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ABSTRACT

In the “precision medicine” era, chemotherapy still remains the backbone for 
the treatment of many cancers, but no affordable predictors of response to the 
chemodrugs are available in clinical practice. Single nucleotide polymorphisms (SNPs) 
are gene sequence variations occurring in more than 1% of the full population, and 
account for approximately 80% of inter-individual genomic heterogeneity. A number 
of studies have investigated the predictive role of SNPs of genes enrolled in both 
pharmacodynamics and pharmacokinetics of chemotherapeutics, but the clinical 
implementation of related results has been modest so far. Among the examined 
germline polymorphic variants, several SNPs of dihydropyrimidine dehydrogenase 
(DPYD) and uridine diphosphate glucuronosyltransferases (UGT) have shown a robust 
role as predictors of toxicity following fluoropyrimidine- and/or irinotecan-based 
treatments respectively, and a few guidelines are mandatory in their detection before 
therapy initiation. Contrasting results, however, have been reported on the capability 
of variants of other genes as MTHFR, TYMS, ERCC1, XRCC1, GSTP1, CYP3A4/3A5 
and ABCB1, in predicting either therapy efficacy or toxicity in patients undergoing 
treatment with pyrimidine antimetabolites, platinum derivatives, irinotecan and 
taxanes. While formal recommendations for routine testing of these SNPs cannot be 
drawn at this moment, therapeutic decisions may indeed benefit of germline genomic 
information, when available. Here, we summarize the clinical impact of germline 
genomic variants on the efficacy and toxicity of major chemodrugs, with the aim to 
facilitate the therapeutic expectance of clinicians in the odiern quicksand field of 
complex molecular biology concepts and controversial trial data interpretation.

INTRODUCTION

The human genome includes 3 billions of 
nucleotides, and inter-individual sequence variations are 
detected with a frequency of 1/300-1000 nucleotides. 
Single nucleotide polymorphisms (SNPs) are germline 
sequence variations observed in more than 1% of the 
general population, and account for approximately 80% 
of the overall genomic heterogeneity [1]. Among the 
10 million SNPs identified in the human genome, only 

100,000 have a phenotypic and functional impact, since 
the majority of them is located in intronic portions of the 
DNA [2, 3].

Functional SNPs are key determinants of inter-
individual anthropometric differences, but may also 
activate the responses to environmental factors and predict 
the individual disease susceptibility [4, 5]. Moreover, a 
number of pharmacogenomic studies have demonstrated 
that both efficacy and toxicity of drugs are largely 
influenced by SNPs [6], and this event appears particularly 
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relevant in cancer patients receiving chemotherapy since 
a definite correlation between chemotherapy efficacy/
tolerability and survival outcomes, cannot be denied.

The optimization of the so-called “patient-therapy 
binomial” constitutes one of the main challenges of the 
modern oncology [7]. In the “precision medicine” era 
it is imperative, indeed, to match the right patient with 
the right treatment, and in this context the analysis of 
clinically meaningful SNPs may provide better efficacy 
outcomes and, at the same time, decreased treatment-
related toxicities. Although a number of studies have 
investigated the correlation between specific genotypes 
and response to chemotherapy, clinical implementation 
of such information has been limited thus far, possibly 
as consequence of inconclusive results from unrelated 
studies. Thus, while tumor genotyping is currently 
routinely used to guide treatment selection in the clinical 
arena, patient genotyping is considered very often limited 
to cases of cancer predisposition syndromes, in which the 
identification of a germline mutation is extremely useful 
in defining the therapeutic strategy.

In this review, we aimed at updating clinicians 
with the most recent oncogenomic data deriving from the 
analysis of selected gene polymorphisms involved in the 
metabolism of major chemotherapeutic classes including 
fluoropyrimidines, platinum derivatives, irinotecan and 
taxanes). In particular, we focused on the biology of 
the described genetic variants as well as their potential 
impact as predictors of treatment response or toxicity. 
Thus, we hope to guide practitioners in: i) requiring the 
most appropriate molecular investigations; ii) learning the 
results of genetic reports; and iii) tailoring the therapeutic 
choices based on the patient genotype, when indicated.

FLUOROPYRIMIDINES

Fluoropyrimidines as fluorouracil, capecitabine 
and tegafur, have a prominent role in the treatment of 
many tumors, especially of the gastroenteropancreatic 
tract, and those of head and neck district [8]. By acting as 
pyrimidine analogues, fluoropyrimidines cause defects of 
nucleotide synthesis thereby inducing apoptosis in cancer 
cells [9, 10]. As depicted in Figure 1, active metabolites 
of fluoropyrimidines inhibit thymidylate synthetase 
(TYMS) and inhibit the folate cycle by interfering 
with the methilentetrahydrofolate reductase (MTHFR) 
transmetilation reactions [11]. Several enzymes including 
dihydropyrimidine dehydrogenase (DPYD) concur in the 
metabolism of fluoropyrimidines [12], and their levels of 
activity may influence the intracell drug concentration. In 
the section below, we synthesize both biologic and clinical 
impacts of DPYD, MTHFR and TYMS polymorphisms.

●  DPYD - Physiologically, liver DPYD 
inactivates the 80-90% of administered fluoropyrimidines, 
converting them in 5-fluoro-5,6-dihydrouracil through a 
redox reaction exploiting NADPH/NADP+ as a cofactor 

[13, 14]. Two further reactions, catalyzed respectively by 
dihydropyrimidinase and beta-ureidopropionase, produce 
the final metabolites that are ultimately excreted with 
urine [15] (Figure 1). DPYD gene extends for 950 kb on 
chromosome 1p22 and includes 23 exons [16]. Variations 
in gene sequence may cause DPYD deficiency, and are 
transmitted as autosomal recessive inheritance. In affected 
subjects, the clinical consequences of DPYD deficiency 
span from absence of signs/symptoms or mere laboratory 
alterations (increased pyrimidine concentration in blood, 
urine or liquor) to complex neurological syndro-mes 
arising at birth or during childhood (seizures, mental 
retardation, microcephaly, muscle hypertonicity, autism 
and motor deficits) [17, 18]. Notably, the severity of 
clinical presentation is directly related to the extent of 
functional enzyme impairment. In patients receiveing 
fluoropyrimidine-based chemotherapy, DPYD deficiency 
may cause a persistent elevation of the blood drug 
concentration, and is therefore associated with an 
increased risk of chemotherapy-related toxicities including 
neutropenia, nausea, vomiting, diarrhea, stomatitis, 
mucositis, hand-foot syndrome and peripheral neuropathy 
[19–21].

The individual tolerance to fluoropyrimidine-based 
chemotherapy is strictly related to specific polymorphic 
variants of the DPYD gene. In fact, within the about 160 
known SNPs affecting this enzyme, approximately 15 of 
them acquire a clear functional significance [21]. While 
for some rare variants (*3, *7, *8, *9B, *10, *11, *12) the 
correlation with DPYD’s reduced activity is very likely, 
for others (*4, *5, *6, *9A) it still remains unclear [22]. As 
recently shown in three different metanalysis [23–25], 
three SNPs of DPYD (*2A, *13 and rs67376798) seem 
to be prioritarily associated with side effects in patients 
undergoing fluoropyrimidine-based chemotherapy (Table 1).

The IVS14+1G>A variant is characterized by 
a single G>A point mutation in the GT splice donor 
site IVS14+1, causing the skipping of exon 14 and the 
consequent synthesis of a truncated, catalytically inactive 
protein [26, 27]. On the other hand, the 1679T>G variant 
is characterized by a single aminoacid substitution from 
isoleucine to serine at codon 560, encoding for a highly 
conserved, functionally important segment of DPYD 
[28]. The variant 2846A>T shows a structural alteration 
that impairs DPYD function by interfering with cofactor 
binding or electron transport [29]. The three variants are 
able to decrease DPYD enzyme activity completely or 
partially, depending on homozygosity or heterozygosity, 
and the severity of fluoropyrimidine-associated toxicities 
correlates with the number of functional alleles [30]. 
Due to the high risk of toxicities, the US Food and Drug 
Administratin (FDA; http://www.fda.gov/), the Dutch 
Pharmacogenetis Working Group and the European 
Medicines Agency (EMA; http://www.ema.europa.eu/ema) 
do not recommend the administration of fluoropyrimidines 
to subjects carrying IVS14+1G>A, 1679T>G or 
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2846A>T variants [21]. On the other hand, both the 
National Comprehensive Cancer Network (NCCN) and 
the American Society of Clinical Oncology (ASCO) 
recommend DPYD pharmacogenetic analysis only in 
case of suspected toxicities after fluoropyrimidine-based 
chemotherapy, while the European Society for Medical 
Oncology (ESMO) suggests the pharmacogenetic test in the 
pre-therapy setting as an option for selected patients [21, 
31–33]. The Clinical Pharmacogenetics Implementation 
Consortium (CPIC - https://cpicpgx.org/) has recently 
identified wild type subjects as normal metabolizers 
and homozygous patients as poor metabolizers, while 
heterozygous carriers for any combination of the three 
variants were defined as those having enzyme activity 
between 30 and 70% compared with the standard 
[22, 34, 35]. On this basis, CPIC has contraindicated 

fluoropyrimidine-based therapies in patients with mutated 
homozygous genotype, while at least a 50% drug dosage 
reduction was recommended for heterozygous subjects 
[22, 35]. AIOM (Italian Association of Medical Oncology) 
and SIF (Italian Society of Pharmacology) suggest the 
same dose adjustments proposed by the CPIC guidelines 
in the presence of DPYD variants (Table 2) [36].

●  MTHFR - The MTHFR gene maps on 
chromosome 1 (1p36.3) and encodes for a homo-
dimeric protein that contributes to the folate metabolism 
homeostasis as well as to control the turnover of both 
nucleic acids and aminoacids [37]. As depicted in Figure 
1, MTHFR catalyzes the reduction of 5,10 methylene 
tetrahydrofolate (THF) in 5-methyl-THF, which will serve 
as methyl group donor in the conversion of homocysteine 
in methionine [38].

Figure 1: Fluoropyrimidines pathway. Fluoropyrimidines (5-fluorouracil and the oral prodrug capecitabine and tegafur) are for 
the 90% rapidly catabolized in the liver, whereas only 10% is anabolized by forming metabolites responsible for the drug mechanism 
of action. The rate-limiting step of 5-FU catabolism is catalyzed by dihydropyrimidine dehydrogenase (DPYD) with the synthesis of 
dihydrofluorouracil (DHFU) and subsequent metabolic reactions lead to the synthesis of inactive compounds excreted by the urinary tract. 
The main mechanism of action of fluoropyrimidines includes the interaction by either direct or indirect mechanisms, with normal nucleoside 
biosynthesis. In fact, when active metabolites produced as FUTP, FdUTP, FdUMP are embedded as analogues of pyrimidines in RNA and 
DNA synthesis, they break the nucleic acid filaments by promoting apoptosis in cancer cells. FdUMP furthermore inhibit the thymidylate 
synthase (TYMS) enzyme by forming a covalent ternary complex. The inhibition of this reaction not only interrupts the biosynthesis of 
DNA nucleotides but also interferes with the folate cycle. In this last pathway methylene tetrahydrophilate reductase (MTHFR) is the key 
enzyme of transmetilation reactions: methyl groups derived from the folate pool in fact permits homocysteine-methionine reconversion by 
recycling the methyl group bound to Vitamin B12 as a cofactor. DPYD - dihydropyrimidine dehydrogenase; DHFU - dihydrofluorouracil; 
FUTP - fluorouridine triphosphate; FdUTP - fluorodeoxyuridine triphosphate; FdUMP - fluorouridine monophosphate; TYMS - thymidylate 
synthase; MTHFR - methylene tetrahydrophilate reductase.
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Severe MTHFR deficiency is caused by rare 
recessive autosomal mutations and is associated with 
hyperomocysteinemia and hyperomocysteinuria, 
osteoporosis, growth retard, visual defects, and 
thrombophilia. Partial enzymatic deficiencies, due to the 
presence of common polymorphic variants, can generate 
hyperomocysteinemia especially in the presence of folic 

acid defect as well as thrombophilia, and increases both 
prenatal mortality and coronary heart disease risk [39].

The most studied polymorphic variants of MTHFR 
include C677T and A1298C (Table 1). Both SNPs are 
characterized by reduced enzymatic activity and their 
frequency is greater among Caucasians, especially 
in Italians and Hispanics, and lower among Africans 

Table 1: Synopses of the major genes variants involved in the metabolism of fluoropyrimidines, platinum derivatives, 
irinotecan and taxanes

Gene Polymorfism Amino acid Alternative 
nomenclature

SNP_ID Ref.

Fluoropyrimidines

DPYD IVS14+1G>A splice donor variant DPYD*2A rs3918290 OMIM 612779

DPYD A2846T Asp949Val - rs67376798 OMIM 612779

DPYD T1679G Ile560Ser DPYD*13 rs55886062 OMIM 612779

MTHFR C677T Ala222Val A222V rs1801133 OMIM 607093

MTHFR A1298C Glu429Ala E429A rs1801131 OMIM 607093

TYMS TSER*2/TSER*3 28 bp repeat in 
enhancer region 2R/3R rs45445694 OMIM 188350

TYMS TSER*3R G/C
G>C change in the 
second repeat of the 

3R allele
- rs2853542

rs34743033 OMIM 188350

TYMS 1494del6b

I/D of TTAAAG 
sequence at 1494 
position on the 3’-

UTR

- rs151264360
rs869066439 OMIM 188350

Platinum derivatives

ERCC1 T19007C Asn118Asn - rs11615 OMIM 126380

ERCC1 C8092A 3′-untranslated 
region

*197G > T rs3212986 OMIM 126380

XRCC1 G28152A Arg399Gln - rs25487 OMIM 194360

GSTP1 A313G Ile105Val GSTP1Val105 rs1659 OMIM 134660

Irinotecan

UGT1A 1*28 A(TA)6/7TAA (TA)7/7 rs34983651 OMIM 191740

ABCB1 C3435T Ile1145Ile - rs1045642 OMIM 171050

CYP3A4*1B -392A>G promoter - rs2740574 OMIM 124010

CYP3A5*3 6986A>G splicing defect - rs776746 OMIM 605325

Taxanes

ABCB1 C3435T Ile1145Ile - rs1045642 OMIM 171050

ABCB1 C1236T Gly412Gly - rs1128503 OMIM 191740

CYP3A4*1B -392A>G promoter - rs2740574 OMIM 124010

CYP3A5*3 6986A>G splicing defect - rs776746 OMIM 605325

The most relevant polymorphisms with the SNP ID and the OMIM reference (PUBMED database) are reported for each 
gene, in keping with the effects on amino acid substitution, and the possible alternative nomenclatures.
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[40]. The 5-fluorouracil, a fluoropyrimidine compound 
metabolized intracellularly to 5-fluoro-2-deoxyuridine-
5-monophosphate (FdUMP) its active form, carries a 
cytotoxic effect mediating the formation of a ternary 
complexes between 5-10 methylene THF, TYMS and 

FdUMP. This complex inhibits the thymidylate and its 
intracellular levels decreased with consequent suppression 
of DNA synthesis. Due to the catalytic deficit of the 
MTHFR, subsequent to its polymorphic variants, the 5-10 
methylene THF concentration increased enhancing the 

Table 2: Genotype-phenotype correlations and recommended fluoropyrimidines dose adjustments according to 
DPYD, MTHFR and TYMS genotypes
Gene 
(OMIM)

nt./AA variant
(rs code)

Transcriptional 
effects

Functional effects Clinical effect/reported 
findings

Dose adjustment Ref.

DPYD 
(#612779)

IVS14+1G>A 
c.1905+1G>A 

DPYD*2A 
(rs3918290)

Heterozygous 
genotype

DPD activity 
is reduced of 

30-70% than the 
normal causing 

persistence of high 
concentrations of 

Fluoropyrimidines

Patients can develop toxicity 
(neutropenia, nausea, vomiting, 

severe diarrhea, stomatitis, 
mucositis, hand–foot syndrome 

and neuropathy)

Administration of 50% of 
total Fluoropyrimidines 

dose

[21, 22, 33, 
146]

T1679G I560S 
DPYD*13 

(rs55886062)

Homozygous 
genotype

DPD activity 
is completely 

deficient causing 
persistence of high 
concentrations of 

Fluoropyrimidines

Patients develop certainly severe 
and sometimes life-threatening 
toxicity (neutropenia, nausea, 

vomiting, severe diarrhea, 
stomatitis, mucositis, hand–foot 

syndrome and neuropathy)

Fluoropyrimidines 
therapy is 

contraindicated

c.2846A>T 
Asp949Val 

(rs67376798)

MTHFR 
(#607093)

C677T Ala222Val 
(rs1801133)

T allele leads to 
lower MTHFR 

activity

T allele increases 
Fluoropyrimidines 

cytotoxicity

C allele is slightly associated 
with worse outcome while T 
allele correlates with better 
response in CRC patients. 

T allele correlates with 
gastrointestinal toxicity 

in CRC patients and with 
hand-foot syndrome (not 
with gastrointestinal and 

hematological toxicities) in 
CRC capecitabine treated 

subgroup.

None [46–49]

A1298C 
Glu429Ala 
(rs1801131)

C allele leads to 
lower MTHFR 

activity

C allele increases 
Fluoropyrimidines 

citotoxicity

C allele correlates with better 
response in CRC patients and 
with hand-foot syndrome but 
not with gastrointestinal and 

hematological toxicities in CRC 
capecitabine treated subgroup.

None

TYMS 
(#188350)

2R/3R repeat 5’-
UTR (rs45445694)

3R allele increases 
by four times TS 

mRNA

3R allele reduces 
Fluoropyrimidines 

cytotoxicity in 
cancer cells with 
lower frequency 
of side effects in 

healthy cells

3R allele correlates with 
Fluoropyrimidines resistance, 

with a worst outcome with less 
desease free survival (DFS) 
and overall survival (OS) In 

other studies patients carrying 
the 3R allele did not have a 

worse outcome 2R / 2R or 2R 
/ 3R genotypes correlate with 
Fluoropyrimidines sensitivity 
and better clinical outcome

None [58–65]

3R G/C 5’-UTR 
(rs2853542) 
rarely 2RC 
(rs183205964)

C allele correlates 
with reduced 

transcriptional 
activity of TYMS 

gene

C allele increases 
Fluoropyrimidines 

citotoxicity

C allele causes reduced TYMS 
activity with higher risk of 
Fluoropyrimidine toxicity

None

1494 ins/del 
6b (rs16430/
rs34489327)

1494 del allele 
causes TYMS 

mRNA instability 
with lower protein 

expression

1494 del allele 
increases 

Fluoropyrimidines 
cytotoxicity

1494 del allele correlates 
with greater sensitivity to 

Fluoropyrimidine-based therapy

None
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formation and stability of the inhibitory complex, thereby 
the cytotoxic potential of fluoropyrimidines. [41].

The C677T polymorphism causes the substitution 
of alanine to valine in the aminoacid sequence of exon 4, 
reducing the catalytic activity of MTHFR while increasing 
its thermolability. At 37 °C, indeed, the enzymatic activity 
in subjects with T/T genotype is reduced by approximately 
50% with respect to the C/C genotype [42]. However, 
the increase in the intracellular stocks of folates has the 
potential to stabilize the three-dimensional structure of 
MTHFR and improve its enzymatic function [43].

The A1298C SNP is characterized by the substitution 
of adenine with cytosine and hence of glutamate with 
alanine in exon 7 and results in a decrease of MTHFR 
activity [44]. Given the pivotal role of MTHFR in the 
metabolism of fluoropyrimidines, its polymorphic variants 
have been investigated as possible predictors of response 
or toxicity to chemotherapy, but contrasting results have 
been reported so far. In a metanalysis of 950 patients 
with advanced colorectal cancer treated with a first-line 
5-FU-based therapy, no correlation was found between 
C667T or A1298C variants and response to therapy [45]. 
On the other hand, in a metanalysis of 2,402 colorectal 
cancer patients treated with 5-FU-based chemotherapy 
who alternatively reported clinical benefit outcomes 
and/or adverse events, Jennings BA et al. observed a 
weak association between MTHFR C677T and dismal 
outcomes [46], whereas a positive correlation between 
MTHFR SNPs (C677T and A1298C) and response to 
fluoropyrimidines was shown in 815 Caucasian patients 
with colo-rectal cancer [47]. In terms of toxicity prediction, 
a metanalysis of 4,855 colo-rectal cancer patients treated 
with 5-FU infusion, demonstrated that MTHFR C677T 
inversely correlates with neutropenia (OR: 0.60; 95% 
CI: 0.37-0.97) and general toxicity (OR: 0.79; 95% CI: 
0.62-1.00) [24]. Similarly, in another study of 450 patients 
who underwent 4 cycles of fluoropyrimidine-based 
chemotherapy, both C677T and A1298C variants were 
not significantly associated with serious hematological 
or gastrointestinal side effects. However, in the subgroup 
of patients who received capecitabine, a significant 
correlation was found between both MTHFR SNPs 
and hand-foot syndrome (p=0.0046) [48]. In Wang’s 
meta-analysis only in one of three studies applicable for 
analyzing the association between MTHFR polymorphism 
and toxicity, the association between the 677T allele and 
gastrointestinal toxicity was demonstrated (p=0.002) [49, 
50]. In a recent study conducted in two cohorts of stage II/
III of CRC patients treated with adjuvant fluoropyrimidine 
chemotherapy, the MTHFR 1298CC genotype carriers 
underwent worsened disease free survival and overall 
survival in both cohorts [51]. Similarly, an even more 
recent study of 242 Korean patients with mCRC showed 
that the presence of a C677CC genotype was associated 
with a good prognosis in multivariate analysis [52]. On the 
basis also of the significant ethnic differences in the C677T 

and A1298C genotypes frequency, larger studies including 
different populations are needed to determine the role of 
these polymorphisms in response to fluoropyrimidines 
[53]. Therefore, despite the result of such heterogeneous 
findings, no formal indications are suggested regarding 
the clinical genotyping of MTHFR in patients candidates 
to fluoropyrimidine-based treatments although it is likely 
that the presence of these polymorphisms in homozygosity 
must be taken into account during the therapy planning. 
(Table 2) [54, 55].

●  TYMS - TYMS is located in the short arm 
of chromosome 18 (18p11.32), contains 7 exons and 
spans about 30 kb. TYMS is a folate-dependent enzyme 
and competes with MTHFR for the availability of 
the cofactor 5,10 methylene THF that catalyzes the 
reductive methylation of deoxyuridylate (dUMP) to 
thymidylate (dTMP), thereby playing a central role in 
DNA synthesis and repair [56] (Figure 2). 5-FU efficacy 
is directly correlated with TYMS expression levels [57] 
and one of the major determinants of TYMS expression 
is the presence of three polymorphic variants, namely 
TSER*2R/*3R (rs45445694), TSER*3R G/C (rs2853542 –
rs34743033) and 1494del6b (rs151264360 – rs869066439) 
[58] (Table 2).

The 5’-UTR of TYMS contains a variable number 
(from 2 to 9) of a 28-bp tandem repeat sequence (VNTR) 
that acts as enhancer for the promoter by implementing 
the gene transcriptional activity (Figure 2). Polymorphic 
variants of this region, named thymidylate synthase 
enhancer region (TSER), have been described, and 
include double (2R) or triple repeats (3R) determining 
the genotypes 2R/2R, 2R/3R and 3R/3R [59]. Functional 
studies have shown a stepwise increase in TYMS 
transcription with an increasing number of tandem repeats 
[60], and patients with metastatic colo-rectal cancer with 
a 3R/3R genotype show 3.6 times higher mRNA levels 
as compared with those homozygous for 2R/2R [61]. The 
higher TYMS expression level related to the presence 
of 3R/3R genotype accounts for less effective inhibition 
of TYMS and worse response to fluoropyrimidines, in 
presence of low toxicity. Conversely, the occurrence 
of two tandem repeat polymorphism (2R/2R or 2R/3R 
genotype) leads to more favorable responses to 5-FU 
treatment, [62, 63] but may enhance the 5-FU toxicity 
(Table 2) [58].

The TSER*3R G/C polymorphism consists in a G>C 
change in the second repeat of the 3R allele (rs2853542 
– rs24743033) (Figure 2). This SNP is associated with 
a weaker bond in the promoter region of upstream 
transcription factor 1 (USF1) and results in a lower 
transcriptional activation of TYMS. It is found in 30%-
55% of all TSER 3R alleles and its presence explains 
why not all patients with the TYMS 3R allele have poor 
outcomes (Table 2) [64, 65].

Besides these variants, an insertion/deletion of 
hexanucleotide TTAAAG sequence at 1494 position on 
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the 3’-UTR of the TYMS gene, has been also described 
to be in linkage disequilibrium with the TSER 3R allele 
and is associated with worse prognosis in 5-FU treated 
patients [66]. The -6 bp deletion results in a 70% decrease 
in mRNA levels [67], probably as effect of the accelerated 
degradation of the transcript. Thus, by combining the 
above mentioned SNPs, it is possible to predict high levels 
of TYMS expression in subjects with 2R/3RG, 3RC/3RG, 
3RG/3RG; +6bp/+6bp genotypes, and conversely low 
levels of the enzyme in those with 2R/2R, 2R/3RC, 
3RC/3RC; -6bp/-6bp, -+6bp/-6bp genotypes [58].

Although knockdown or amplification experiments 
succeeded in demonstrating the in vitro importance of 
TYMS in 5-FU resistance and toxicity, clinical studies 
on the predictive role of these polymorphisms have been 
controversial so far [68]. For example, no significant 
association between TYMS genotype and response rate or 
overall survival (OS) has been observed in patients with 
gastric cancer treated with platinum/5-FU combinations. 
The same study found individuals with a 3R haplotype 
to have a significantly lower risk of developing grade 3/4 
leukopenia after chemotherapy [49]. In the mentioned 
metanalysis performed by Jennings BA et al., on 2,402 

patients with colo-rectal cancer, the 2R/2R genotype was 
apparently characterized by a significantly higher risk 
of toxicities when compared with the 2R/3R and 3R/3R 
genotypes [46], whereas the toxicity to capecitabine 
appeared globally greater in carriers of 2R/3R and 6bp 
insertion polymorphisms [24]. However, no association 
between capecitabine efficacy and TYMS polymorphic 
variants has been reported so far [64, 69] and, as for 
MTHFR, no specific indications have been formulated 
thus far for the clinical testing of TYMS SNPs in cancer 
patients who may benefit of fluoropyrimidine treatment.

PLATINUM DERIVATIVES

Platinum derivatives are highly efficacious against a 
broad spectrum of solid tumors and currently constitute the 
backbone for the treatment of pulmonary, head and neck, 
gastroentero-pancreatic and genitourinary neoplasms [70].

Resistance to platinum salts is mainly caused by the 
hyperactivation of DNA repair systems, with consequent 
decrease of pro-apoptogenic DNA adducts. As depicted 
in Figure 3, different enzyme groups are enrolled in 
DNA repair, including those of the nucleotide excision 

Figure 2: Polymorphisms in the 5’- and 3’-untranslated regions (UTRs) of TYMS gene. The 5’-UTR of TYMS, named 
thymidylate synthase enhancer region (TSER), contains a variable number of a 28-bp double (2R) or triple repeats (3R) determining 
the genotypes 2R/2R, 2R/3R and 3R/3R. TYMS expression level is directly proportional to the number of repeats. The TSER*3R G/C 
polymorphism consists in a G>C change in the second repeat of the 3R allele and results in a lower transcriptional activation of TYMS. 
The 3’-UTR insertion/deletion of hexanucleotide TTAAAG in position 1494 is in linkage disequilibrium with the TSER 3R allele. The -6 
bp deletion results in a 70% decrease in TYMS mRNA levels.
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repair (NER) system, base excision repair (BER) system 
and mismatch repair (MMR) system [71]. The most 
representative enzymes of the NER and BER systems 
include the excision repair cross complementation group 
1 (ERCC1) and X-ray repair cross-complementing group 
1 (XRCC1) respectively. In addition, homologous (HRs) 
and non-homologous recombination systems end joining 
(NHHRsEJ) are involved in DNA repairing processes 
[71] (Figure 3). Cisplatin is characterized by a strong 
emetic effect and has a remarkable toxicity profile for 
kidney, liver, heart and auditory apparatus, as well as 
severe myelo- and neuro-toxicity [72]. Detoxification 
of platinum derivatives involves the conjugation with 
reduced glutathione (GSH), a reaction catalyzed by 
glutathione S-transferase protein 1 (GSTP1) [73]. Given 

the key role of enzymes involved in either DNA repair 
or drug metabolism in the pharmacodynamics and 
pharmacokinetics of platinum salts, several variants of 
both ERCC1, XRCC1 and GSTP1 have been investigated 
as potential biomarkers of either response or toxicity 
(Table 1).

●  ERCC1 - ERCC1 is a 297 amino acid protein 
encoded by a gene localized on 19q13 chromosome. 
After heterodimerization with XP-F, ERCC1 contributes 
to elimination of DNA adducts induced by UV light, 
ROS, environmental mutagens and especially by cancer 
chemodrugs [74] (Figure 3). Moreover, the protein has 
a role in the preservation of chromosomal stability and 
telomers’ integrity [75]. High levels of ERCC1 have 
been associated with platinum resistance, while ERCC1-

Figure 3: Platinum pathway. Once into cytoplasm, platinum derivatives promote the Reactive Oxygen Species (ROS) synthesis, that 
cause the alteration of cell membranes permeability, the deregulation of different signal transduction pathways and calcium homeostasis 
but overall the DNA damage. Glutathione S-transferases protein 1 (GSTP1) catalyzes the conjugation reaction of platinum derivates with 
reduced glutathione (GSH), in order to increase their hydro-solubility and to facilitate their excretion. When platinum derivatives reach 
the nucleus, they form intra and interstrand DNA cross-links that block the cell cycle by activating tumor cell apoptosis through different 
pathways. DNA adducts however may activate sensor proteins and DNA repair systems by avoiding cytotoxicity. Excision repair cross 
complementation group 1 (ERCC1) is the main endonuclease of DNA NER (Nucleotide Excision Repair) pathway but it also interacts with 
the BER (Base Excision Repair) function in maintaining chromosomal stability and telomers integrity. X-ray repair cross-complementing 
group 1 (XRCC1) is another enzyme of BER pathway that repairs DNA bases damaged by X-rays, ROS and mostly alkylating agents (. 
The efficiency of the GSTP1detoxification reaction and of DNA repairing systems affects the platinum-based treatments response. ROS 
- reactive oxygen species; GSTP1 - glutathione s-transferases protein 1; ERCC1 - excision repair cross complementation group 1; NER - 
nucleotide excision repair; BER - base excision repair; XRCC1 - X-ray repair cross-complementing group 1.
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defective cells appear to be highly sensitive to alkylating 
agents [76, 77]. The best carachterized SNPs of ERCC1 
include the T19007C (Asn118Asn; rs11615) and the 
C8092A (rs321298) variants [78] (Table 1).

The synonym variant T19007C, although not 
causing any aminoacid change, results in the low-use 
codon AAT, instead of the high-use codon AAC, thus 
significantly reducing the efficacy of ERCC1 mRNA [79]. 
On the other hand, a reduced expression of ERCC1, as 
result of the C-allele, has been shown to correlate with 
better responses to platinum-based therapies in non small 
cell lung cancer (NSCLC) patients, whereas the T-allele 
was found to correlate with platinum-resistance in gastric, 
ovarian and cervical cancers [80–83] (Table 3). Several 
retrospective studies have also demonstrated that NSCLC 
patients carrying the T-allele have poor overall survival 
when subjected to platinum-based chemotherapy [84, 
85] and the association between the T-allele presence 
and dismal outcomes has been confirmed in patients with 
metastatic colo-rectal cancer treated with platinum. In 
fact, the median overall survival (OS) was as low as 15.3 
months in subjects with C/C genotype, and 11.1 months in 
C/T or T/T carriers [86, 87].

Other studies observed a different genotype-
phenotype correlation between ethnic subgroups, by 
showing that the 1907T allele was associated with 
unfavorable PFS and OS in Asian, and alternatively, 
with favorable prognosis in Caucasians, probably due 
to the complexity of interactions between genes and 
environment, rather than to polymorphism frequencies in 
each group [54, 88].

Also, within the mCRC patients population, another 
study on 168 Chinese patients treated with first-line 
FOLFOX-4 chemotherapy showed that the CC genotype 
was associated with a better response rate and clinical 
outcome (ORR: 57.5% vs 36.4%; p = 0.01), as well as PFS 
(13 months vs 7 months; P < 0.01), and OS (25 months vs 
16 months; P < 0.01) compared to CT ot TT genotypes 
[89].

Other studies included a metanalysis conducted 
on 1,787 gastric and colon cancer patients treated with 
oxaliplatin-based chemotherapy demonstrated the 
role of rs11615 T allele as a predictor of low objective 
response, shorter PFS and OS in Asian, but not Caucasian 
people [90]. The same association was shown in a 
subgroup analysis of another metanalysis, reflecting 
the strong influence of ethnicity-dependent factors in 
pharmacogenetic assay [88]. The combination of several 
enzymatic variants involved in fluoropyrimidines and 
platinum metabolism has been also reported to correlate 
with PFS after first-line chemotherapy in patients 
with metastatic colo-rectal cancer. In particular, the 
combination of ERCC1-118 T/T, ERCC2-751 A/C, and 
ERCC2-751 C/C was independently associated with low 
PFS in 166 patients [91] since in post-operative colorectal 
cancer evolution of 257 Taiwanese patients, the ERCC2-

751 A/A and ERCC1-118 T/T genotypes predicted higher 
incidence of recurrence and worse clinical outcome [92].

Another common variant of ERCC1 is C8092A. 
This SNP is located in the 3’UTR of the gene and can 
alter polyadenylation, translation efficiency, localization 
and stability of mRNA [93]. In particular, the presence 
of allele A reduces the stability of the ERCC1 transcript, 
thus resulting in lower protein expression and increased 
sensitivity to genotoxic chemotherapies [94]. In a recent 
metanalysis of 33 studies involving nearly 5,000 patients 
with NSCLC treated with platinum-based chemotherapy, 
the TT/TC genotypes of the C118T variant and the AA/CA 
genotypes of the C8092A SNP were associated with lower 
objective response rate (ORR) and OS as compared with 
CC genotype. However, this effect was observed only in 
the Asian population, but not in Caucasian patients [95].

The role of ERCC1 variants as predictors of 
toxicity following platinum therapy has been poorly 
investigated. In patients with advanced NSCLC, the 
8092A allele, but not the 118T allele, appeared associated 
with a significantly increased risk of gastrointestinal 
grade 3 or 4 toxicity [96]. In another study of patients 
with colorectal cancer treated with platinum-based 
adjuvant chemotherapy, the 8092A allele was reported 
to predict hematologic toxicity, in particular anemia [97] 
(Table 3).

●  XRCC1 - The human XRCC1 protein is 
encoded by a gene mapping on 19q13.2 chromosome 
and plays a pivotal role in the BER pathway, replacing 
DNA bases damaged by X-rays, reactive oxygen radicals 
and alkylating agents [98–100] (Figure 3). More than 
300 SNPs have been shown to affect XRCC1, but only 
three of them have been functionally characterized. In 
fact, Arg194Trp, Arg280His and Arg399Gln cause amino 
acid substitutions in the XRCC1 protein resulting in the 
alteration of its function [101]. Such polymorphisms have 
been associated to a general increased cancer risk in the 
full population as result of impaired capacity of DNA 
repair, correlation with greater tumor aggressiveness, and 
lower response to platinum derivatives [102, 103].

The G28152A variant, also named Arg399Gln or 
rs25487, is the most well-studied SNP of XRCC1 and 
maps on the COOH-terminal domain of the gene, coding 
for a protein portion devoted to protein-protein interactions 
(Table 1) [104, 105]. The 28152A allele is responsible of a 
substantial defect of XRCC1 to repair DNA, in particular 
after exposure to ionizing radiation [98, 106].

In NSCLC patients, the A/A or G/A genotypes have 
been associated with increased risk of all toxicities as 
compared with the G/G genotype, and particularly with 
a 2.5-fold increased risk of grade 3 or 4 gastrointestinal 
toxicities [107]. Also, higher incidence of severe 
hematologic adverse effects has been observed in carriers 
of the A allele in another study on 487 NSCLC patients 
treated with cisplatin, docetaxel and gemcitabine [108]. 
However, no significant association between XRCC1 
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399A and chemotherapy-induced toxicities was found 
in the TOSCA trial, which evaluated 3,579 patients with 
colorectal cancer treated with FOLFOX-4 or XELOX 
adjuvant chemotherapy (Table 3) [109].

The G28152A variant has been also investigated 
as biomarker of response and survival after platinum-
based chemotherapy. In a study of 112 NSCLC patients, 

a progressive increase in average survival times following 
platinum treatment has been identified in carriers of the 
A/A, A/G and G/G genotypes respectively [102]. By 
contrast, a metanalysis of 22 studies investigating platinum-
based chemotherapy in advanced NSCLC demonstrated 
the role of A/A + G/A genotypes in predicting objective 
responses [110], while worse outcomes were reported for 

Table 3: ERCC1, XRCC1 and GSTP1 genes variants, potential impact on the enzyme activity and outcome of 
platinum derivatives therapies
Gene 
(OMIM)

nt./AA 
variant

(rs code)

Transcriptional 
effects

Functional 
effects

Clinical effect/reported findings Dose 
adjustment

Ref.

ERCC1 
(#126380)

T19007C 
Asn118Asn 
(rs 11615)

C allele leads to 
lower ERCC1 

expression

C allele 
increases 
platinum 

genotoxicity

C allele correlates with higher 
response rate in NSCLC patients, also 
in adjuvant setting and Asian patients. 
C allele predicts FOLFOX response, 
better OS and PFS in mCRC patients. 

T allele correlates with platinum 
resistance in gastric, ovarian, cervical 
and other cancers and with a reduced 
OS in NSCLC patients. T allele is a 

biomarker of low objective FOLFOX 
response, lower PFS and OS in Asian 

gastro-intestinal tumor patients but 
not in Caucasians. T allele is also 

independently associated with worse 
PFS in mCRC patients and with high 

risk of local recurrence and worse 
clinical outcome in association with 

ERCC2 codon751 A/A variant.

None [79–92]

C8092A 
(rs321298)

A allele affects 
mRNA stability 

causing a 
lower enzyme 

expression

A allele 
increases 
platinum 

genotoxicity

A allele is associated with an 
increased risk of grade 3 or 4 

gastrointestinal toxicity and with 
anemia in advanced NSCLC patients 
in mCRC patients. The combination 

of T118 allele and A8092 allele 
correlate with worse ORR and OS 
compared with the C allele in the 

Asian NSCLC sub-group patients, but 
not in Caucasians ones.

None [95–97]

XRCC1 
(#194360)

G28152A 
Arg399Gln-
(rs25487)

A allele leads to 
lower XRCC1 

expression

A allele 
increases 

platinum toxicity 
and tumor 

aggressiveness

A allele correlates with grade 3- 4 
gastrointestinal and hematologic 

toxicities in NSCLC patients. A allele 
is associated with worse ORR, OS and 

clinical outcome in NSCLC, gastric 
and CRC patients Conversely another 
study correlated A allele with better 

OS in other CRC patients.

None [102, 
107, 108, 
110–116]

GSTP1 
(#134660)

A313G 
Ile105Val 
(rs1659)

G allele leads to 
lower GSTP1 

activity

G allele 
increases 
platinum 

genotoxicity

G allele correlates with grade 3 
neurotoxicity in mCRC patients 

while in NSCLC patients G allele has 
none toxicities associations. G allele 

is associated with better outcome 
and OS in breast, CRC, NSCLC and 
gastric cancer patients but Another 
study didn’t show associations with 

PFS in CRC patients

None [109, 113, 
123–132]
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carriers of the A allele in another study of 235 patients with 
NSCLC treated with platinum [108].

Better outcomes following FOLFOX therapy have 
been consistently observed in patients with metastatic colo-
rectal cancer carrying a G allele [111, 112]. More recently, 
the presence of the A allele has been instead associated 
with lower tumor response after oxaliplatin-based 
chemotherapy in a cohort of 1,234 patients with colorectal 
cancer. Surprisingly, no correlation with PFS was found 
[113]. In gastric cancer patients treated with oxaliplatin-
based chemotherapy, the A allele conferred a significant 
disadvantage in terms of survival [114]. Contradictory 
evidence has been generated on the prognostic role of 
XRCC1 399A in patients with colo-rectal cancer [115, 116].

●  GSTP1 - The glutathione S-transferases 
(GSTs), subdivided in seven enzymatic classes (α, μ, κ, 
τ, π, ω and ζ) detoxify mammalian cells by endogenous 
and exogenous, hydrophobic and electrophilic toxic 
compounds by using reduced glutathione (GSH), thus 
avoiding the formation of DNA adducts (Figure 3). The 
gene of Pi-class glutathione-S-transferase (GSTP1) 
maps on chromosome 11q13.2, extending for about 2.8 
Kb [117]. GSTP1 catalyzes the conjugation of platinum 
derivatives with reduced glutathione (GSH), in order to 
increase their hydro-solubility and excretion [73]. Several 
in vitro studies have shown a significant correlation 
between resistance to platinum and high levels of 
intracellular GSH, as well as between platinum resistance 
and elevated GSTP1 expression [118–120].

Seminal studies on the functional polymorphisms 
of the GSTP1 identified two variants of the gene (A313G 
and C114T), whose combinations result in four functional 
haplotypes GSTP1*A (AC); GSTP1*B (GC), GSTP1*C (GT) 
and GSTP1*D (AT) [121]. In this context, the G/G genotype 
at nucleotide 313 (A313G; Ile105Val; rs1659)seems to 
substantially decrease the enzymatic activity of GSTP1, 
as it causes an aminoacid substitution in the active site of 
the protein [122]. As consequence, a possible implication 
of GSTP1 G-harboring SNPs in the response to platinum 
derivatives has been envisaged [73] GSTP1 genotypes G/G 
or G/A with lower enzyme activity potentially correlate with 
increased response to platinum-based chemotherapy due to 
the decreased detoxification activity [73]. The G/G genotype 
of GSTP1 has been associated with grade 3 neurotoxicity in 
patients with colo-rectal cancer who received FOLFOX [91] 
(Table 3). This observation was also confirmed in a study 
of n166 Asian patients with metastatic colorectal cancer, 
and similar findings were reported for Caucasion patients 
with inoperable NSCLC treated with platinum-gemcitabine 
[123, 124]. However, not all studies have been consistent in 
demonstrating a significant association between platinum 
salts, neurotoxicity and GSTP1 variants enriched in alleles 
G [125, 126].

While causing increased toxicities, the reduced 
detoxifying activity of GSTP1 determined by the G/G 
genotype has been also hypothesized to lead to better clinical 

outcomes in response to platinum-based protocols. However, 
contrasting data have been reported at this regard in several 
cancers [91, 127, 128], and a large metanalysis of 13 studies 
on colo-rectal cancer patients failed to show any association 
between the G allele and PFS [113]. Ethnic differences 
among enrolled patients (46% Caucasian, 64% Asian) may 
have probably impaired the analysis [54]. Even in NSCLC 
patients, different metanalyses and clinical studies have 
shown the association between G/G genotype and increased 
platinum-based chemotherapy efficacy in terms of both 
response rates and OS [129–131]. The positive predictive role 
in terms of tumor response, PFS and OS of the G/G genotype 
was also confirmed in a recent metanalysis including 8169 
cases with gastric cancer subjected to platinum-based 
chemotherapy [132].

IRINOTECAN

Irinotecan is an camptothecin analogue widely used in 
the treatment of gastroenteropancreatic tumors. As a prodrug 
irinotecan is intracellularly activated through a hydrolysis 
reaction catalyzed by microsomial carboxylesterase within 
hepatocytes. This leads to the production of the active 
metabolite SN-38 [133], which inhibits the topoisomerase I, 
a key enzyme in DNA replication which is 100 times stronger 
than the progenitor drug. The SN-38/topoisomerase I/DNA 
complex causes major breaks in the DNA replication fork, 
with subsequent activation of apoptosis [134] (Figure 4). The 
metabolism of SN-38 is mainly mediated by the cytocrome 
P450 enzyme CYP3A4 and CYP3A5 isoforms and by the 
uridine diphosphate glucuronosyltransferases (UGT), that 
catalyze the excretion of the drug into the bile [135, 136]. 
On the other hand, adenosine triphosphate binding cassettes 
(ABCB) allow the transport of irinotecan and its active 
metabolites through cell membranes, determining their 
distribution between cancer cells, blood and entero-hepatic 
circulation [137].

The most serious dose-related toxicity of irinotecan 
is diarrhea [138]. This effect seems to correlate with the 
varying degree of efficiency of UGT in conjugating SN-38 
in its inactive metabolite SN-38G. In fact, in subjects with 
low UGT conjugating efficiency, SN-38 is directly reversed 
in the intestinal lumen through the bile [135]. On this basis, 
it is not surprising that UGT1, CYP3A4, CYP3A5, and 
ABCB1 polymorphisms have been explored as appealing 
predictors of toxicity and efficacy of irinotecan (Table 1).

●  UGT - This superfamily of detoxifying enzymes 
includes two subfamilies (UGT1 and UGT2), both having 
endogenous and exogenous compounds as substrates. 
UGT1A gene is located on chromosome 2q37, and its 
promoter sequence (TATA box) contains a polymorphic 
syte, with a variable number (from 5 to 9) of dinucleotide 
repetitions (TA). An inverse correlation between the number 
of dinucleotide repetitions and the UGT1A efficiency has 
been demonstrated. The most common genotype in the 
general population is 6/6 UGT1A1*1, characterized by 
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six homozygous repeat dinucleotides; the presence of 7/7 
UGT1A1*28, typical of patients with Gilbert’s syndrome, 
is instead characterized by a glucuronation efficiency as 
low as 30-50% than the normal [139]. Patients carrying the 
variant 7/7 who undergo irinotecan-based chemotherapy 
have a 4-fold increased risk of developing grade 3-4 
diarrhea and neutropenia [140, 141] (Figure 4). There is 
lack of knowledge about the clinical significance of the 
other variants (5/5, 8/8 and 9/9 tandem repeats) [142].

The geographic distribution of allelic variants 
frequencies is heterogeneous with maximum value 
in African populations (23%), intermediate among 
Europeans (11-13%) and minimum among Asians (3%).

Based on observations from previous clinical trials, 
a meta-analysis of 9 studies (81 patients with lymphoma 
and 740 with advanced colorectal cancer) evaluated 
the clinical correlation between severe post-irinotecan 
toxicities as grade 3-4 diarrhea and neutropenia, and 
occurrence of UGT1A1*1/UGT1A1*28 genotypes in both 
homozygous and heterozygous carriers. For irinotecan 
dosages below 125 mg/m2, no differences were observed 
according to the genotype, whereas higher doses of the 
drug were associated with an increased risk of severe 
toxicities in subjects homozygous for the UGT1A1*28 
variant [143] (Table 4). Consistently, another metanalysis 
of Caucasian patients with metastatic colo-rectal cancer 

Figure 4: Irinotecan pathway. Irinotecan is a prodrug that, after administration, is activated in liver by the hydrolysis reaction 
catalyzed by carboxylesterases (CES1, CES2) of the microsomal system of hepatocytes, with the release of the more active metabolite 
SN-38. In cancer cell nuclei, SN-38 acts as inhibitor of the topoisomerase I, a key enzyme in DNA replication. The SN-38/enzyme/DNA 
complex causes major breaks in the DNA replication fork, with subsequent activation of cancer cells apoptosis. In liver cells, irinotecan and 
SN-38 may be oxidated by hepatic cytochrome P-450 (CYP 3A4 and 3A5) to form pharmacologically inactive metabolites (NPC, APC). 
The Uridine diphosphate (UDP) glucuronosyltransferases (UGT) catalyzes the subsequent conjugation reaction of SN-38 with glucuronic 
acid making its excretion possible through the bile in the intestinal lumen. Adenosine-triphosphate binding cassettes (ABC) transporters 
(ABCB1/ABCB2) are transmembrane proteins which make possible the absorption of SN-38 from plasma into hepatocytes and hence in 
interstitial and the excretion of irinotecan and its metabolites by bile into the intestinal lumen. An increased bioavailability of SN-38, i.e. for 
the reduced efficiency of UGT and CYP 3A4/3A5 reactions, seems to justify the onset of diarrhea and neutropenia as specific side effects 
of chemotherapy. CES – carboxylesterases; CYP - cytochrome P-450; UGT - uridine diphosphate (UDP) glucuronosyltransferases; ABC - 
adenosine-triphosphate binding cassettes.
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who received irinotecan found a 2-to-4-time increased 
risk of severe neutropenia and diarrhea in UGT1A1*1 
6/6 carriers as compared with UGT1A1*28 7/7 carriers. 
This effect was more prominent in patients treated with 
high doses of irinotecan, or in those receiving the drug in 
combination with fluorouracil [144].

While effective in predicting toxicities, the SNPs of 
UGT1 appear less useful as biomarkers of efficacy. In fact, 
a recent metanalysis performed on 1,898 mCRC patients 
treated in first or second line with irinotecan showed no 
correlation between UGT1A1*28 7/7 and response rates 
[145].

Based on this body of evidence, in 2005 FDA 
recommended a 30% dose reduction for patients 
homozygous for UGT1A1*28 and candidates to irinotecan 
therapy at dosages >250mg/m2 [69, 146] (Table 4). No 
dose adjustments were indicated in case of UGT1A1*28 
heterozygosity [146]. Similarly, the guidelines published 
by the Dutch Pharmacogenomics Working Group 
recommend dose reductions in patients with known 
UGT1A1*28 homozygous genotype [146]. In Italy, 
assessment of UGT1A variants is indicated in the pre-
therapy setting for those patients where chemotherapy 
has a high risk/benefit ratio and during therapy in all 
cases of grade 3-4 of hematologic and/or gastrointestinal 
toxicities or in any case of unexpected ADRs (AIOM-SIF 
guidelines) [147] (Table 4).

●  CYP3A4/3A5 - The CYP3A4 and CYP3A5 
genes contribute to the oxidative metabolism of irinotecan 
[148] (Figure 4). CYP enzymatic activity can be largely 
influenced by non-genetic factors as diet, ethnicity, or 
concomitant therapies, as well as by genetic conditions, 
namely the presence of polymorphic variants [149].

Fourty SNPs have been identified in the CYP3A4 
gene and among them, the most studied is CYP3A4*1B 
(-392A>G, rs2740574) which is characterized by a 
transition from A to G in the regulatory 5’ UTR [150] 
(Table 1). This variant is differently distributed among 
various ethnic groups (high frequency among Caucasians 
and Afro-Americans, very low frequency among Asians) 
and may influence the gene transcription, leading to a 
substantial increase of the protein levels [151]. As result of 
higher CYP3A4 expression, the metabolism of irinotecan 
may be accelerated and the intracellular exposure to SN-
38 diminished with consequent decrease of its therapeutic 
efficacy [152, 153]. Although limited in its power by a 
small sample size, a study of 30 Caucasian patients with 
lung or colorectal cancer showed a significant correlation 
between CYP3A4 genotype and irinotecan blood clearance 
[154]. By contrast, a pharmacokinetic analysis of 177 
Japanese individuals with cancer failed to demonstrate 
any meaningful impact of CYP3A4 on irinotecan blood 
levels [155].

The polymorphism CYP3A5*3 (6986A>G, 
rs776746) is characterized by a transition from A to G 
in intron 3 and causes the generation of a splicing site, 

leading to the incorporation of an intronic sequence of 131 
bp within the transcript. The ultimate consequence of this 
mutation is the synthesis of a truncated, non-functional 
protein and, indeed, carriers homozygous for CYP3A5*3 
(G/G genotype) have very low levels of the enzyme with 
respect to subject with the wild type variant CYP3A5*1 
(A/A genotype) [156] (Table 4). The clinical significance 
of the CYP3A5*3 splice variant has been investigated only 
in a sub-analysis of the North American Gastrointestinal 
Intergroup N9741 study, that investigated the combination 
of irinotecan, 5-fluorouracil and leucovorin in 520 patients 
with mCRC. Carriers of the G allele showed a response 
rate lower than that observed in patients bearing the A 
allele (29% vs 60%, p=0.0074) [157].

On the other hand, hyperfunctional CYP3A4*1B 
and CYP3A5*1 variants has been associated to protection 
from irinotecan-driven toxicities, as consequence of the 
accelerated drug metabolism [158] (Table 4). However, 
it should be noted that studies on the predictive ability 
of CYP polymorphisms are very difficult to interpret as 
result of the high inter- and intra-individual variability of 
CYP enzymatic activity that may primarily result from 
diet-, ethnicity- and therapy-related factors. At present, 
CYP3A4/5 genotyping does not have a definite role in 
customization of irinotecan-based chemotherapy [159].

ABC transporters - ABC transporters, among 
which there is P-glycoprotein (multi-drug resistance 
associated resistance protein 1, MDR1 or ABCB1), allow 
the absorption of SN-38 from plasma into hepatocytes and 
hence into the interstitial space. ABCB1 is a well-known 
drug transporter localized in the epithelial cells in the 
intestine, liver and kidney, contributes to the absorption 
of orally administered drugs, and the excretion of 
irinotecan and its metabolites through the bile toward the 
intestinal lumen and renal elimination [137]. Indeed ABC 
transporters are known for a long time for their ability 
to increase efflux of anticancer drugs from cancer cells 
leading to the reduction of intracellular chemotherapeutic 
agent levels and consequent drug insensitivity [160, 161]. 
ABCB1 is encoded by a gene on chromosome 7q21.12 that 
spans 28 exons [162]. In ABCB1 knockout mice, excretion 
of irinotecan and its metabolites appears to be impaired, 
resulting in severe alterations of the drug pharmacokinetic 
profile [163]. It is therefore not surprising that several 
variants of ABCB1 have been studied in their ability to 
predicit toxicity following irinotecan-based treatments 
(Figure 4).

The ABCB1 SNP 3435C>T (Ile1145Ile, rs1045642) 
consists in a silent point mutation that decreases the 
mRNA stability and the protein three-dimensional 
conformation reducing the enzyme expression [164] 
(Table 1). Thus, the presence of this variant determines 
a reduction in the excretion of irinotecan and its 
metabolites, causing an increased risk of chemotherapy-
associated toxicities [165], (Table 4). In a Korean 
study of 107 patients with NSCLC who were treated 
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with irinotecan-cisplatin, carriers of the 3435T allele 
underwent higher incidence of grade 3 diarrhea (p=0.047) 
[166]. However, no significant correlation between 
ABCB1 genotype and toxicities was found in a French, 
phase III, randomized trial of 5-FU and folinic acid with 
or without Irinotecan [167].

Similarly to 3435C>T, the ABCB1 SNP C1236T 
(Gly412Gly, rs1128503) is characterized by a silent 
mutation which alters the transcript stability and reduces 
protein expression [168]. In a small study of 65 patients, 
the 1236T allele has been associated with prolonged 
exposure to irinotecan and its active metabolite SN-38, 

Table 4: Genotype-phenotype correlations and recommended irinotecan dose adjustment according to UGT1A, 
CYP3A4*1B and CYP3A5*3 genotypes
Gene 
(OMIM)

nt./AA variant
(rs code)

Transcriptional 
effects

Functional effects Clinical effect/reported 
findings

Dose adjustment Ref.

UGT1A 
(#191740)

1*28 A(TA)6/7TAA 
(rs34983651)

Heterozygous 
genotype (TA)6/7 

1*28/1*1

very slight reduced 
glucuronation 

efficiency than the 
normal

None None [33, 69, 
140–146]

Homozygous 
genotype (TA)7/7 
1*28/1*28

reduced 
glucuronation 

efficiency of 30-50% 
than the normal

(TA)7/7 allele increased 
risk of developing grade 
3-4 diarrhea and severe 

neutropenia, especially in 
case of dosage >200-250 

mg/m2. (TA)7/7 allele did not 
predict ORR to therapy.

dose reduction of 
30% than the total 

dose (for doses 
>250mg/m2)

CYP3A4*1B 
(#124010)

-392A>G 
(rs2740574)

G allele correlates 
with CYP3A4*1B 
higher expression

G allele increases 
the drug oxidative 

detoxification

G allele correlate with lower 
Irinotecan toxicities no 

significant clinical impact 
of the CYP3A4 genotype on 

irinotecan toxicity profile in a 
japanese study

None [152, 154, 
155, 158]

CYP3A5*3 
(#605325)

6986A>G 
(rs776746)

G allele correlates 
with protein 

splicing defect and 
lower CYP3A5*3 

expression

G allele reduces 
the drug oxidative 

detoxification

A allele correlate with lower 
irinotecan toxicities G allele 
patients with mCRC treated 

with IFL showed a lower 
response rate (RR)

None [157, 158]

ABCB1 
(#171050)

C3435T Ile1145Ile 
(rs1045642)

T allele affects 
mRNA stability and 
protein structure by 
reducing its function 

and expression

T allele causes 
the reduction of 

drug clearance by 
increasing toxicity 

risk

T allele correlates 
with increased risk of 

chemotherapy-associated 
toxicities and with worst 
ORR and OS in mCRC 

patients. In NSCLC patients 
treated with Irinotecan-

Cisplatin regimen 3435T 
allele correlates with higher 
irinotecan efflux with lower 
AUC, higher CL and higher 

incidence of grade 3 diarrhea. 
In a French trial, in patients 

receiving 5 Fluorouracil, 
Folinic Acid more or less 
Irinotecan, no statistically 

significant correlation 
was found between T3435 
allele and hematologic or 
gastrointestinal toxicities.

None [163–165]

C1236T Gly412Gly 
(rs1128503)

T allele affects 
mRNA stability and 
protein structure by 
reducing its function 

and expression

T allele causes 
the reduction of 

drug clearance by 
increasing toxicity 

risk

1236T allele correlates 
with prolonged exposure 
to irinotecan and SN-38, 
with a greater probability 

of developing ADRs but in 
another study this data has 

not been confirmed. T allele 
correlates with worst RR and 
OS in mCRC patients treated 

with FLIRI.

None [137, 163, 
166]
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and therefore higher risk of treatment-associated toxicities 
[137] (Table 4). In contrast, no association between 
increased SN-38 AUC and ABCB1 1236T was observed in 
another study of 85 patients with metastatic cancers treated 
with irinotecan monotherapy [169]. In 140 patients with 
mCRC treated with first-line 5-FU-irinotecan, the T allele 
of the C1236T, C3435T, and rs2032582 ABCB1 variants 
predicted poor response rates and dismal OS [165]. Given 
the limited available evidence, the genotyping of ABCB1 
is not routinely used in clinical practice [54].

TAXANES

Taxanes, particularly docetaxel and its semi-
synthetic derivative paclitaxel, are widely used in 
oncology for the treatment of lung, breast, gastric, and 
genital cancers [170]. Their antineoplastic mechanism is 
based on the inhibition of the microtubules’ assemblement 
with subsequent blockade of the mitotic plate formation 
and apoptosis [171] (Figure 5). Similarly to irinotecan, 
taxanes biotransformation occurs mainly within the 
liver, where both CYP3A4 and CYP3A5 oxidize these 

compounds forming inactive metabolites. ABCB1 
protein, on the other hand, increase the drug clearance 
by balancing reabsorption from the hepatocellular 
system and intestinal excretion. Polymorphic variants 
of CYP3A4/5 and ABCB1 enzymes have been thus 
investigated as biomarkers of toxicity or response to 
taxanes [172] (Table 1).

●  ABC transporters - Several clinical studies 
[173, 174] have shown a significant correlation between 
ABCB1 3435T allele and diarrhea of grade higher than 
2 in patients with NSCLC or breast cancer receiving 
docetaxel. A higher frequency of mucositis was reported 
for carriers of ABCB1 3435T in a cohort of patients with 
gastric cancer undergone chemotherapy with paclitaxel 
and 5-FU [175]. By contrast, no association was found 
between ABCB1 variants and response or toxicity to 
paclitaxel in patients with metastatic breast cancer [176] 
(Table 5).

The genotype of ABCB1 has been consistently 
described to predict hematological toxicities in cancer 
patients receiving taxanes. In particular, in a study of 
paclitaxel-treated patients with ovarian cancer, carriers 

Figure 5: Taxanes pathway. Once Paclitaxel and Docetaxel cross both plasmatic and nuclear membranes, they stabilize the nuclear 
beta-tubulin by inhibiting the microtubules polymerization and the mitotic melt construction. Thus, the common mechanism of action of 
both drugs results in the cancer cell cycle arrest in G2/M phases with the consequent apoptosis. The persistence in cytoplasm of taxane 
molecules and their metabolites strongly affects efficacy and toxicity of therapies. In hepatocytes, these drugs are subjected to oxidation 
reactions by specific isoforms of the Cytochrome P450 enzymes. In particular, CYP3A4 and CYP3A5 have docetaxel as substrate while 
CYP3A4 and CYP2C8 have paclitaxel. These reactions result in the synthesis of inactive metabolites that pass from the liver microsomal 
system into bile and then are excreted via fecal. The bioavailability of taxanes is also influenced by the functioning of ABCB1 adenosine-
triphosphate binding cassettes (ABC), energy-dependent drug efflux pumps that regulate the drug clearance by influencing the balance 
between reabsorption from the hepatocellular system and intestinal excretion. CYP - Cytochrome P450; ABC - adenosine-triphosphate 
binding cassettes.
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of ABCB1 3435T or 1236T experienced a severe 
neutropenia as compared with carriers of the C allele 
(p=0.03 and p=0.06 respectively) [177]. The association 
between severe neutropenia and ABCB1 3435T SNP has 
been subsequently confirmed in several studies of breast 
and prostate cancer patients treated with docetaxel [174, 
178]. In one study, the ABCB1 genotype predicted not 
only neutropenia, but also anemia (p=0.044 and p=0.029 
respectively) [179]. However, increased hematological 
toxicity has been demonstrated by several studies in 
carriers of the 3435 C allele [180, 181]. Controversial 
results have been reported on the correlation between 
ABCB1 genotype and neuropathy, the main dose-limiting 
toxicity of taxanes. While a study of 150 patients with 

early-stage breast cancer failed to find any predisposition 
to neurotoxicity in carriers of 1236 C>T and 3435 C>T 
variants [182], other analyses demonstrated a positive 
correlation between 3435T allele and neuropathy in breast 
cancer patients treated with paclitaxel and docetaxel [183, 
184]. However, the presence of variant alleles is always 
associated with a significantly increased taxanes exposure 
and can be used for optimizing dosage [185].

●  CYP3A4/3A5 - Among 261 European 
patients with ovarian cancer treated with paclitaxel and 
platinum as first-line chemotherapy, the carriers of the 
CYP3A4*1B G allele were found to have inferior survival 
rates as compared with those showing the AA genotype, 
probably as result of the higher detoxifying activity of the 

Table 5: ABCB1, CYP3A4*1B and CYP3A5*3 variants, potential impact on the enzyme activity and outcome of 
taxanes therapies
Gene 
(OMIM)

nt./AA variant
(rs code)

Transcriptional 
effects

Functional effects Clinical effect/reported 
findings

Dose 
adjustment

Ref.

ABCB1 
(#171050)

C3435T Ile1145Ile 
(rs1045642)

T allele affects 
mRNA stability 

and protein 
structure by 
reducing its 
function and 
expression

T allele causes 
the reduction of 

drug clearance by 
increasing toxicity 

risk

T allele is associated with 
diarrhea (> grade 2) in 

NSCLC and breast patients 
and with more severe 

neutropenia in ovarian, 
breast and prostate cancer 
patients while C allele is 

associated with major risk 
of hematological toxicity 
in other studies. T allele 

correlates with lower 
PFS and higher mucositis 

frequency in gastric cancer 
patients and with dose-

limiting neuropathy in breast 
cancer patients. In other 
studies conversly, 3435 
C allele correlates with 
increased hematological 

toxicities.

None [171–182]

C1236T 
Gly412Gly 
(rs1128503)

T allele alters 
transcript stability 

by reducing 
protein function

T allele causes 
the reduction of 

drug clearance by 
increasing toxicity 

risk

T allele correlates 
with increased risk of 

chemotherapy-associated 
toxicities.

None [137]

CYP3A4*1B 
(#124010)

-392A>G 
(rs2740574)

G allele correlates 
with CYP3A4*1B 
higher expression

G allele increases 
the drug oxidative 

detoxification

G allele correlates with 
decreased OS and worse 

clinical outcome. G allele is 
associated in breast cancer 

patients with infusion 
reactions but with lower risk 

of neuropathy

None [151, 182, 
184]

CYP3A5*3 
(#605325)

6986A>G 
(rs776746)

G allele correlates 
with protein 

splicing defect and 
lower CYP3A5*3 

expression

G allele reduces 
the drug oxidative 

detoxification

G allele correlates with 
neutropenia in breast cancer 

patients while in another 
study it is associated with 

lower risk of taxanes 
induced neuropathy

None [179, 185, 
186]
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CYP3A4*1B G isoform [151]. An excess of infusional 
reactions was also correlated to the CYP3A4*1B G allele 
variant in 70 patients with breast cancer treated with 
docetaxel [186] (Table 5). The SNP CYP3A5*3 6986G 
allele was revealed to predict neutropenia in patients 
with breast cancer receiving docetaxel [181, 187] and 
was associated with taxane-induced neuropathy in other 
studies [184, 188] (Table 5).

In 58 patients treated with taxane-based neoadjuvant 
chemotherapy, the A allele of CYP3A5*3 correlated 
with both favorable clinical response (Pcorr = 0.0465). 
Concerning the toxicity profile, the analysis of 132 
patients with “gene-gene interaction” models (MDR 
-multifactor dimensionality reduction) analysis evaluating 
CYP3A5*3, ABCB11236C>T and ABCB1 2677G>T/A, 
ABCB1 3435C>T and CYP1B1*3 variants, showed a 
significant association with treatment response, but also 
with anemia of grade 2-4, and the dose delay/reduction 
induced by neutropenia (P = 0.024, P = 0.004, P = 0.026), 
respectively [189].

CONCLUSIONS AND FUTURE 
DIRECTIONS

The germline genome dictates the expression 
and activity of drug receptors, downstream effectors, 
detoxifying enzymes, proteins and transporters within both 
cancer and heathy cells, and it is therefore not surprising 
that a plethora of studies have so far explored the role of 
germline genetic variants as predictors of either efficacy 
or toxicity of chemotherapeutics. However, despite the 
large body of published data, clinical implementation of 
SNPs of genes implicated in both pharmacodynamics 
and pharmacokinetics of anticancer drugs has been 
quite modest so far. This has been primarily caused by 
lack of robustness of the majority of performed studies, 
mostly as result of small numbers of accrued patients, 
enrollment of heterogeneous patient populations, as well 
as methodologically inconclusive study designs and lack 
of inter-study result replicability.

Among the most widely investigated germline 
genetic variants, the polymorphisms of DPYD have 
shown clear clinical relevance, and their genotyping 
is unanimously recommended for predicting the 
tolerance to fluoropyrimidine-based chemotherapy. 
However, whether DPYD analysis should be carried 
out in all, or only in selected patients, before or after 
the onset of fluoropyrimidine-related toxicities, is still 
a matter of debate. Future studies should compare 
the cost-effectiveness of different DPYD genotyping 
strategies in order to define the most appropriate usage 
setting in clinical practice, while clinical trials should 
formally investigate the dosages of fluoropyrimidine 
associated with the best efficacy/toxicity ratio in patients 
heterozygous for the IVS14+1G>A, 1679T>G or 
2846A>T DPYD variants [190].

Clinical genotyping of UGT1A1*28 has been 
recommended for toxicity prediction in patients 
undergoing irinotecan-based chemotherapy, and dose 
adjustments have been proposed for homozygous carriers 
of this SNP. Whether irinotecan dose reductions may 
affect the efficacy of the drug is currently unknown, 
and future studies are needed to prospectively define the 
exact dosages to be used in carriers of either the wild-
type or polymorphic variant of UGT1A1. In fact, there 
is preliminary evidence that once subjects homozygous 
for UGT1A1*28 are removed from dose-escalation 
studies [191], the remaining patients can tolerate doses of 
irinotecan higher than those currently approved for use. 
Given the low cost of chemotherapeutics and the high 
costs associated with chemotherapy-related toxicities, 
genotype-driven dose-finding studies of traditional 
chemotherapeutics should be prioritized, since they 
hold the potential of improving patient outcomes while 
reducing treatment expenses. At present the identification 
of germline mutations is greatly focused on cancer 
predisposition syndromes, where experimental and clinical 
evidence provided useful suggestions to introduce novel 
drugs, as in the case of PARP inhibitors in the treatment of 
patients affected by ovary cancer with inherited mutations 
of BRCA genes.

On the contrary, to date, there is no high-level 
evidence to propose that routine genotyping of germline 
genetic variants of other genes implicated in the 
metabolism of fluoropyrimidines, platinum, irinotecan, 
or taxanes reduces the treatment toxicities or improves 
chemotherapy outcomes in patients with cancer. While the 
level of stringent evidence demanded for formal utilization 
in clinical practice has not been met, SNPs of MTHFR, 
TYMS, ERCC1, XRCC1, GSTP1, CYP3A4/3A5 and 
ABCB1 might be analyzed in selected clinical scenarios, 
resulting particularly useful when auxiliary information 
are needed to inform therapeutic decisions. However, 
in most cases these polymorphisms are associated 
with a demonstrated and significantly increased or 
decreased chemotherapeutic exposure and can be used in 
pretreatment screening for optimizing dosage regimens. 
Furthermore, at present, the germinal characterization of a 
limited number of SNPs involves a simple methodological 
approach that is easy to use, not expensive, reliable, and 
highly reproducible. SNPs genotyping is performed 
on a whole blood sample using commercial kits based 
primarily on a first DNA extraction step and a subsequent 
analysis based on allele-specific PCR, real-time PCR or 
direct sequencing [192]. The interpretation of the results, 
which are limited to the identification of a wild type, 
heterozygous or homozygous variant, can be performed 
in most common institutions, without the requirement of 
additional equipment, softwares or specialized personnel. 
Table 6 depicts a short diagram organized as a traffic light 
coloring scheme: it uses the colors green for the genotypes 
not related to any risk, the yellow and orange colors to 
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Table 6: A “traffic light” scheme for identifying genotypes
Fluoropyrimidines

DPYD

IVS14+1G>A GG GA AA

T1679G TT TG GG

Heterozygous genotype causes toxicity: 
administration of 50% of therapy 

Homozygous genotype causes sever 
toxicity: therapy is contraindicated

A2846T AA AT TT

MTHFR
C677T CC CT TT T allele increases Fluoropyrimidines 

cytotoxicity

A1298C AA AC CC C allele increases Fluoropyrimidines 
cytotoxicity

TYMS

2R/3R repeat 2R/2R 2R/3R 3R/3R
3R allele is correlated to 

Fluoropyrimidines resistence and low 
cytotoxicity

3R G/C 3R G/G 3R G/C 3R C/C C allele increases Fluoropyrimidines 
cytotoxicity

1494 ins/del 6b Ins/Ins Ins/Del Del/Del Del allele increase toxicity and sensitivity 
to Fluoropyrimidine therapy

Platinum

ERCC1
C8092A CC CA AA A allele increases Platinum genotoxicity

T19007C TT TC CC C allele increases Platinum genotoxicity

XRCC1 G28152A GG GA AA A allele increases Platinum genotoxicity

GSTP1 A313G AA AG GG G allele increases Platinum genotoxicity

Iirinotecan

UGT1A (TA)6/7 (TA)6/6 (TA)6/7 (TA)7/7 (TA)7/7 genotype reduced glucuronation 
efficiency: reduction of 30% of therapy

ABCB1 C3435T CC CT TT T allele causes the reduction of drug 
clearance by increasing toxicity risk

CYP3A4 -A392G AA AG GG G allele correlate with lower Irinotecan 
toxicities

CYP3A5 A6986G AA AG GG A allele correlate with lower irinotecan 
toxicities

Taxanes

ABCB1
C3435T CC CT TT T allele causes the reduction of drug 

clearance and increases the toxicity risk

C1236T CC CT TT T allele causes the reduction of drug 
clearance and increases the toxicity risk

CYP3A4 -A392G AA AG GG G allele increases drug detoxification 
determining worse clinical outcome

CYP3A5 A6986G AA AG GG G allele decreases drug detoxification 
with lower risk of toxicities

Green areas where the risk is absent. Yellow and orange areas where the risk is poorly or highly likely respectively. Red 
areas where the risk is high and proven by clinical observations.
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indicate genotypes likely related to a poorly or highly risk 
respectively. Finally, the red color indicates a high risk 
and proven by clinical observations genotype (Table 6). 
In this context, while no therapeutic adjustments can be 
recommended merely on the basis of the genotype of these 
genes, it is our opinion that such genomic information may 
be assessed among the multiple factors contributing to the 
final clinical decision, along with patient age, performance 
status, laboratory findings, and many other parameters.

The advent of –omic sciences is rapidly 
transforming cancer care. New-generation sequencing 
technologies have propelled the recognition of 
molecularly distinct subclasses of tumor histotypes, 
allowing a more personalized preselection of treatments 
for cancer patients. However, by focusing on tumor 
genomics, -omic research has often neglected germline 
genomics, and while considerations on intra- and inter-
tumor molecular differences are usually incorporated in 
therapeutic decisions, inter-individual genomic differences 
are limitedly considered in current clinical practice.

What is the impact of complex, multi-gene 
germline profiles on treatment outcomes? Can the 
germline profiling add clinically meaningful information 
beyond tumor molecular profiling? Should clinical trials 
be enriched of patients with similar germline genetics, 
rather than similar tumor genotypes? Future research is 
warranted to answer these questions, among others.
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