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ABSTRACT

Recent advances in plasma cell biology and molecularly-targeted therapy enable 
us to employ various types of drugs including immunomodulatory drugs, proteasome 
inhibitors, and immunotherapy. However, the optimal therapeutic strategies to introduce 
these drugs for heterogeneous patients with multiple myeloma (MM) have not yet been 
clarified. In the present study, we attempted to identify a new factor indicating poor 
prognosis in CD138+ myeloma cells using accumulated Gene Expression Omnibus (GEO) 
datasets from studies of MM and to assess the relationship between gene expression 
and survival using MAQC-II Project Myeloma (GSE24080). Five GEO datasets (GSE5900, 
GSE58133, GSE68871, GSE57317 and GSE16791) which were analyzed by the same 
microarray platform (GLP570) were combined into one MM database including various 
types of MM. However, we found that gene expression levels were quite heterogeneous. 
Hence, we focused on the differentially-expressed genes (DEGs) between newly-
diagnosed MM and relapsed/refractory MM and found that the expression levels of 
more than 20 genes changed two-fold or more. Additionally, pathway analysis indicated 
that six pathways including Hippo signaling were significantly enriched. Then, we 
applied all DEGs and genes associated with core enrichment for GSE24080 to evaluate 
their involvement in disease prognosis. We found that nucleoporin 133 (NUP133) is 
an independent poor prognostic factor by Cox proportional hazard analysis. These 
results suggested that high expression of NUP133 could be useful when choosing the 
appropriate MM therapy and may be a new target of MM therapy.
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INTRODUCTION

Recently, several novel therapeutics including 
immunomodulatory reagents, proteasome inhibitors, 
histone deacetylase inhibitors (HDAC inhibitor), and 
monoclonal antibodies (mAbs) such as anti-CD38 and 
anti-SLAMF7 have been introduced to treat patients 
with multiple myeloma (MM) [1, 2]. However, the 
optimal therapeutic strategies to utilize these reagents 
have not yet been clarified. One plausible reason is that 

multiple myeloma (MM) is genetically heterogeneous 
and contains a variety of cytogenetic abnormalities 
such as del(17q), t(4;14) and t(14;16) [3–5]. Moreover, 
the condition of patients is heterogeneous probably 
because myeloma cells release not only M-protein but 
also several factors that sometimes induce advancing 
osteoporosis, amyloidosis and POEMS syndrome [6]. 
Hence, precise evaluation of patients with MM before 
treatment should be required to select the optimal 
therapeutic strategy.
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Previously, the International Staging System (ISS) 
was used as a cost-effective staging system as well as 
the Durie-Salmon staging system [7]. The ISS is based 
on the assessment of two blood test results consisting of 
ß2-microglobulin (ß2M) and albumin. The combination 
of both serum biomarkers reflecting the condition of 
patients with MM has been shown to discriminate 
between three stages of myeloma and to be somewhat 
useful for identifying aggressive myeloma. However, 
in the last decade, it has been revealed that some 
chromosomal abnormalities detected by fluorescence 
in situ hybridization (FISH) are expressly involved in 
drug resistance to conventional chemotherapy. Thus, 
considering the cytogenetic risk, a revised International 
staging system (R-ISS) for MM has been developed and 
is now widely adopted [8, 9]. However, some of the novel 
reagents described above have been shown to overcome 
some cytogenetic risks. Therefore, much effort is focused 
on the identification of new prognostic factors associated 
with newly-diagnosed MM (NDMM) or relapsed/
refractory MM (RRMM) [10–12]. 

Recently, a variety of types of data have been 
deposited in public databases. The data derived from 
microarray analysis have been compiled as a database in 
Gene Expression Omnibus (GEO) or ArrayExpress. Each 
database was usually utilized to confirm the reproducibility 
of our own data and sometimes to reprocess to obtain new 
results. To get an overview of these databases, some of 
them were analyzed according to similar sample sources, 
for example, CD138+ cells derived from bone marrow 
(BM). Moreover, such databases were often analyzed using 
an identical microarray or platform. Some datasets were 
analyzed regarding BM CD138+ cells derived from healthy 
volunteers (HV) or NDMM, while others were analyzed 
regarding BM CD138+ cells derived from smoldering 
MM (SMM) or NDMM. When the platform was identical, 
combined use of these datasets should be readily achieved. 

Here, we first attempted to identify datasets regarding 
CD138+ cells from GEO and accumulate the data into one 
large dataset. After normalization, we analyzed differentially-
expression genes (DEGs) and significantly altered pathways 
in RRMM as compared with NDMM. Moreover, we 
assessed the relationship between genes identified by these 
processes and survival by using the publicly accessible 
MAQC-II Project MM dataset (GSE24080). 

RESULTS

Confirmation of data accumulation in myeloma 
dataset #1 and #2 

In an attempt to combine the datasets involving 
CD138+ plasma cells, five datasets analyzed using 
an identical array (platform) were combined into one 
myeloma dataset #1. After normalization, DEGs (HV 
vs. plasma cell dysplasia) were analyzed and all DEGs 

were visualized as a heatmap to give an overview of the 
change in expression of genes during disease progression 
(Supplementary Figure 1). The results showed that 
gene expression was quite heterogeneous, especially in 
monoclonal gammopathy of undetermined significance 
(MGUS) and SMM. We therefore decided to extract 
NDMM and RRMM to constitute myeloma dataset #2. 
Subsequently, all DEGs between NDMM and RRMM 
were selected and visualized as a heatmap (Supplementary 
Figure 2). This result suggested that gene expression could 
differ remarkably between NDMM and RRMM. Thus, we 
utilized myeloma dataset #2 for subsequent experiments. 

The results of DEGs and GSEA in RRMM

To analyze myeloma dataset #2, we first identified 
DEGs showing a more than two-fold change between 
NDMM and RRMM by analysis using limma package. 
To avoid selecting false negatives, we used quite a low 
P-value (P = 10–148) and a low q-value (q = 10–70) between 
DEGs in NDMM and RRMM as compared with the 
Bonferroni method (P-value = 6.574622 × 10–6). The 
results were visualized as a heatmap (Figure 1A) and 
showed that DEGs clearly discriminated between NDMM 
and RRMM. After confirmation, we focused on highly-
increased DEGs which are listed in Table 1 because 
highly-increased DEGs could be potential biomarkers 
which could be analyzed by immunohistochemical 
staining or liquid biopsy [13] and may also be potential 
new molecular targets. Moreover, it is possible that some 
clones expressing DEGs in NDMM may contribute to 
clonal evolution and development into RRMM. The 
expression of CSNK1A1P1 (Casein Kinase 1 Alpha 1 
Pseudogene 1) which encodes a long non-coding RNA 
was found to be elevated around 15.5-fold (15.5 = 23.955) 
in RRMM. This gene could thus be a marker of RRMM. 
We next conducted enrichment analysis and found that 
six pathways were significantly enriched (p < 0.05, but 
FDR > 0.25) (Table 2). Among them, Hippo signaling has 
been reported to be involved in the development of MM 
(Figure 1B). We further assessed the genes associated 
with core enrichment by leading edge analysis using 
the GSEA web tool. Multiple genes such as STK4 and 
YAP1 involved in Hippo signaling were picked up  
(Figure 1C). Thus, analysis of DEGs and pathways in 
RRMM as compared with NDMM provided multiple 
candidate genes. However, whether these candidates are 
involved in the prognosis of MM was unclear. Hence, 
we employed another database to explore the prognostic 
factors from among candidate genes. 

Identification of a new poor prognostic factor in 
patients with MM

To assess the relationship between candidate genes and 
survival, we used another dataset, The MicroArray Quality 
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Control (MAQC)-II Project MM dataset (GSE24080) 
(www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE24080) 
[14]. In this dataset, gene expression profiling of highly-
purified bone marrow plasma cells in NDMM (N = 559) 
was available. Moreover, this dataset was analyzed using 
an Affymetrix Human Genome U133 Plus 2.0 Array by 
which myeloma dataset #2 was also analyzed. Furthermore, 
supplementary data regarding clinical information such 
as survival time, the total number of deaths (N = 172), 
recurrence or progression (N = 249) and cytogenetic 
abnormalities of individual patients was included with 
this dataset. In this retrospective analysis, all CD138+BM 
cells derived from patients who followed up at the end 
of study was analyzed and average observation period 
was 49.9 ± 24.6 months. Hence, all candidate genes from 
myeloma dataset #2 could be readily analyzed regarding 
overall survival (OS) and event-free survival (EFS) on 
this dataset. After all data of GSE24080 were downloaded 
and combined with clinical information, the relationship 

between all candidate genes and OS was analyzed using the 
Cox proportional hazard model. The results are summarized 
in Table 3. Unexpectedly, most DEGs and genes associated 
with core enrichment pathways were not involved in OS. 
Notably, CSNK1A1P1, a highly increased DEG (Table 1)  
was not associated with OS, indicating that DEGs in 
RRMM are not always associated with the prognosis 
of NDMM. Fortunately, four candidate genes including 
GABRG2 (Gamma-Aminobutyric Acid Type A Receptor 
Gamma2 Subunit), GLRA1 (Glycine Receptor Alpha 
1), IFNA4 (Interferon Alpha 4) and nucleoporin (NUP) 
133 were shown to be significantly associated with poor 
OS. It is well known that cytogenetic abnormalities such 
as del(17q), t(4;14) and t(14;16) are associated with poor 
prognosis of NDMM. In fact, The MicroArray Quality 
Control (MAQC)-II Project MM dataset revealed that any 
cytogenetic abnormality (Cyto.Abn) was a significant poor 
prognostic factor in NDMM (data not shown). Therefore, 
we conducted a multivariate analysis in combination with 

Figure 1: Selection of differentially-expressed genes (DEGs) and enriched pathways in RRMM. (A) NDMM (N = 270) and 
RRMM (N = 55) were selected from whole myeloma large datasets by dyer package. Since this dataset was relatively large, bioinformatic 
significance was considered according to Bonferroni’s method (P < 10 × 10−148). Additionally, genes showing more than a 2-fold change 
were selected and visualized as a heatmap. (B) The pathways associated with RRMM were analyzed by gene set enrichment analysis version 
6. A NOM P-value < 0.05 was considered to be significant (Table 3). (C) Leading edge analysis was conducted by GSAE application. 
Genes showing core enrichment from six pathways were selected and visualized as a heatmap. 
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Table 1: Genes with expression highly elevated in RRMM compared with NDMM 

Gene symbol logFC AveExpr t P-Value q-Value
CSNK1A1P1 3.955 8.115 90.75 7.95E-236 5.56E-234 
LOC283432 3.181 6.028 51.16 3.53E-159 5.37E-159 
LOC100507880 3.136 8.625 48.80 3.35E-153 3.45E-153 
TARBP2 2.979 8.676 67.02 1.54E-194 9.79E-194
NUP133 2.797 7.786 65.50 1.80E-191 9.71E-191
KLK7 2.797 5.373 49.27 2.16E-154 2.44E-154
MICALL2 2.710 7.799 69.14 1.01E-198 8.87E-198 
LOC728190 2.603 5.970 54.12 2.11E-166 3.88E-166 
LOC149773 2.423 4.810 64.68 8.59E-190 4.30E-189 
SBNO2 2.350 5.761 61.83 8.02E-184 3.51E-183 

All databases were normalized by the rma method and differentially-expressed genes (DEGs) were detected using the limma 
package. The average expression (AveExpr) column is the average of all arrays for all groups, not for one group. The q-value 
correlated with false discovery rate, which is the P-value adjusted for multiple comparisons. FC, fold change; logFC, log2FC. 

Table 2: Summary of the results of GSEA analysis

Pathway (REACTOME) SIZE NES NOM P-val

1. SIGNALING_BY_HIPPO 16 1.5587571 0.027290449 

2. REGULATION_OF_IFNA_SIGNALING 24 1.5417559 0.025477707 

3. LIGAND_GATED_ION_CHANNEL_TRANSPORT 20 1.5310737 0.014403292

4. KERATAN_SULFATE_KERATIN_METABOLISM 26 1.5274918 0.029045643

5. KERATAN_SULFATE_ BIOSYNTHESIS 22 1.4906782 0.04158004 

6. TRAF6_MEDIATED_IRF7_ACTIVATION 27 1.4500268 0.04477612 

GSAE analysis was conducted using gene sets derived from the Reactome pathway database (Reactome gene sets) in the 
Molecular Signatures Database v6.1. 

Table 3: Univariate analysis of the relationship between gene expression and OS by Cox proportional hazard model 
using the publicly accessible MAQC-II Project MM dataset (GSE24080)

Gene symbol Hazard ratio (95% CI) P value

CSNK1A1P1 1.118 (0.943–1.325) 0.2001

GABRA2 0.934 (0.725–1.204) 0.5977

GABRA4 1.048 (0.890–1.235) 0.5715

GABRA5 1.037 (0.925–1.163) 0.5300

GABRB1 0.975 (0.841–1.130) 0.7314

GABRG2 1.242 (1.048–1.471) 0.0125* 

GABRG3 1.045 (0.830–1.315) 0.7108

GABRR1 0.892 (0.726–1.095) 0.2731

GLRA1 1.208 (1.011–1.444) 0.0374* 

GLRA3 0.985 (0.817–1.187) 0.8699 

GLRB 0.978 (0.800–1.194) 0.8244 

IFNA1 1.102 (0.973–1.249) 0.1249 



Oncotarget25131www.oncotarget.com

Cyto.Abn using the Cox proportional hazard model [15]. 
The results revealed that NUP133 and Cyto.Abn could be 
regarded as independent prognostic factors (Table 4). These 
results indicated that high expression of NUP133 observed 
in RRMM was also detected in NDMM patients who 
showed poor OS. 

Analysis of OS and EFS in patients with CD138+ 
myeloma cells

We next determined the cut-off level of NUP133 
and analyzed OS and EFS. To determine the cut-off 
level, we utilized ROC analysis using two-year OS. As 

IFNA4 1.465 (1.076–1.997) 0.0155* 

IFNA5 0.909 (0.692–1.195) 0.4947 

IFNA6 0.953 (0.836–1.086) 0.4658 

IFNA7 0.971 (0.834–1.130) 0.7016 

IFNA8 0.996 (0.886–1.119) 0.9459 

IFNA10 1.120 (0.900–1.393) 0.3097 

IFNA14 0.894 (0.661–1.209) 0.4677 

IFNA16 0.758 (0.545–1.053) 0.0986 

IFNA17 0.876 (0.598–1.282) 0.4946 

IRF2 0.816 (0.597–1.114) 0.1995 

KCTD7 1.019 (0.770–1.347) 0.8973 

KERA 1.032 (0.834–1.276) 0.7731 

KLK7 1.059 (0.812–1.380) 0.6744 

LATS1 1.123 (0.872–1.445) 0.3700 

LOC149773 1.040 (0.820–1.320) 0.7446

LOC283432 0.970 (0.878–1.072) 0.5534

LOC283587 1.087 (0.976–1.211) 0.1284

LOC728190 1.010 (0.709–1.438) 0.9567

LOC100287927 0.794 (0.593–1.062) 0.1204

LOC100507880 0.949 (0.786–1.146) 0.5893

LPCAT1 0.931 (0.800–1.083) 0.3523 

MICALL2 0.850 (0.652–1.107) 0.2270

NUP133 1.658 (1.150–2.392) 0.0068*

OGN 1.139 (0.944–1.375) 0.1734 

OMD 1.139 (0.920–1.411) 0.2325 

P2RY1 0.920 (0.791–1.069) 0.2753 

PATID 0.999 (0.999–1.000) 0.0581 

PKP1 1.013 (0.784–1.310) 0.9205 

SBNO2 0.988 (0.811–1.204) 0.9056 

STK4 1.123 (0.764–1.650) 0.5561 

TARBP2 1.101 (0.708–1.712) 0.6705 

XKR6 0.859 (0.656–1.124) 0.2679 

YAP1 0.820 (0.621–1.083) 0.1621 

ZNF677 0.966 (0.778–1.199) 0.7529  

Significant genes associated with OS were indicated in Bold font. *P < 0.05. 
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shown in Figure 2, the cut-off level of NUP133 was 
8.746 (Specificity = 0.543, sensitivity = 0.622) which 
was slightly higher than average expression (AveExpr) 
shown in Table 1. By using this cut-off level, patients with 
NDMM in the MAQC-II Project MM dataset were divided 
into two groups, high and low NUP133 expression. OS 
and EFS in the two groups were analyzed by log-rank test. 
As shown in Figure 3, the high NUP133 expression group 
exhibited significantly poorer prognosis not only with 
regard to OS, but also EFS. These results indicated that 
high expression of NUP133 predicted poor prognosis in 
NDMM. 

DISCUSSION

In the present study, we created a relatively large 
dataset by combining five datasets analyzing RNA 
expression of CD138+ cells. We then analyzed highly-
expressed genes in RRMM. Moreover, we investigated 
whether these genes could predict poor prognosis of 
NDMM by using the MAQC-II Project MM dataset. 

We found that high expression of NUP133 could be an 
independent poor prognostic factor in NDMM. 

NUP133 is one of the NUP family which consist 
of approximately 30 proteins. NUP proteins are the 
main components of the nuclear pore complex (NPC) 
which form large molecular channels across the nuclear 
envelope [16]. It has been shown that NPCs are involved in 
diverse functions including facilitating nucleocytoplasmic 
transport, as well as chromatin organization, the regulation 
of gene expression and DNA repair [17]. NUP family 
proteins can be roughly categorized into scaffold NUPs, 
embedded in the double membrane of the nuclear envelope, 
and FG-NUPs, FG (Phe and Gly)-repeat-containing-NUPs, 
which constitute the permeability barrier of the pore [16] 
and interact with the soluble nucleocytoplasmic transport 
machinery such as importins and exportins [18]. NUP133 
is an essential scaffold NUP and disruption of the NUP133 
gene results in clustering of NUPs. Thus, NUP133 should 
be involved in maintaining the position of the NPC within 
the nuclear envelope [19]. Additionally, NUP133 plays a 
critical role in mRNA export [20, 21]. 

Figure 2: Determination of the cut-off level of NUP133 expression. (A) ROC curve to determine the cut-off level of NUP133 
associated with OS. Area under the curve: 0.5899 (95% CI: 0.5393–0.6405). (B) Alternative representation of threshold (cut-off level) 
resulting from minimal value of BER (Balanced Error Rate: Sensitivity/Specificity). 

Table 4: Multivariate analysis by the Cox proportional hazard model with stepwise regression using the Bayesian 
information criterion (BIC)

Gene symbol Hazard ratio (95% CI) P-value

NUP133 1.55 (1.14–2.09) 4.7E-03 

Cyto.Abn 2.15 (1.58–2.92) 9.1E-07

Cyto.Abn, Cytogenetic abnormality including chromosomal abnormality, translocation and deletion detected by 
fluorescence in situ hybridization. Concordance probability = 0.644. 
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It has been shown that some NUPs including 
NUP88, NUP98 and NUP214 make mechanistic 
contributions to carcinogenesis, particularly in leukemias 
[22]. Hence, we assessed the relationship between their 
expression levels and OS by using the MAQC-II Project 
MM dataset. However, we found no correlation between 
the expression level of these NUPs and OS in NDMM 
(Supplementary Table 1). Among NUP family members, it 
remains unclear how NUP133 alone could be involved in 
OS and EFS in NDMM. 

In this regard, it has been reported that the 
N-terminal domain of NUP133 is required for efficient 
anchoring of the dynein/dynactin complex to the 
nuclear envelope in prophase through an interaction 
network via centromere protein F (CENP-F) and NudE/
NudEL [23]. CENP-F is known to be associated with 
the centromere-kinetochore complex and NudE/NudEL 
is known to interact with dynein [24]. These findings 
suggest that NUP133 plays an important role in mitosis 
and chromosome partitioning. Further studies including 
knockdown and overexpression of NUP133 in myeloma 

cells will be required to clarify the role of NUP133 in 
MM.

In conclusion, the expression level of NUP133, a 
component of NPCs, could be involved in the prognosis of 
MM. These findings may be useful for understanding the 
development of MM and may provide a new therapeutic 
approach in MM. 

MATERIALS AND METHODS

Analysis and data mining of public data base 
GEO (gene expression omnibus) 

GEO datasets [GSE5900 (Healthy volunteer (HV): 
N = 22; Monoclonal gammopathy of undetermined 
significance (MGUS): N = 44; smoldering MM (SMM): 
N = 12), GSE58133 (newly-diagnosed MM (NDMM):  
N = 120), GSE68871 (NDMM: N = 118), GSE57317 
(relapsed/refractory MM (RRMM): N = 55) and GSE16791 
(NDMM: N = 32)] which were analyzed using the same 
gene chip (Affymetrix Human Genome U133 Plus 2.0 

Figure 3: Analysis of OS and event-free survival (EFS) with high and low levels of NUP133 mRNA expression in 
CD138+ myeloma cells. (A) Analysis of the relationship between OS and NUP133 expression in patients with myeloma using the 
publicly-accessible MAQC-II Project MM dataset (GSE24080) from the GEO. The high NUP133 expression group consisted of 284 
patients with MM. The low NUP133 expression group consisted of 275 patients with MM. The median OS time of the high NUP133 
group did not reach 50% (NA: not applicable). The median OS time of the low NUP133 group was 81 months (95% CI:71-NA). (B) 
The relationship between EFS and NUP133 expression in patients with myeloma was analyzed using the publicly-accessible MAQC-II 
Project MM database. The median EFS time of the high NUP133 group was 92 months (95% CI:75-NA). The median EFS time of the 
low NUP133 group was 75 months (95% CI:75-NA). The high and low NUP133 groups were divided by the result of the ROC curve as 
indicated in Figure 2.
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Array: Platform GLP570) were downloaded as separate 
CEL files. CEL data were background corrected using the 
Robust Multi-Array Average (RMA) or Microarray Suite 
5.0 (MAS5) provided from analysis by Bioconductor (R 
commander 3.4.1). 

Each data-set was saved as a matrix in text 
format and each dataset was reloaded into RStudio 
(version1.0.153) using the read table function. All the 
datasets were combined into one myeloma dataset 
using the cbind function provided by R commander. To 
normalize each dataset combined, quintile normalization 
was conducted using the affy Bioconductor package for 
this dataset and saved as a matrix in text format (myeloma 
dataset #1). 

To select only the NDMM (N = 270) and RRMM 
(N = 55) from myeloma dataset #1, the dplyr package 
was utilized and the results were saved as another matrix 
in text format (myeloma dataset #2). A dendrogram and 
heatmap were created using amap, gplots and 3D heatmap 
packages. 

To detect DEGs, limma package was used after 
RMA normalization (Table 1) and EdgeR package was 
used after MAS5 normalization (Supplementary Table 2). 

Gene set enrichment analysis and network 
analysis 

Gene set enrichment analysis (GSEA) was conducted 
using the open source software GSEA 3.0 http://software.
broadinstitute.org/gsea/index.jsp. For gene sets databases, 
h.all.v6.0.symbol.gmt [Hallmarks], c2.cp.biocarta.
v6.0.symbols.gmt [Curated], c2.cp.kegg.v6.0.symbols.
gmt, c2.cp.reactome.v6.0.symbols.gmt [Curated] and c6all.
v6.0.symbols.gmt [Oncogenic signature] were used. The 
pathways showing NOM P-val (P-value) < 0.05 or false 
discovery rate (FDR) q-val (FDR) < 0.25 were considered 
as significant. 

Statistical analysis 

Each dataset was first evaluated for normality of 
distribution by the Kolmogorov-Smirnov test to decide 
whether a non-parametric rank-based analysis or a 
parametric analysis should be used. The significance of 
differences between groups was assessed by one-way 
ANOVA with the post-hoc Tukey Honestly Significant 
Difference Test. Results are expressed as the mean ± 
standard deviation (SD). The significance of differences 
was assessed by either Student’s t-test or the Mann-
Whitney U-test, and a P-value < 0.05 was considered 
statistically significant. All statistical analyses were 
performed with R commander (version 3.4.1) or EZR 
(Easy R), which is a graphical user interface for R [25]. 

The relationship between DEGs and OS were 
evaluated using the publicly accessible MAQC-II Project 
MM dataset (GSE24080) from the GEO using the Cox 

proportional hazard model provided from EZR [26]. For a 
multivariate model, candidate genes (P value < 0.2) were 
selected because correlations can play an important role 
to build better prognostic models according to previous 
report [15]. 
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