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Polymorphisms in DNA mismatch repair pathway genes predict 
toxicity and response to cisplatin chemoradiation in head and neck 
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ABSTRACT

Head and neck squamous cell carcinoma (HNSCC) is treated with cisplatin (CDDP) 
and radiotherapy (RT), and distinct results are observed among patients with similar 
clinicopathological aspects. This prospective study aimed to investigate whether MLH1 
c.-93G>A (rs1800734), MSH2 c.211+9C>G (rs2303426), MSH3 c.3133G>A (rs26279), 
EXO1 c.1765G>A (rs1047840), and EXO1 c.2270C>T (rs9350) single nucleotide 
polymorphisms (SNPs) of the mismatch repair (MMR) pathway change side effects and 
response rate of 90 HNSCC patients treated with CDDP and RT. DNA from peripheral 
blood was analyzed by PCR-based methods to obtain genotypes. It was observed 
4.27-fold and 4.69-fold increased risks of presenting pronounced nephrotoxicity with 
treatment in patients with MSH3 GG and EXO1 rs9350 CC genotypes compared with 
patients with GA or AA and CT or TT genotypes, respectively. MSH3 GG or GA and GT 
haplotype of EXO1 rs1047840 and rs9350 SNPs conferred to patients 10.29 and 4.00 
more chances of presenting pronounced ototoxicity after treatment than MSH3 AA 
genotype and other EXO1 haplotypes, respectively. Patients with EXO1 rs1047840 
GA or AA genotype and AC haplotype of EXO1 rs1047840 and rs9350 SNPs had both 
9.55-fold increased risks of achieving partial response or stable disease instead of 
complete remission after treatment than patients with EXO1 GG genotype and other 
EXO1 haplotypes, respectively. For the first time, our data show preliminary indication 
that inherited alterations of DNA MMR pathway, related to MSH3 rs26279, EXO1 
rs1047840 and EXO1 rs9350 SNPs, modify toxicity and response to chemoradiation 
in HNSCC, and may contribute to future personalized treatment of patients.
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INTRODUCTION

The treatment of advanced unresectable head 
and neck squamous cell carcinoma (HNSCC) has been 
made with association between cisplatin (CDDP) and 
radiotherapy (RT) [1]. CDDP binds to DNA, forming 
adducts, and it also favors accumulation of intracellular 
free radicals [2]. RT induces lesion to DNA, direct 
and indirectly, by activity of photons and free radical 
generation, respectively [3]. DNA damages induced by 
CDDP and RT trigger apoptosis when not properly repaired 
by DNA repair pathways, such as the mismatch repair 
(MMR) [4, 5]. MutL homolog 1 (MLH1), MutS homolog 
2 and 3 (MSH2 and MSH3) and exonuclease 1 (EXO1) 
proteins are crucial to identify CDDP-induced DNA lesion 
and enable its removal [4–7].

Variations in toxicity and response to therapy and/
or in survival were seen in patients with lung [8–11], 
pancreatic [12], breast [13, 14], laryngeal [15], cervical 
[16], and ovarian [17] cancer treated with CDDP-
based schemes and/or RT, which were attributed to 
abnormalities in production or function of proteins 
encoded by single nucleotide polymorphisms (SNPs) in 
genes of MMR pathway. In fact, variant “A”, “G”, “A”, 
and “A” alleles of MLH1 c.-93G>A (rs1800734) [18], 
MSH2 c.211+9C>G (rs2303426) [19], MSH3 c.3133G>A 
(rs26279) [20], and EXO1 c.1765G>A (rs1047840) 
[21], reduce levels of expressed protein compared with 
respective wild-type alleles, and have reduced DNA 
repair as consequence. It was also observed association 
of wild-type “C” allele of EXO1 c.2270C>T (rs9350) 
with decreased DNA repair, possibly due to its influence 
in preventing EXO1 involvement in the complex with 
MMR proteins [21].

Recently, we retrospectively analyzed MLH1 
rs1800734, MSH2 rs2303426, MSH3 rs26279, EXO1 
rs1047840, and EXO1 rs9350 SNPs in HNSCC subjects 
that received concurrent chemoradiotherapy with CDDP/
carboplatin as neoadjuvant, adjuvant or definitive 
treatment, and observed that patients with wild-type 
“GG” genotypes of MSH3 rs26279 and EXO1 rs1047840 
presented shorter relapse-free survival (RFS) and overall 
survival (OS) compared to others; however, side effects 
and response to therapy were not evaluated in study [20]. 
We investigated in this new prospective study the roles of 
the above mentioned SNPs in modulation of toxicity and 
response to therapy of HNSCC patients treated exclusively 
with CDDP chemoradiation.

RESULTS

HNSCC patients

The clinicopathological aspects of 90 patients 
enrolled in study are presented in Table 1. 

Sixty-eight patients were treated with three CDDP 
administrations, and 22 patients were treated with only 
two CDDP injections, because they presented hematologic 
or renal consistent toxicities. Median cumulative amount 
of administrated CDDP was 265 mg (range: 100–616). 
Adherence to antiemetics was medium or high in most of 
the patients (97.7%).

Grade 2 or grade 3 nausea and grade 2 to grade 4 
vomiting were seen in about two-thirds and one-third of 
cases, respectively. It was observed that one-third to half 
of cases presented grade 2 to grade 4 cytopenias, and half 
of cases had grade 2 to grade 5 nephrotoxicity or grade 
2 to grade 4 ototoxicity. All available patients obtained 
complete response (CR) (N = 15), partial response (PR) 
(N = 53) or stable disease (SD) (N = 5) with treatment 
(Supplementary Table 1). The mean value (±SD) of CDDP 
found in urine was 237.0 ug/mL ± 116.2. 

Cases were followed up for a median period of 21 
months (range: 3.0–74). The assessed probabilities of 
24-months event-free survival (EFS) and OS were 35.0% 
and 40.0%, respectively. In October 2017, 23 patients 
survived, 6 of them with disease and 17 without disease; 
and 67 patients died, 59 of them by tumor impacts and 8 
by other causes.

Hardy-Weinberg equilibrium (HWE) was confirmed 
at MLH1 rs1800734 (χ2 = 2.56, P = 0.11), MSH2 
rs2303426 (χ2 = 0.73, P = 0.39), MSH3 rs26279 (χ2 = 
1.54, P = 0.21), EXO1 rs1047840 (χ2 = 0.42, P = 0.52), 
and rs9350 (χ2 = 2.80, P = 0.09) loci in patients’ samples. 
A linkage disequilibrium (LD) between EXO1 rs1047840 
and EXO1 rs9350 (D’ = 19%) was found in our sample, 
and two EXO1 haplotypes (GT, AC) were included in 
further analyses due to possible clinical significance and 
frequency greater than 10%.

Genetic polymorphisms, side effects, response 
rate and prognosis

The genotypes of all SNPs and haplotypes of EXO1 
rs1047840 and rs9350 in 90 studied patients stratified by 
toxicities and responses to therapy are presented in Table 2.

Patients with MSH3 GG genotype had more 
frequently grade 2 to grade 5 nephrotoxicity than 
those with GA or AA genotype (64.9% vs. 28.1%); it 
was observed a 4.27-fold increased risk of substantial 
nephrotoxicity with treatment in patients with MSH3 GG 
genotype. The frequency of MSH3 GG or GA genotype 
was higher than AA in subjects with grade 2 to grade 4 
ototoxicity (50.8% vs. 28.6%); after treatment, it was 
observed a 10.29-fold increased risk of substantial 
ototoxicity in patients with GG or GA genotype when 
compared to those with AA genotype.

EXO1 rs1047840 GA or AA genotype was more 
common than GG genotype (90.0% vs. 66.7%) in patients 
with PR or SD; 9.55 more chances of presenting PR or SD 
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instead of CR to chemoradiation were observed in patients 
with GA or AA genotype when compared to the ones with 
GG genotype. The median reduction in diameters of target 
lesions after chemoradiation was also less pronounced in 
patients with GA or AA genotype than in those with GG 
genotype (−54.9% vs. −67.8%) (Figure 1A, Figure 1B). 
EXO1 rs9350 CC genotype was more common than CT 
or TT genotype (58.0% vs. 21.1%) in patients with grade 
2 to grade 5 nephrotoxicity; it was observed a 4.69-fold 
increased risk of substantial nephrotoxicity in subjects 
with CC genotype after treatment, when compared to those 
with the remaining genotypes. An excess of GT haplotype 

(wild-type and variant alleles of EXO1 rs1047840 and 
rs9350, respectively) was seen in subjects presenting grade 
2 to grade 4 ototoxicity (68.7% vs. 42.6%) compared to 
those with other haplotypes; a 4.00-fold increased risk 
of substantial ototoxicity was observed in carriers of 
GT haplotype after chemoradiation, when compared to 
patients with other haplotypes. The AC haplotype (variant 
allele and wild-type allele of EXO1 rs1047840 and rs9350, 
respectively) was more frequent than other haplotypes in 
subjects who obtained PR or SD (90.0 vs. 66.7%); it was 
observed a 9.55-fold increased risk of achieving PR or SD 
instead of CR in carriers of AC haplotype after treatment, 

Table 1: Clinical and tumor aspects of 90 patients with head and neck squamous cell carcinoma

Variable Median (range) or N (%) 

Age (years) 56 (27–74)

Gender

 Male 83 (92.2)

 Female 7 (7.8)

Body mass index (kg/m²) 19 (13–31)

Tobacco consumption

 Smokers 88 (97.8)

 Nonsmokers 2 (2.2)

Alcohol consumption

 Drinkers 83 (92.2)

 Abstainers 7 (7.8)

Tumor location

 Oral cavity 12 (13.3)

 Pharynx 55 (61.1)

 Larynx 23 (25.6)

Histological grade*

 Well + moderately 60 (82.2)

 Poorly + undifferentiated 13 (17.8)

Tumor stage

 I + II 6 (6.7)

 III + IV 84 (93.3)

Human papillomavirus type 16*

 Positive 0 (0.0)

 Negative 57 (100.0)

N: number of patients. *The number of patients differed from the total quoted in the study (N = 90) because it was not 
possible to obtain consistent information about histological grade and human papillomavirus type 16 status in some cases.
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Table 2: MLH1 rs1800734, MSH2 rs2303426, MSH3 rs26279, EXO1 rs1047840 and EXO1 rs9350 single nucleotide 
polymorphism genotypes and EXO1 haplotypes in 90 patients with head and neck squamous cell carcinoma stratified 
by toxicity and response rate to concurrent chemoradiotherapy

Variable
Nephrotoxicity Ototoxicity Response rate

G0 + G1 
N (%)

G2–G5 
N (%)

G0 + G1 
N (%)

G2–G4 
N (%)

CR + PR 
N (%)

SD 
N (%)

CR 
N (%)

PR + SD 
N (%)

MLH1 rs1800734

 GG + GA 35 (52.2) 32 (47.8) 36 (52.2) 33 (47.8) 66 (93.0) 5 (7.0) 15 (21.1) 56 (78.9)

 AA 1 (50.0) 1 (50.0) 0 (0.0) 1 (100.0)  2 (100.0) 0 (0.0) 0 (0.0) 2 (100.0)

 P-value 0.99 0.99 0.99 0.99

 OR (95% CI) NE NE NE NE

 GG 20 (48.8) 21 (51.2) 20 (47.6) 22 (52.4) 42 (95.5) 2 (4.5) 9 (20.5) 35 (79.5)

 GA + AA 16 (57.1) 12 (42.9) 16 (57.1) 12 (42.9) 26 (89.7) 3 (10.3) 6 (20.7) 23 (79.3)

 P-value 0.29 0.46 0.10 0.47

 OR (95% CI) 1.76 (0.63–4.93) 1.48 (0.53–4.13) 0.13 (0.01–1.50) 0.58 (0.13–2.55)

MSH2 rs2303426

 CC + CG 29 (51.8) 27 (48.2) 27 (48.2) 29 (51.8) 54 (91.5) 5 (8.5) 10 (16.9) 49 (83.1)

 GG 7 (53.8) 6 (46.2) 9 (64.3) 5 (35.7) 14 (100.0) 0 (0.0) 5 (35.7) 9 (64.3)

 P-value 0.80 0.59 0.99 0.39

 OR (95% CI) 1.18 (0.33–4.24) 1.43 (0.39–5.24) NE 2.01 (0.41–9.96)

 CC 11 (61.1) 7 (38.9) 10 (55.6) 8 (44.4) 16 (94.1) 1 (5.9) 4 (23.5) 13 (76.5)

 CG + GG 25 (49.0) 26 (51.0) 26 (50.0) 26 (50.0) 52 (92.9) 4 (7.1) 11 (19.6) 45 (80.4)

 P-value 0.44 0.38 0.80 0.26

 OR (95% CI) 0.64 (0.21–1.98) 0.59 (0.18–1.93) 1.37 (0.12–15.71) 0.42 (0.10–1.90)

MSH3 rs26279

 GG + GA 31 (49.2) 32 (50.8) 31 (49.2) 32 (50.8) 65 (95.6) 3 (4.4) 14 (20.6) 54 (79.4)

 AA 5 (83.3) 1 (16.7) 5 (71.4) 2 (28.6) 3 (60.0) 2 (40.0) 1 (20.0) 4 (80.0)

 P-value 0.26 0.043 0.08 0.75

 OR (95% CI) 3.75 (0.38–37.03) 10.29 (1.06–100.21) 0.11 (0.01–1.31) 1.49 (0.12–18.17)

 GG 13 (35.1) 24 (64.9) 18 (46.2) 21 (53.8) 39 (95.1) 2 (4.9) 8 (19.5) 33 (80.5)

 GA + AA 23 (71.9) 9 (28.1) 18 (58.1) 13 (41.9) 29 (90.6) 3 (9.4) 7 (21.9) 25 (78.1)

 P-value 0.0071 0.13 0.61 0.56

 OR (95% CI) 4.27 (1.48–12.34) 2.28 (0.79–6.58) 0.60 (0.08–4.42) 1.48 (0.39–5.59)

EXO1 rs1047840

 GG + GA 34 (55.7) 27 (44.3) 33 (52.4) 30 (47.6) 60 (92.3) 5 (7.7) 14 (21.5) 51 (78.5)

 AA 2 (25.0) 6 (75.0) 3 (42.9) 4 (57.1) 8 (100.0) 0 (0.0) 1 (12.5) 7 (87.5)

 P-value 0.07 0.61 0.99 0.99

 OR (95% CI) 4.88 (0.86–27.55) 0.64 (0.12–3.47) NE NE

 GG 18 (56.3) 14 (43.8) 19 (61.3) 12 (38.7) 31 (93.9) 2 (6.1) 11 (33.3) 22 (66.7)

 GA + AA 18 (48.6) 19 (51.4) 17 (43.6) 22 (56.4) 37 (92.5) 3 (7.5) 4 (10.0) 36 (90.0)

 P-value 0.35 0.30 0.83 0.015

 OR (95% CI) 1.63 (0.59–4.51) 0.58 (0.21–1.62) 0.79 (0.10–6.56) 9.55 (1.56–58.60)

EXO1 rs9350

 CC + CT 36 (52.2) 33 (47.8) 36 (51.4) 34 (48.6) 68 (93.2) 5 (6.8) 15 (20.5) 58 (79.5)

 TT 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)

 P-value 0.99 0.99 0.99 0.99

 OR (95% CI) NE NE NE NE

 CC 21 (42.0) 29 (58.0) 30 (57.7) 22 (42.3) 49 (94.2) 3 (5.8) 12 (23.1) 40 (76.9)

 CT 15 (78.9) 4 (21.1) 6 (33.3) 12 (66.7) 19 (90.5) 2 (9.5) 3 (14.3) 18 (85.7)
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when compared to patients with other haplotypes. The 
median reduction in diameters of target lesions after 
chemoradiation was also less pronounced in patients with 
AC haplotype compared to others (−54.9% vs. −67.8%) 
(Figure 1C, Figure 1D).

No associations between SNPs and haplotypes 
were observed in subjects classified by nausea, vomiting, 
cytopenias and urinary CDDP (Supplementary Table 2).

At 24 months of follow-up, shorter EFS (32.7% vs. 
83.3%, P = 0.01) and OS (35.7% vs. 100.0%, P = 0.009) 
were seen in patients with advanced tumors compared to 
those with localized tumors (Kaplan-Meier estimates). A 
shorter EFS and OS were observed in those patients in uni 
and multivariate Cox analyses. No associations of MLH1 
rs1800734, MSH2 rs2303426, MSH3 rs26279, EXO1 
rs1047840, EXO1 rs9350 SNPs, and EXO1 haplotypes 
were seen in survival analyses of HNSCC patients 
(Supplementary Table 3). 

DISCUSSION

Clinical characteristics of patients, aspects of tumor, 
toxicity and response to chemoradiation, and survival rates 
found in the present study were similar to those previously 
described [1, 22, 23], indicating that our sample was 
satisfactory for investigations of new prognostic factors 
in HNSCC. None of our available patients had undergone 
HPV infection, as previously described in Brazilian 
HNSCC patients [24, 25]; this finding indicates that 
tobacco and alcohol were the most important factors 
related to tumor onset in our cases. 

We found that MSH3 rs26279 GG and GG or GA 
genotypes were associated with pronounced nephrotoxicity 
and ototoxicity, respectively. MSH3 rs26279 altered 

radiosensitivity in breast cancer patients [13], response 
to platinum-based therapy and survival in lung cancer 
patients [9], response to CDDP chemoradiation and 
hematological toxicity in a unique case of laryngeal cancer 
[15] and survival in HNSCC patients treated by CDDP 
and RT [20], but its roles in nephrotoxicity and ototoxicity 
were not described in studies. We identified higher level 
of mRNA in MSH3 rs26279 GG individuals compared 
to those with GA or AA genotype in a previous study 
[20]. It was proposed that increased expression of MSH3 
sequesters nuclear MSH2 and favors formation of MutSβ 
heterodimer, having a drastic change in MutSα and MutSβ 
proportion and reduction of efficiency in repairing base-
base mismatches as consequence [26]. Thus, renal tubular 
cells and outer hair cells in carriers of “G” allele may be 
able to undergo to apoptosis in response to DNA damages 
due to CDDP and RT, with consequent nephrotoxicity and 
ototoxicity.

EXO1 rs1047840 GA or AA genotype and AC 
haplotype of EXO1 rs1047840 and rs9350 SNPs were 
associated with worst response to chemoradiation in this 
study. EXO1 rs1047840 GA genotype appeared to contribute 
to a CR and marked hematological toxicity seen in a patient 
with laryngeal cancer treated with CDDP and RT [15], and 
variant allele “A” of EXO1 rs1047840 was also associated 
with a better response rate in patients with cervical 
carcinoma [16]. Jin et al. (2008) [21] proposed that EXO1 
rs1047840 variant “A” allele reduces the amount of mRNA 
of EXO1, and consequently decreases EXO1 protein levels 
and MMR activity, since it is fundamental for excision 
of DNA injuries initiated by CDDP, activating apoptosis 
[27, 28]. EXO1 rs9350 determines change of proline to 
leucine in codon 757 of EXO1 protein [29]. Proline tends 
to destabilize α-helices due to the lack of a backbone 

 P-value 0.022 0.06 0.60 0.27

 OR (95% CI) 4.69 (1.34–16.44) 4.03 (1.17–13.93) 0.59 (0.08–4.30) 0.38 (0.07–2.15)

EXO1 + EXO1

 GT 14 (87.5) 2 (12.5) 5 (31.3) 11 (68.7) 16 (88.9) 2 (11.1) 3 (16.7) 15 (83.3)

 Other haplotypes 22 (41.5) 31 (58.5) 31 (57.4) 23 (42.6) 52 (94.5) 3 (5.5) 12 (21.8) 43 (78.2)

 P-value 0.06 0.034 0.49 0.71

 OR (95% CI) 3.11 (1.85–44.75) 4.00 (1.11–14.48) 0.49 (0.07–3.72) 0.71 (0.13–4.07)

 AC 18 (48.6) 19 (51.4) 17 (43.6) 22 (56.4) 37 (92.5) 3 (7.5) 4 (10.0) 36 (90.0)

 Other haplotypes 18 (56.3) 14 (43.7) 19 (61.3) 12 (38.7) 31 (93.9) 2 (6.1) 11 (33.3) 22 (66.7)

 P-value 0.35 0.30 0.74 0.026

 OR (95% CI) 0.61 (0.22–1.70) 0.58 (0.21–1.62) 0.70 (0.08–5.90) 9.55 (1.56–58.60)

G: grade of toxicity; N: number of patients; CR: complete response; PR: partial response; SD: stable disease; OR: odds 
ratio; CI: confidence interval; NE: not evaluated. ORs were adjusted by age, cumulative dose of cisplatin and body mass 
index in analyses of nephrotoxicity, by age, cumulative dose of cisplatin and tumor location in analyses of ototoxicity for 
age, cumulative dose of cisplatin, body mass index, tumor location and grade in analyses of response rate. The total number 
of patients differed from the total quoted in the study (N = 90) because it was not possible to obtain consistent information 
about response rate and toxicities in some cases; 1P bootstrap = 0.006, 2P bootstrap = 0.005, 3P bootstrap = 0.01, 4P bootstrap 
= 0.02, 5P bootstrap = 0.007, 6P bootstrap = 0.005.
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hydrogen bond and steric constraints [30], implying that the 
presence of this aminoacid could influence protein-protein 
interaction, especially with MSH2, resulting in incomplete 
repair of DNA lesions and apoptosis of damaged cells [29]. 
Thus, we expected to obtain a better response to therapy in 
carriers of variant “A” allele of EXO1 rs1047840 and wild-
type “C” allele of rs9350 SNP, but the opposite result was 
found in this study. However, decrease of EXO1 expression 
in human fibroblasts or mouse embryonic fibroblasts caused 
a delay in DNA damage-induced apoptosis, and EXO1 may 
have a main role in caspase-3 cleavage, DNA fragmentation 
and cytochrome c release, participating in crucial phases 
of apoptosis; thus, SNPs in EXO1 may not only imply in 
DNA repair, but may also favor cell survival by apoptotic 
defects [31]. Since the roles of the mentioned SNPs in the 
treatment of HNSCC patients are still unknown, our data 
suggest that they are associated with a worst response to 
CDDP chemoradiation.

We observed that EXO1 rs9350 CC genotype 
was associated with pronounced nephrotoxicity and GT 
haplotype of EXO1 rs1047840 and rs9350 SNPs was 
associated with pronounced ototoxicity. Decrease in DNA 
repair was previously attributed to wild-type “C” allele 

of EXO1 rs9350, possibly due to its influence in protein-
protein interaction, preventing EXO1 involvement in the 
complex with MMR proteins [21]. Thus, renal tubular cells 
in patients with CC genotype may undergo to apoptosis in 
response to DNA damages induced by CDDP and RT, with 
consequent nephrotoxicity. However, the association of 
wild-type “G” and variant “T” alleles of EXO1 rs1047840 
and rs9350 SNPs, associated with increased DNA repair 
[21], with ototoxicity was not expected in this study; 
these apparent controversial findings could be attributed 
to different roles of EXO1 alleles, especially rs9350 “C”, 
which may be specific in distinct tissues/organs [32].

No association of analyzed genotypes and 
haplotypes with survival of 90 HNSCC was seen in this 
study. MSH3 rs26279 and EXO1 rs9350 altered survival 
of 180 lung cancer [9] and 602 lung cancer [10] patients 
treated with platinum-based chemotherapy. RFS and OS 
of 397 patients with HNSCC were also altered by MSH3 
rs26279 and EXO1 rs1047840 SNPs in a previous study 
conducted by our group [20]. Differences of results could 
be related to different tumor types, sample sizes and 
median times of follow-up, which was about 2.0 times 
higher in our previous study than in the present one. 

Figure 1: Characteristics of response to concurrent cisplatin chemoradiotherapy of head and neck squamous cell 
carcinoma (HNSCC) patients. Waterfall plots indicate the maximum change from baseline in the sum of reference diameters of target 
lesion in patients with EXO1 rs1047840 GG and GA or AA genotypes (A and B) an in patients with AC haplotype (variant allele of EXO1 
rs1047840 and wild-type allele of EXO1 rs9350) and other haplotypes (C and D). The dashed lines indicate a 30% reduction in the tumor 
burden in the target lesion, as defined by Response Evaluation Criteria in Solid Tumors version 1.1.
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In conclusion, for the first time, this present study 
shows preliminary indication that inherited variations 
promoted by MSH3 rs26279, EXO1 rs1047840 and EXO1 
rs9350, involved in DNA MMR pathway, may alter side 
effects and response CDDP and RT in HNSCC patients. 
We are aware that further analysis in a larger number of 
patients and functional analyses of relevant SNPs will be 
required to confirm results and elucidate their roles in 
disease. We believe that these results may contribute to the 
future personalized treatment of HNSCC patients, possibly 
with the use of varying CDDP doses and protective agents 
against CDDP-induced nephro- and ototoxicity [33, 34].

MATERIALS AND METHODS

Ninety HNSCC patients at diagnosis, seen at the 
University of Campinas from June 2011 to February 2014, 
were enrolled in this prospective study. Patients were 
chosen to CDDP chemoradiation as definitive treatment 
according to the following inclusion criteria: did not 
accepted surgical resolution facing expected anatomic or 
functional sequels, locoregional unresectable tumor, or a 
strategy of organ preservation. Declaration of Helsinki was 
conducted and the institutional Ethics Committee approved 
this study (n. 274/2011), and all patients provided written 
informed consent. 

Patients were separated as smokers vs. nonsmokers 
and drinkers vs. abstainers [35]. HNSCC was diagnosed 
and staged based on conventional criteria [36, 37]. P16 
immunohistochemistry and in situ hybridization were 
performed in tumor fragments, aiming to test the presence 
of human papillomavirus type 16 (HPV 16) [38, 39].

Patients were treated with a starting dose of  
80–100 mg/m2 of “in bolus” intravenous injection of 
CDDP on 1st, 22th and 43th days concomitant with RT 
(70 Gy; 35 sessions); lower dose of CDDP (50–75 mg/m²) 
was delivered in second and/or third infusion in patients 
who presented toxicity with the first administration of the 
agent [1, 40]. As hydration and antiemetic protocols, they 
received intravenous saline solution, mannitol, ondansetron 
and dexamethasone before CDDP administration, as well 
as intravenous physiological saline and oral dexamethasone 
and metoclopramide during three days after each CDDP 
infusion [41, 42]. Antiemetic adherence was analyzed [43].

Nausea and vomiting were assessed immediately 
after each CDDP infusion and in the four following 
days. Cytopenias were evaluated with complete blood 
counts performed after each CDDP administration. 
Nephrotoxicity was analyzed using glomerular filtration 
rate measured by 51Cr-EDTA and ototoxicity was assessed 
by audiometric exams, both performed pre and post 
chemoradiation, respectively [44]. The worst grades of 
toxicities seen during the entire treatment were considered 
for analyses. 

Response to therapy was categorized as CR, PR, 
SD or progressive disease (PD) [45]. Immediately after 

each CDDP administration, 48-hours urine collection was 
performed for estimation of CDDP by high-performance 
liquid chromatography assay [46]; the sum of cumulative 
measurement of urinary CDDP estimates acquired after 
each CDDP infusion was considered the final concentration.

Subjects with PR after treatment or tumor relapse and 
good clinical condition were selected for surgical tumor 
resection; palliative intravenous methotrexate was indicated 
to patients with unfavorable clinical performance [47].

Genotyping was performed by polymerase chain 
reaction (PCR) and enzymatic digestion or PCR real-time 
assay, using DNA from patients’ peripheral blood samples 
as reported for MLH1 rs1800734 [48], MSH2 rs2303426 
[49], MSH3 rs26279 [20], EXO1 rs1047840 and rs9350 
[27]. Total of 15% of genotypes were carried out by two 
independent experiments with total concordance.

For goodness-of-fit test was used chi-square (χ2) 
statistics to evaluate HWE. The Haploview 4.2 software 
was used to perform pairwise LD analyses of EXO1 
haplotypes. To analyze differences between groups, χ2 
or Fisher’s exact test were used. To obtain adjusted odds 
ratio (OR) values and to assess associations among SNPs, 
toxicity and response to treatment, and urinary CDDP, 
model of logistic regression was used. To ensure the 
stability of model was used the bootstrapping (N = 1,000) 
based on repeatedly random sampling, applying the bias-
corrected and accelerated method [50]. 

EFS and OS were computed from the date of 
diagnosis to the first relapse, death from disease or last 
follow-up, and from the date of diagnosis until the death, 
resulting from any cause, or last follow-up, respectively. 
Kaplan-Meier method was used to analyze EFS and OS. 
Multivariate Cox regression was used to estimate hazard 
ratios (HRs) adjusted for possible discrepancies in clinical 
aspects (P-values ≤ 0.10 in univariate Cox regression). 

All statistical tests were done using the SPSS 21.0 
software (SPSS Incorporation, IL, USA), and two-sided 
significance was achieved when P-values were < 0.05. 
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