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Aptamers: novelty tools for cancer biology
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ABSTRACT

Although the term ‘cancer’ was still over two thousand years away of being coined, 
the first known cases of the disease date back to about 3000BC, in ancient Egypt. Five 
thousand years later, still lacking a cure, it has become one of the leading causes of death, 
killing over half a dozen million people yearly. So far, monoclonal antibodies are the most 
successful immune-therapy tools when it comes to fighting cancer. The number of clinical 
trials that use them has been increasing steadily during the past few years, especially 
since the Food and Drug Administration greenlit the use of the first immune-checkpoint 
blockade antibodies. However, albeit successful, this approach does come with the cost of 
auto-inflammatory toxicity. Taking this into account, the development of new therapeutic 
reagents with low toxicity becomes evident, particularly ones acting in tandem with the 
tools currently at our disposal. Ever since its discovery in the early nineties, aptamer 
technology has been used for a wide range of diagnostic and therapeutic applications. 
With similar properties to those of monoclonal antibodies, such as high-specificity of 
recognition and high-affinity binding, and the advantages of being developed using in 
vitro selection procedures, aptamers quickly became convenient building blocks for the 
generation of multifunctional constructs. In this review, we discuss the steps involved 
in the in vitro selection process that leads to functional aptamers – known as Systematic 
Evolution of Ligands by Exponential Enrichment – as well as the most recent applications 
of this technology in diagnostic and treatment of oncological illnesses. Moreover, we also 
suggest ways to improve such use.

INTRODUCTION

Over the past few years, cancer has become one of the 
most important endemic health issues in the world [1, 2].  
According to the World Health Organization, annual 
cancer cases are estimated to increase from 14 million in 
2012 to more than 20 million by 2025 [3]. Not only due 
to its seriousness, but also due to the fact that it can have 
several different triggers – viral infection, environmental 
factors or genetic abnormalities – which lead its to 

different levels of aggressiveness and/or progression [4]. 
Its level of complexity is paired only to that of its interest 
as a subject of study. The very same factors that may lead 
to its erratic behavior, challenge scientists throughout 
the world to come up with tools for histopathological 
evaluation in order to identify cancer cells among healthy 
ones, thanks to the different surface receptors that both 
cell types present. These receptors allow for the detection 
of cancer cells and its prognosis, as well as determining 
disease progression [5, 6].
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Another important factor to consider is the 
proteome. Even though cancer has a strong link with 
the genome, the correlation of specific phenotypes to 
individual genotypes is key to leveraging the use of model 
organisms and patient samples in cancer research. In 
fact, cancer processes are mainly originated by damage 
or mutation of proto-oncogenes that code for proteins 
related to cell proliferation and differentiation, as 
well as the production of signals related to growth and 
apoptosis. Tumor development requires alterations in both 
oncogenes and tumor suppressor genes. These are favored 
by mutations in tumor susceptibility genes, which code 
for proteins related to DNA damage [7, 8]. This way, 
and because the proteome is much more dynamic, it is 
a more accurate source of information regarding what 
is happening inside the cell and, therefore, a crucial tool 
regarding the disease itself and, of course, its progression. 
Furthermore, protein markers can be detected in body 
fluids and tissues, making them remarkable biomarkers, 
since their evaluation is noninvasive and usually well-
accepted by patients [9]. In the light of such concern, a 
novel therapeutic approach of immunotherapy has been 
developed in the past few years. Even though there is not 
enough long-term survival data available to make a strong 
statement regarding its efficiency, its practicality has made 
sufficient impact for one to realize that it has, indeed, 
redefined the standard-of-care treatment in the first-line 
settings [10].

Apart from surgery, the major therapeutic 
approaches for cancer are chemotherapy and biotherapy –  
the latter being a more biological approach, which 
includes immunotherapy and drug-delivery – and, given 
their versatility, aptamers can have an impact on both. 
Whether as stand-alone tools or in tandem with existing 
approaches, aptamers can be used both in treatment and 
diagnostics of oncologic illnesses with significant success.

Combinatorial chemistry is one of the most promising 
tools at the disposal of the pharmaceutical industry. In a 
glance, its use consists of three steps: synthesizing a new 
and random molecular library; selection against a specific 
target; and finally, characterizing the newly formed ligand-
target complex. Nucleic acids are compounds of interest 
in this field, not only because they fold into well-defined 
secondary and tertiary structures, but also because they are 
rather easy to synthesize [11]. With that in mind, in 1990, 
Tuerk, Gold, Ellington and Szostak developed a technique 
that allows the isolation of nucleic acid molecules from a 
library with over 1015 sequences. This technique was then 
called Systematic Evolution [12]. SELEX (also referred to 
as in vitro selection or in vitro evolution) is a combinatorial 
chemistry technique used to produce oligonucleotides of 
either RNA or single-stranded DNA that bind to a particular 
target with high degrees of selectivity and affinity [13, 14]. 
Aptamers have been selected against a variety of targets 
aptamers (from aptus, the including small molecules such 

as ATP [15] and adenosine [16, 17], and proteins such 
as prions [18], as well as for inhibition of pathogenic 
vascular endothelial growth fator-induced (VEGF-induced) 
neovascularization [19].

Since the inception of this technique, both DNA and 
RNA aptamers have been selected against various targets 
– ions, small molecules or membrane receptors and even 
entire cells and organisms – and have demonstrated both 
affinity and specificity that pairs with that of monoclonal 
antibodies [20, 21].

Both monoclonal antibodies and combinatorial 
synthesized aptamers are being developed as site-
specific drugs that bind specific proteins revealing 
altered activities in disease states. Antibodies have been 
considered promising therapeutic agents in various fields, 
especially cancer-related ones [22]. Aptamers have been 
conquering a solid reputation as an excellent alternative, 
given their high-specificity of recognition and high-
affinity binding. Plus they have singular advantages 
such as in vitro development, the possibility of being 
developed against almost every target, no need for in 
vivo selection during their development, and the ability 
to be truncated to small biological-active sequences and 
modified for optimization [19, 23, 24]. In addition to their 
discriminative recognition, aptamers offer advantages 
over antibodies as they can be engineered completely in 
a test tube, are readily produced by chemical synthesis, 
possess desirable storage properties, eliciting little or 
no immunogenicity in therapeutic applications. All this 
makes them promising affinity ligands and distinct tools 
as affinity probes and analytical and therapeutic reagents 
[25–28].

Aptamers are usually created by selecting them from 
a large random sequence pool, however, it is possible to 
find them in their “natural form” in riboswitches.

Non-modified aptamers are cleared rapidly 
from the bloodstream, with a half-life of minutes 
to hours, mainly due to nuclease degradation and 
clearance from the body by the kidneys, a result 
of the aptamer’s inherently low molecular weight 
[24]. This rapid clearance, alongside the already 
mentioned high selectivity and affinity, represent 
advantages in applications such as in vivo diagnostic 
imaging. Their high binding affinity and specificity, 
among other characteristics, has made them 
attractive diagnostic applications to target intra- and 
extracellular components of key signaling pathways. 
One such example is the already known RNA aptamer 
against the epidermal growth factor receptor (EGFR), 
which allows detection and/or determination of the 
extent of glioblastoma multiforme [30]. In fact, their 
reputation has been growing immensely in the past 
few years and they are considered promising tools in 
the treatment of various pathologies [30], and some 
are actually undergoing pre-clinical trials [31].
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SELEX

Typically, the SELEX process is an iterative one; 
the selection of sequences that will bind to the target takes 
place after a few repetitions of the selection process, with 
increasing stringent conditions.

The starting point of the SELEX technique is the 
synthesis of a library of single-stranded DNA (ssDNA) 
containing 1015 different sequences, each one with a 
random region with 16 to 75 positions flanked by two 
constant regions, where primer annealing occurs.

The ssDNA is then folded and then exposed to its 
target in order to select the sequences that constitute the 
desired aptamers. The ssDNA pool is incubated with its 
target and the best fitting molecules are collected and 
amplified using PCR procedures. Reiterative SELEX 
rounds are performed with increasing stringency to ensure 
the identification of the binders with the highest affinity 
[23].

It is, in its essence, an evolutionary process consisting 
in variation, selection, and replication [12], which can take 
up to 20 cycles to obtain the desired affinity [32].

Based on their three-dimensional structure, aptamers 
can bind to a wide range of targets by Watson-Crick base-
pairing, Hodgsteen-type or reverse type of base pairing, 
Van der Waals, hydrogen bonding, and electrostatic 
interactions [33, 34]. The specific loops are responsible 
for the interaction with the target (Figure 1).

In order to select the desired aptamers, the starting 
library of nucleic acids is incubated with the target 
molecule of interest. The nucleic acid ligands that adopt 
conformations allowing them to bind to the specific target 
are partitioned by filtration using either nitrocellulose (for 
protein target) or affinity chromatography (normally for 
small molecules target). The molecules that bind the target 
are eluted and amplified by RT-PCR (for RNA libraries) or 
PCR (for DNA libraries). This step yields a new pool that 
contains more target binding species.

Being an iterative process, the methodology used 
to select the desired sequences has to be repeated several 
times (Figure 2A). The number of cycles required to obtain 
functional sequences depends on the stringency imposed 
to each round as well as on the affinity between the target 
and the aptamers (Figure 2B). Once the selection process 
is completed, an oligonucleotide population dominated 
by target-binding sequences is obtained. Cloning and 
sequencing of the selected clones will reveal the sequence 
and allow predicting the structure of the selected ligands.

APTAMERS, CELL-SELEX AND 
CANCER CELLS

Early diagnosis and efficient eradication of tumor 
cells with minimum side effects on healthy cells are 
two of the top oncological challenges. Identification of 
biomarkers and targets exclusively (or differentially) 

expressed by tumor cells represent a significant 
contribution to determining prognosis, prediction of 
response to treatment, monitoring disease progression, 
development of new therapeutic and diagnostic strategies 
[35]. In an attempt to differentiate the molecular signature 
of tumor cells, several studies have used cell-SELEX 
technology to perform in vitro selection of aptamers 
against whole living cells. One of its advantages is that 
it does not require any previous knowledge regarding the 
target, thus eliminating the need to use the purified target 
during the procedure, which, in its natural environment, 
would yield aptamers against the native conformation of 
the target molecule.

The cell-SELEX procedure consists in the 
incubation of a target cell with random oligonucleotides 
(ssDNA or RNA), followed by the removal of the 
unbound aptamers and elution of aptamers bound to the 
cells, which are subsequently amplified and used in the 
next round of selection. This process is repeated several 
times until aptamers with high affinity and specificity are 
obtained. To increase their specificity, rounds of negative 
selection (also called counter or subtractive SELEX) are 
included. The pool of aptamers is incubated with cells 
morphologically, biologically and/or biochemically similar 
to the target. This can (and often is) also be done using 
the matrix where the target (or the aptamer) is fixed [1, 
36]. To increase the efficiency of the process and to obtain 
aptamers with greater affinity for the target, it is advised 
to increase the stringency after the initial cycles. This can 
be attained by reducing the concentration of the target and 
increasing the concentration of the oligonucleotides in use, 
thus increasing the competition amongst the sequences. 
On the other hand, in negative cycles, it is suggested to use 
five to ten times more cells [37–40]. Some studies suggest 
that an automatic microfluidic system (on-chip cell-
SELEX) can make the process faster and more efficient 
[41–43].

A variant of the cell-SELEX technique – the 
recently described isogenic cell-SELEX (iCell-SELEX) 
– proposes the use of genetic manipulation in order to 
enhance the positive and negative selection process. 
The overexpression of the target protein in the cells 
should, in theory, increase the effectiveness of positive 
selection rounds. On the other hand, using cells in 
negative selection rounds, whose expression of the 
target protein has been silenced, should increase their 
effectiveness [44]. This approach seems to be rather 
interesting regarding the selection of aptamer in the 
natural environment of the target protein, but can only 
be applied to known targets.

The cell-SELEX approach has generated several 
aptamers against various types of tumors including lung 
[45], glioblastoma [46], pancreas [47–49], colorectal [43] 
and liver cancer [50], lymphoma [51], leukemia and others 
[52–54]. Among other proposals for the use of aptamers in 
oncological diseases are the discoveries of new biomarkers 
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Figure 1: Depiction of the aptamer structure and its interaction with the target. (A) The ssDNA is subjected to a set of 
conditions that enable it to fold and adopt a secondary structure. (B) The ssDNA base pairs in the linear parts of the molecule interact 
via hydrogen bonds, (C) in the loops, however, the bases are free to interact with the targets and do so via hydrogen bonds and/or dipolar 
interactions.
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Figure 2: Schematic representation of the SELEX process. (A) Not only is the process iterative, but also (B) with each round, the 
stringency is increased, thus resulting in higher affinity and specificity. This increase is achieved by increasing both the number of washes 
and non-specific competitors, and decreasing the number of target molecules within every cycle.
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for in vivo and in vitro imaging, diagnosis, and targeted 
drug delivery (Table 1).

In order to ensure that the findings of basic and 
translational research have an impact on clinical practice, 
it is not enough to select an aptamer or pool of aptamers 
against a tumor cell type. One must anticipate the desired 
applications for the resulting molecular probes, as this will 
be determinant for the definition of selection conditions, 
such as temperature of incubation with the target and/or the 
most appropriate counter targets. For instance, if the intent 
is to develop a diagnostic test that can identify circulating 
tumor cells, the aptamer should be able to differentiate a 
tumor cell from healthy blood cells. If an aptamer is to 
be used as a tumor cell marker on a fixed tissue sample, 
it should not bind to healthy tissue. Moreover, problems 
arising from the selection conditions may interfere with 
process efficiency, such as contamination with dead cells 
in the positive selection cycle, which leads, to some 
degree, to the selection of aptamers against dead cells as 
opposed to the intended target [55]. Furthermore, the use 
of aptamers selected against live cells with fixed cells can 
lead to false positive results.

Some studies have successfully shown the use of 
aptamers for in vivo and in vitro imaging of tumor cells. 
Shi et al. [66], have shown, for the first time, the use of 
aptamer as a fluorescent probe for the identification of 
tumor cells (Ramos B-cell lymphoma) in living mice, 
proving the specificity, sensitivity and stability of aptamers 
for this purpose. More recently, the use of aptamers in the 
identification of pancreatic ductal adenocarcinoma tumor 
cells has been demonstrated by in vivo imaging and in 
fixed clinical specimens [47].

The identification of new biomarkers and, 
consequently, the development of specific aptamer-
based biosensors, called aptasensors, which coupled 
with other techniques such as image or flow cytometry, 
microscopy and chromatography allow the detection 
and determination of the concentration of its target in 
the sample [24, 38, 85, 86]. Daniels and coworkers used 
cell-SELEX to select an aptamer – GBI10 –, which 
was shown to be a ligand for tenascin-C protein. It is 
interesting to note that, in this study, cell-SELEX cycles 
were performed at 4°C, to avoid receptor-mediated 
internalization [46]. However, if the aptamer does not 
bind well to its target at physiological temperature, it 
cannot be used in vivo. In view of that, the authors of 
the former cited work themselves suggested, for in vivo 
use, it would be necessary to develop a novel nuclease-
resistant aptamer that binds the target with high affinity at 
37°C. Similarly, Champanhac et al. performing selection 
cycles at 4°C, obtained aptamers with good affinity and 
specificity for their target, but some of these did not bind 
efficiently at 37°C. In addition, internalization of the 
aptamer was evaluated. For this, aptamers were incubated 
with the target at 4°C for 30 minutes, followed by 
incubation at 37°C for another 90 min. The internalization 

of aptamers by cells was assessed by treatment with 
trypsin leading to the exclusion of aptamers bound to 
the cell surface [48]. The authors suggested that these 
aptamers could be conjugated with drugs. However, it 
must be taken into account that the experimental design, 
which requires prior incubation at 4°C, does not reflect 
a proof of concept regarding the use of this approach in 
cancer therapy. It is noteworthy that low temperatures 
inhibit internalization of aptamers. Certainly, the ability 
of aptamers to be internalized by target cells makes them 
a promise for the development of therapies based on 
aptamers for intracellular drug delivery [87].

In addition to acting as a specific ligand, aptamers 
may also be used in the development of new drugs, as 
they can act preventing the activity of their target, for 
example, inhibiting a membrane receptor [88]. Selection 
of aptamers that may act specifically on tumor cells and 
may regulate the activity of molecules involved in key 
processes for tumor progression, such as proliferation, 
adhesion, migration and immune response is one of the 
greater goals in oncology-related aptamer research. 
Furthermore, it is important to determine the action of 
these aptamers inside and outside the cell, the toxicity 
in healthy and tumor cells, the existence of possible side 
effects and the half-life inside the organism.

APTAMERS AS CHEMOTHERAPY 
AGENTS

Despite the most recent advances, cancer treatments, 
such as chemotherapy and radiotherapy, still have 
significant limitations regarding side effects, the major one 
being, of course, damage to healthy cells. Consequently, 
cancer treatments with minimal drug and radiation doses 
have been in the spotlight [89] due to the fact that they 
(attempt to) target, specifically, non-healthy cells. Some 
cell receptors expressed in normal cells are overexpressed 
in cancer cells; thus, efficiency could be enhanced whilst 
minimizing the damage to normal cells [90].

To improve the effectiveness of chemotherapy, 
some drugs have been conjugated with small molecules 
to decrease the resistance of cancer cells, such as 
Doxorubicin (DOX) – a drug used in many cancer 
treatments [91]. DOX is a drug approved by Food and 
Drug Administration (FDA) that acts as a genomic DNA 
intercalator, preventing DNA replication and is a member 
of the anthracycline family that may present some side 
effects, such as irreversible cardiomyopathy due to 
oxidative stress, downregulation of genes for contractile 
proteins, apoptosis and partial loss of myocardial fibers 
[92–95]. Subsequently, aptamer-based therapies are being 
studied in order to reduce such side effects. AS1411 is 
an antiproliferative DNA aptamer with a G-quadruplex 
structure developed to target nucleolin – a protein that is 
found in high levels in cancer cells. This oligonucleotide 
was the first aptamer that showed potential for clinical 
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Table 1: Aptamers selected using the cell-SELEX procedure

Aptamer Cancer types Target Subtractive 
selection

Cycles of 
selection

Suggested function/
application

Reference

GBI-10 Glioblastoma U251 cells line - 21 Identification of targets Daniels et al., 
2003 [46]

- Glioblastoma 
Multiforme

A-172 cell line - 18 Diagnosis, targeted 
drug delivery, and 

discovery of molecular 
marker

Bayrac et al., 2011 
[56]

GBM128 
and 
GBM131

Glioblastoma U118-MG cell 
line

SVGp12 cells 30 Identification 
of glioblastoma 

biomarkers

Kang et al., 2012 
[57]

- Glioblastoma Tumor-initiating 
Cells (CD133+)

Non-stem glioma 
cells and neural 
progenitors cells

8 Aptamer-based 
therapies combined 
with conventional or 

targeted therapies

Kim et al., 2013 
[58]

U2, U8, 
U19, and 
U31

Glioblastoma U87 
overexpressing 

EGFRvIII

U87MG cell line 11 Molecular imaging 
probe

Wu et al., 2014 
[59]

WQY-9-B Gliosarcoma K308 SVGp12 16 Molecular probe for 
diagnosis

Wu et al., 2016 
[60]

Glioma U87MG glioma 
cells

T98G cells 14 Discovery of new 
molecular targets

Cerchia et al., 
2009 [61]

KMF2-1a Breast cancer MCF-10AT1 MCF-10A1 Cell type-specific 
intracellular delivery

Zhang et al., 2012 
[62]

MS03 Breast cancer MCF-7 cells MCF-10A and 
MCF-7sal cells

13 Diagnostic and 
therapeutic applications

Lu et al., 2015 
[63]

- Breast cancer TUBO cell line CT26 cell line 12 Targeted breast cancer 
therapy

Moosavian et al., 
2015 [64]

KW16-13 Breast ductal 
carcinoma

MCF10CA1h MCF10A 18 Development as novel 
anti-tumor therapeutics

Chandrasekaran 
et al., 2016 [65]

TD05 B-cell lymphoma Ramos cells - 23 In vivo fluorescence 
imaging

Tang et al., 2007 
[51]; Shi et al., 

2010 [66]

S3, S5, 
S12, and 
S27

Nasopharyngeal 
carcinoma

NPC 5-8F cell 
line

NP69 cell line 22 Identification of 
biomarkers for early 

diagnosis and targeted 
therapy

Jia et al., 2016 
[67]

- Lung cancer NCI-H69 SCLC 
cell line

NCIH661 NSCLC 
cell line

25 Lung cancer subtyping 
during screening and 
appropriate treatment 

planning

Chen et al., 2008 
[68]

Small cell lung 
cancer

SBC3 RERF-LC-MA 16 Specific detection 
probes

Kunii et al., 2011 
[69]

TLS1, 
TLS3, 
TLS4, 
TLS6, 
TLS7, 
TLS9, and 
TLS11

Liver cancers BNL 1ME A.7R.1 
cell line

BNL CL.2 cell line 16 Development of 
molecular probe

Shangguan et al., 
2008 [70]

(Continued)
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Aptamer Cancer types Target Subtractive 
selection

Cycles of 
selection

Suggested function/
application

Reference

Liver cancer HepG2 THLE-2 19 Targeted therapies, and 
imaging probe

Xu et al., 2015 
[50]

- Hepatocarcinoma HepG2 cells Primary normal 
human liver 

hepatocyte cells,

11 Selective delivery of 
anticancer drugs

Ninomiya et al., 
2013 [71]

LY-1, 13, 
46, 32, 
27/45, and 
7/43

Hepatocellular 
carcinoma

HCCLM9 cell 
line

MHCC97L cell line 10 Identification of new 
diagnostic targets 

and developing new 
targeted therapeutics

Wang et al., 2013 
[72]; Chen et al., 

2016 [39]

LY-1 Liver cancers HCCLM9 MHCC97L 9 Development of 
molecular probe 

and chemotherapy 
for metastatic 
hepatocellular 

carcinoma

Rong et al., 2016 
[73]

- Cholangiocarcinoma QBC-939 cells SMMC-7721 13 Early diagnosis and 
therapeutics

Wan et al., 2015 
[74]

- Gastric carcinoma AGS cell line GES-1 cell line 12 Identify biomarkers for 
gastric cancer diagnosis 
and targeting therapy.

Cao et al., 2014 
[75]

PL1-8 Pancreatic ductal 
adenocarcinoma

PL45 cell line TOV-21G cell line 23 Biomarkers 
identification and drug 

delivery

Champanhac et al., 
2015 [48]

XQ-2d Pancreatic ductal 
adenocarcinoma

PL45 cell line hTERT-HPNE cell 
line

15 In vivo imaging 
and clinical tissue 

recognition

Wu et al., 2015 
[47]

Aptamers 
1 and 146

Pancreatic cancer HPAC cell line HPDE cell line 16 CSCs targeting drug 
delivery, or circulating 

tumor cell detection

Kim et al., 2017 
[49]

Ovarian cancer TOV-21G HeLa 22 Identification of 
biomarkers

Van Simaeys et al., 
2010 [76]

RLA01, 
RLA02, 
and 
RLA03

Ovarian cancer Caov-3 cell HOSE 6-3 cells 15 Diagnostic and drug 
delivery

Benedetto et al., 
2015 [77]

- Colorectal Cancer DLD-1, Dukes’ 
type C colorectal 
adenocarcinoma

HCT 116 16 Identify specific 
biomarkers

Sefah et al., 2010 
[78]

- Metastatic colorectal 
cancer

LoVo cells HCT-8 cells 22 Multi-target cell 
imaging/ multi-target 

drug therapy

Li et al., 2014 [79]

- Colorectal cancer CR-CSC x HCT-8 
CRC line

HCT-8 CRC line x 
CR-CSC

5 Colorectal cancer cells 
and stem cells

Hung et al., 2015 
[43]

XL-33-1 Colon cancer SW620 cells SW480 cells 14 Metastatic cancer 
diagnosis and treatment

Li et al., 2015 [80]

- Prostate cancer PC3 HeLa and SMMC-
7721 cells

17 Diagnosis and target 
therapy

Wang et al., 2014 
[81]

- Prostate 
adenocarcinoma

LNCaP cells PC-3 cell line 10 Diagnostic and targeted 
drug delivery

Almasi et al., 2016 
[82]

(Continued)
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trial development in several cancer treatments and has 
been used in other studies to enhance the treatment 
efficiency against cancer cells [96, 97]. Li et al. developed 
an AS1411 aptamer system that releases DOX into human 
breast adenocarcinoma cells (MCF-7 cells). There was 
no evidence of drug accumulation in the heart of MCF-
7 tumor-bearing mice. Binding of AS1411 to MCF-7 
receptors was significantly increased when the micelle 
system was used. This led to the decrease of DOX 
accumulation in cardiac cells, thus reducing cardiac tissue 
damage and necrosis, providing a promising strategy for 
aptamer based therapy [98]. Moreover, AS1411 reduced 
multi-drug resistance produced by glycoprotein-P (P-gP) 
efflux and showed antitumor activity and low levels of 
cardiotoxicity caused by DOX in MCF-7/ADR tumor-
bearing mice [99]. This very same study used a bubble-
generating agent that creates permeable defects in the 
bilipid layers when the microenvironment heats up to 
42°C, which led to an increase of intracellular DOX 
concentration – a potentially harmful drug-releasing 
procedure. This limitation in therapeutic use of DOX could 
be overcome through the use of new aptamers binding to 
and inhibiting proteins necessary for P-gP production, 
leading to increased release of DOX and reduced viability 
of cancer cells without any cardiomyopathy side effects. 
Trinh et al. also used AS1411 and DOX in a hepatocellular 
carcinoma human model (HCC), showing no cardiac nor 
endocrine side effects, as well as no weight loss [100].

Atabi et al. showed aptamers that enhanced 
the storage of DOX in LNCaP cells (human prostate 
carcinoma cell line); Jing et al. constructed a double 
aptamer system that reduces human prostate cancer cell 
growth (LNCaP and PC3); Jeong et al. used mucin-1 
aptamer (MUC-1) and DOX as treatment tools, on 
MCF-7 breast cancer cells and Sun et al. showed that the 
SL2B aptamer inhibits tumor growth in HT-29 cells (a 
human colorectal adenocarcinoma cell line) [101–104]. 
All these studies paved the way for the development for 
aptamers that can lead to lower-dosage chemotherapy, 
thus decreasing the aforementioned side effects. Aptamers 
binding to proteins or receptors involved in signaling 
pathways that lead to apoptosis and/or interfere with 

angiogenesis pathways are good examples of what could 
be done to improve such protocols. Another good example 
would be the use of an aptamer that inhibits topoisomerase 
II in order to reduce tumor cell proliferation.

Other types of drugs have been used in 
chemotherapy studies, some of which have been tested 
in conjugation with aptamers. Docetaxel (DTX) is an 
anticancer drug from the taxane family that causes tubulin 
depolymerization and microtubule aggregation, promoting 
cell death. However, it can cause intravenous toxicity in 
malignant brain tumors [105]. Gao et al. used AS1411 
as an enhancer of the anti-glioma effect of DTX in C6 
glioma cell line [106]. Glioma treatment is particularly 
difficult, due to the fact that both the blood-brain barrier 
(BBB) and the brain-glioma barrier reduce drug release 
from the blood into tumor cells. These types of studies can 
be improved with double aptamer systems – one for BBB 
recognition and another for tumor recognition.

Paclitaxel (PTX) is a neoplastic agent that acts as 
chemotherapeutic agent in malignant glioma cells [107], 
however, its lower aqueous solubility may affect its 
effectiveness. Aptamers could be selected to enhance the 
solubility of PTX to support the enhanced permeability 
and retention (EPR) effect of solid tumors. This 
application can increase tumor permeation and retention of 
macromolecular drugs to reduce toxicity to normal cells.

Taghavi et al. worked with anti-MUC-1 aptamer 
(5TR1) and enhanced Epirubicin (Epi) drug released into 
MCF-7 breast cancer cells and CHO cells (hamster ovary 
cell line) [108]. Epi is a drug of the anthraclycine family 
that can cause cardiotoxicity by accumulative doses. 
New aptamers could enhance recognition of MUC-1 
glycoprotein to reduce cytotoxicity of myocardium cells 
improving Epi release to increase DNA intercalation, 
inhibit topoisomerase II and increasing cancer cell 
damage.

Ray et al. used an RNA aptamer to improve the 
effectiveness of Gemcitabine (Gem) drug chemotherapy 
targeting pancreatic tumor cells, which overexpress 
EGFR. This aptamer recognizes EGFR in pancreatic 
cancer cells and internalizes itself, along with Gem 
coupled to a polymer, resulting in inhibition of tumor 

Aptamer Cancer types Target Subtractive 
selection

Cycles of 
selection

Suggested function/
application

Reference

- Prostate cancer PC-3 cell line RWPE-1 9 Identification of 
biomarker

Souza et al., 2016 
[83]

- Osteosarcoma U-2 OS cell line SGC7901, MCF-7 
and HT-1080

13 Specific diagnosis and 
developing probe-

carrier-antitumor drug 
complexes and targeted 

therapies

Wang et al., 2015 
[84]

Over the past few years, the number of cancer-related aptamers selected using cell-SELEX has increased significantly. 
Their applications are, clearly, diverse - from in vivo imaging to drug delivery, all the way to identification of new 
diagnostic targets.
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cell proliferation with low toxicity levels [109]. Gem is 
known as a nucleoside molecule that can produce side 
effects in high concentration due the toxicity of normal 
cells, leading to neutropenia disease (low neutrophil 
concentration). To overcome limitations of this toxicity 
effect, aptamers that influence Gem phosphorylation 
status upon internalization could be used. Gem is a 
nucleoside that can be phosphorylated intracellularly 
to allow inhibition of ribonucleotide reductase activity 
and subsequently preventing DNA elongation of 
proliferating cancer cells.

These studies show that there is much uncovered 
ground for aptamer–based chemotherapy. Whether by 
improving drug effectiveness or to reducing side effects 
(or both), aptamers can definitely improve cancer therapy.

APTAMERS AS BIOTHERAPY AGENTS

Aptamers and immunotherapy

Recent advances in cancer therapy have brought 
back to prominence the importance of the immune 
system in the tumor control. In fact, a major recent 
milestone in cancer immunotherapy has come with 
the unprecedented results obtained in clinical trials of 
advanced cancer patients treated with immune-checkpoint 
blockade antibodies. With such results, one cannot avoid 
wondering if the success of fighting cancer lies not only 
in the relationship between the drug and its target, but 
in an alliance between the drug and the human body. 
Here the drug may pave the way, and the body itself 
delivers the definitive blow. Combining different aptamer 
functionalities with other molecules of interest, such as 
reporter groups or proteins, provides a wide range of 
applications for aptamers as biotherapy tools. Aptamers 
have been regarded as rivals for  "antibody rivals" for 
a long time however, given the most recent findings, it 
makes sense to think that, maybe, both tools could work 
together. This is especially important when it comes to 
fighting cancer.

Zhao et al. developed a bivalent RNA aptamer, 
which inhibits the interaction of heat shock factor HSF1 
with its cognate DNA promoter elements, thus down-
regulating HSF1 expression and, therefore, sensitizing 
tumor cells to anti-cancer drugs [110]. In a different 
study, Lozano et al. developed an aptamer against 
Foxp3 by a CD28 2’-fluoro RNA aptamer [111]. The 
group has shown, as a proof of concept, that the P60 
Foxp3 inhibitor peptide can be conjugated with a CD28 
targeting aptamer for delivering the peptide to CD28-
expressing cells, thus inhibiting T regulatory cells when 
they are hijacked by the tumor micro-environment to 
evade the immune response. Both works are very good 
examples of how regulatory proteins can be prevented 
from being an obstacle in therapy. Anticancer antibodies 
have certain limitations when it comes to therapeutic 

applications, due to the ability of cancer cells to block 
immune responses. CD46 (membrane cofactor protein, 
MCP), CD55 (decay-accelerating factor, DAF)) and CD35 
(complement receptor type-1, CR1) are well known for 
interfering with the aforementioned therapeutic agents. 
They protect normal tissues from accidental injury by 
activated complement and confer resistance to cancer 
cells, thus limiting the effect of complement-fixing 
monoclonal antibodies. Designing aptamers that inhibit 
their cancer cell-protecting action would allow anticancer 
antibodies (or another aptamer) action. John Gordon 
Bruno has reported the use of two distinct DNA aptamers, 
developed by Ferreira et al., against MUC1 antigen [112]. 
In this study, aptamers were successful in enabling the 
death of MCF-7 cells when linked to the first component 
of complement (C1q) via a biotin-streptavidin system, 
resulting in the death of 50% of treated cells. Possible 
reasons for such effect include antigenic shedding in vitro 
and membrane-bound complement regulatory proteins 
(mCRPs) on the cell surface. CD46, CD55 and CD59 are 
good examples of such mCRPs. This is, yet, another case 
of a possible aptamer-immune system team-up for treating 
oncological diseases.

Immunotherapy is an effective and promising novel 
treatment strategy against several types of cancer, such as 
melanoma, non-small cell lung cancer, head cancer and 
neck cancer. Cytotoxic T lymphocyte protein-4 (CTLA-4) 
and programmed cell death protein-1 (PD-1) are critical 
immune checkpoint molecules that negatively regulate T 
cell activation, thus allowing tumors to evade the adaptive 
immune response. The use of immune checkpoint blockade-
targeted antibodies has already shown clinical efficacy, 
which has led to their FDA approval in the treatment of 
several solid tumors [54, 113–115]. However, to this day, 
the medical community still lacks an accurate biomarker 
that allows appropriate patient selection [3, 116]. Aptamers 
could be used to identify such biomarkers and/or their 
variations in different cancer types. It is also important to 
note that treatment with such immunostimulatory therapies 
is not completely devoid of side effects, since cases of 
heart failure due to acute myocarditis have been reported 
[117, 118]. One of these particular studies, conducted 
by Läubli et al. revealed a correlation between the use 
of such drugs and impaired ventricular function [117]. 
Histological analysis of a myocardial biopsy revealed 
not only lymphocytic infiltration with a predominance 
of CD8-positive cells and a reduction of FOXP3-positive 
regulatory T cells. Although symptomatic treatment is 
the only form of therapy for most forms of myocarditis 
[119], this particular scenario could benefit from the use 
of aptamers against these targets, since they could be used 
as biomarkers for the aforementioned elements and allow 
for an early diagnostic of this side-effect. The synergy 
between PD-1 and CTLA-4 has been proven to be very 
effective, and it is likely that this approach will continue 
to be used in the near future; however, while appealing, 
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the double checkpoint inhibition strategy has a significant 
toxicity rate [114]. Aptamers could also play a significant 
role when planning combination therapies, in a sense 
that they could help identifying biomarkers involved in 
such adverse reactions. Malignant pleural mesothelioma 
(MPM), for instance, is a drug-resistant tumor in the 
mesothelial surfaces of the lung pleura, whose biomarkers 
lack specificity and sensitivity [120]. The development 
of accurate biomarkers for this disease could improve 
the treatment success rate significantly. CD44 is one of 
the most well-known MPM markers; however, it lacks an 
accurate measurement tool. Developing aptamers against 
this marker could help diagnosing this ailment sooner, 
which, in turn, would allow for a more planned course of 
treatment.

More recently, some groups have been turning their 
attention to another set of biomarkers, such as metabolic 
biomarkers. This set of markers is the most stable of all 
end-products among the four functional levels (genome, 
transcriptome, proteome and metabolome) related to 
cell function. Colo-rectal cancer (CRC) therapies have 
been taking advantage of this approach. Accumulation 
of lactate, phenylalanine, tyrosine, glutamine, proline, 
threonine, glutamic acid and arginine have, among a few 
others, have been identified as important CRC biomarkers 
[121–124]. Aptamers can be used to discover novel 
metabolic biomarkers, including the above-mentioned 
ones and especially those that are secreted by the 
cells. Using aptamers to quantify such metabolites can 
also prove to be advantageous for the study of cancer 
progression, since these metabolites can help understand 
the behavior of tumor cells and how they respond (if at all) 
to conventional therapies.

Ultimately, one day, it will be possible to predict 
which patients will benefit the most from a particular 
treatment, thus sparing them expensive and, sometimes, 
painful futile treatments. This idea has led research 
groups to study potential predictive biomarkers for 
personalized medicine, which span from gene expression 
signatures [125] to T-cell expression patterns within the 
tumor microenvironments. This approach would also 
benefit greatly from the aptamer technology, in a sense 
that aptamers could be used to analyze the presence of 
biomarkers, as well as variations in their concentrations, 
thus helping to design the best possible treatment.

Aptamers as anticancer drug-delivery systems

Drug-delivery systems have been around for a while 
now, and they have, indeed, broken ground in terms of 
therapeutic approaches. Nanocarriers (colloidal nano-
scale systems capable of transporting anticancer agents), 
such as small molecular weight drugs or macromolecules, 
for instance, do not only allow for treatment in loco, but 
they also protect the drug from degradation, reduce renal 
clearance, increase its half-life and help controlling release 

kinetics. Sometimes, they also improve solubility [126, 
127]. However, the number of nanocarriers currently 
undergoing clinical trials is very small [128]. This can be 
attributed to the fact that, in general and especially in rapid-
growth tumors, cancer cells are located adjacent to the 
endothelial barrier, and nanocarriers with targeting moieties 
will bind to the first receptors they find, ultimately failing 
to penetrate the rest of the tumor [128, 129]. This particular 
scenario is perfect for Cell-SELEX. Aptamers selected 
through this process bind to cellular receptors and may help 
the aforementioned nanocarriers by saturating the receptors 
that prevent them from penetrating the rest of the tumor.

The use of RNA interference (RNAi), short 
interfering RNA (siRNA), targeting of micro RNAs 
(miRNAs) and antisense oligo (ASO) in cancer therapy 
for silencing gene expression has also been growing 
significantly [130]. However, even though most studies 
reveal that these tools are effective, their use is still 
filled with challenges that need to be overcome; mainly, 
the ones regarding their delivery, off-target effects and 
low concentrations in the target site. Aptamers can be 
used overcome these adversities. Receptor-mediated 
endocytosis, for instance, could account for concentration-
related problems. Aptamers that target cellular uptake-
related cell-surface receptors could be used to enforce 
this approach (Figure 3). Lipid-based drug delivery 
systems could also benefit from their use, given that one 
of their main drawbacks is the lack of control regarding 
their accumulation in tumor cells [131]. Berezhnoy et 
al. selected an aptamer (4-1BB aptamer-siRNA chimera 
against mTOR (Raptor)) that acts like this. Expression 
of mTOR (mechanistic target of rapamycin) reduces 
the differentiation of effector cells into T-memory cells. 
The 4-1BB aptamer targets activated T cells delivering 
the Raptor siRNA into the cell cytoplasm upon the 
internalization of 4-1BB (CD137). The siRNA within the 
cell inhibits mTOR favoring the induction of memory T 
cells [132]. Another good example of aptamer-siRNA 
chimeras that affect gene expression, is the one proposed 
by Dassie et al. The group managed to select a siRNA-
binding aptamer that promotes regression of PSMA-
expressing tumors [133] (Figure 3). This interesting idea 
could be expanded to, for example, metalloproteinases 
(MMP) and/or kallikrein (klk) secreting tumors. That 
very same group has also reported the use of an aptamer-
siRNA chimera as a delivery agent. The group managed 
to select an RNA aptamer that delivers a cytotoxic siRNA 
to directly to prostate cancer cells for targeting prostate 
cancer-specific pro-survival genes, thus resulting in cell 
death [134, 135] (Figure 3). This was, in fact, the first 
study providing a proof-of-concept regarding the ability 
(and utility) that aptamers have to deliver functional RNAi 
to cells in vitro and in vivo.

In the aftermath of this revelation, other groups 
started to work in similar delivery systems. Liu et 
al. reported the use of an aptamer to deliver DOX 
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Table 2: Clinical trials undertaken with aptamers targeting cancer

Trial number Cancer type Study phase Primary purpose

NCT02957370 Bladder Observational Discover biomarker

NCT03385148 Colorectal Phase 1 Diagnostic

NCT01830244 Breast Phase 2 Treatment*

NCT00056199 Retinal Phase 1 Treatment

NCT01034410 Acute myeloid leukemia Phase 2 Treatment

* The aptamer is not the focus of the study. Samples of patients who agree will be used to isolate cancer initiating cells 
generate breast cancer models and using aptamers to target tumors.
The number of known cancer-targeting aptamers in clinical trials corresponds to, approximately, 5% of the total number of 
aptamers known to be in that development stage. This content is of public domain (https://clinicaltrials.gov).

Figure 3: Strategies to enhance bio-therapeutic therapies in cancer using aptamers. Aptamer-siRNA chimeras can be used to 
stimulate receptor internalization, which leads to siRNA delivery within the cytoplasm. Aptamers can also be used to induce cellular uptake 
of therapeutic agents (drugs, other aptamers, nanoparticles, polymers) which can act in different ways by apoptosis induction, lower RNA 
expression, tumor regression, and other mechanisms.

https://clinicaltrials.gov
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to HER2-positive breast cancer cells. The aptamer-
doxorubicin complex (Apt-DOX) was obtained by 
intercalating Dox into the DNA structure of HB5 and 
managed to selectively deliver DOX to HER2-positive 
breast cancer cells while reducing the drug intake by 
HER2-negative cells in vitro with reduced cytotoxicity to 
HER2-negative cells [136]. In a somewhat similar fashion, 
Thiel et al. reported the use of RNA aptamers as delivery 
agents of chemo-sensitizing siRNAs to HER2-positive 
breast cancer cells. The group used a novel, cell-based 
selection approach for isolating RNA aptamers that 
have cell-internalizing capabilities while being cell-type 
specific [137]. These aptamers were covalently linked to 
siRNAs targeting the Bcl-2 gene (anti-apoptotic gene). 
When applied to cells, the HER2 aptamer-Bcl-2 siRNA 
conjugates selectively internalized into HER2-positive 
cells and silenced Bcl-2 gene expression, thus sensitizing 
them to chemotherapy with cisplatin. Both works show 
tremendous potential, since the specific characteristics of 
cancer cells are what makes this ailment so singular and 
the nuances of its treatment so intricate. In the light of the 
fact that both act on the same type of cell via recognition 
of expressed proteins, it would be interesting to see how 
these aptamers would interact when “stacked” –using 
one aptamer that acts as an apoptotic inducer by targeting 
anti-apoptotic genes along with another that delivers an 
apoptosis inducer might prove even more effective than 
using only one of them.

More recently, AlShamaileh et al. reported showed 
that EpCAM-aptamer-guided survivin RNAi effectively 
downregulated survivin expression both in colorectal 
cancer cells in vitro and in its mouse xenograft model for 
colorectal cancer. The group identified survivin as one of 
the key players responsible for the innate chemoresistance 
of colorectal cancer stem cells and their aptamer-guided 
survivin RNAi enhanced sensitivity towards 5-FU or 
oxaliplatin in colorectal cancer stem cells, increased 
apoptosis, inhibited tumor growth and improved the 
overall survival of mice bearing xenograft colorectal 
cancer [138].

Whether they carry siRNAs or other specific 
therapeutic tools, such as drugs, aptamers can be used as 
carriers in target-based therapies. Following this line of 
thought, Bahreyni et al. developed a nanocomplex made 
of graphene oxide and aptamers for treatment of cancer 
cells. The group designed two nano-complexes (MUC1 
aptamer-NAS-24 aptamer-Graphene oxide and MUC1 
aptamer-Cytochrome C aptamer-GO) that induce cell 
death in two cancer cell lines (MDA-MB-231 and MCF-
7) [139]. One of the aptamers (MUC1) acts as a probe 
promoting the internalization of the two nano-complexes. 
In turn, NAS-24 aptamer induces apoptosis via binding to 
vimentin expressed in cancer cells [37]. The cytochrome C 
targeting aptamer confirmed apoptosis induction promoted 
by the NAS-24 aptamer, since cytochrome C is known to 
have a significant role in the activation of caspase family 

which, in turn, triggers execution of programed cell death 
[140–142]. The complexity of this work reflects fairly well 
the infinite number of possibilities that aptamers (can) 
provide in terms of both therapeutic and diagnostic design 
in cancer biology.

CLINICAL TRIALS

Despite the increasing number of published studies 
demonstrating advances in the development of aptamers 
applied to oncological diseases, we have observed a very 
slow the progress in the utilization of this knowledge in 
clinical practice has been very slow. Particularly with regard 
to the use of aptamers in clinical trials, the public clinical trials 
database (http:// clinicaltrials.gov) lists around 33 clinical trials 
using aptamers for a wide range of therapeutic applications, of 
which only 5 are studies applied to oncology (Table 2).

As discussed throughout this review, aptamers 
have several applications in diagnosis, prognosis 
determination, adjuvant therapy and targeted therapy. 
Subsequently, several research groups have been engaged 
in the development of aptamers whose targets are relevant 
for oncology, including proteins such as EGFR, HER-2, 
VEGF, EpCAM and others [34, 143]. Furthermore many 
of these researches result in patents, as can be seen in 
the WIPO (World Intellectual Property Organization) 
which lists hundreds of published international patent 
applications in this field of knowledge. These data make 
us reflect on a possible deficit in translational research 
that facilitates the arrival of knowledge generated in basic 
research to the clinic in an agile and efficient way.

CONCLUSIONS

In the light of these examples, aptamers are 
definitely compounds of interest when it comes to cancer 
biology. Their applicability is rather vast, easy and has 
a low production cost. Also, considering how much 
ground there is to pave regarding cancer therapy and how 
versatile aptamers can be, their position as novelty tools is 
indisputable, whether as therapeutic and/or diagnostic tools 
or as complementary tools to already existing approaches.
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