to the resulting list of probes. The 
analysis was performed on the full dataset and also for 
males and females separately. Only genes implicated in all 
three analyses or in the full analysis but not the sex-specific 
analyses were considered to be significantly differentially 
expressed between the two response groups. The prognostic 
value of CCL20 and CXCL8 was investigated with linear 
regression models on the full TCGA GBM dataset that met 
the inclusion criteria (385 patients).

Gene set enrichment analysis

Using the same CEL files from the gene expression 
analysis, version 2.2.4 of the Broad Institute’s Gene 
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Set Enrichment Analysis (GSEA) tool [47] was used to 
detect enrichment of gene sets between exceptional and 
typical responders as well as male and female patients. 
The CEL files were converted to Gene Count files using 
the ExpressionFileCreator module found in GenePattern. 
Normalization was performed with GCRMA in 
conjunction with quantile normalization. GSEA was run 
using the c5.all.v6 database, with 1000 permutations 
performed using “phenotype” as the permutation type.

Gene ontology and pathway analyses

Differentially expressed or methylated genes and 
genes with differential copy number gains/losses were 
combined and used as the input for GO and KEGG 
pathway analyses [48] for each response group. The GO 
analysis was performed using the Cytoscape plug-in 
ClueGO [49] with all four GO types selected, GO Term 
Fusion enabled, and results restricted to pathways with  
p < 0.05 after Benjamini-Hochberg FDR multiple testing 
correction.
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