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ABSTRACT

Colorectal cancer (CRC) is one of the most common cancers in humans and a 
leading cause of cancer-related deaths worldwide. As in the case of other cancers, 
CRC heterogeneity leads to a wide range of clinical outcomes and complicates 
therapy. Over the years, multiple factors have emerged as markers of CRC 
heterogeneity, improving tumor classification and selection of therapeutic strategies. 
Understanding the molecular mechanisms underlying this heterogeneity remains a 
major challenge. A considerable research effort is therefore devoted to identifying 
additional features of colorectal tumors, in order to better understand CRC etiology 
and to multiply therapeutic avenues. Recently, long noncoding RNAs (lncRNAs) have 
emerged as important players in physiological and pathological processes, including 
CRC. Here we looked for lncRNAs that might contribute to the various colorectal 
tumor phenotypes. We thus monitored the expression of 4898 lncRNA genes across 
566 CRC samples and identified 282 lncRNAs reflecting CRC heterogeneity. We 
then inferred potential functions of these lncRNAs. Our results highlight lncRNAs 
that may participate in the major processes altered in distinct CRC cases, such 
as WNT/β-catenin and TGF-β signaling, immunity, the epithelial-to-mesenchymal 
transition (EMT), and angiogenesis. For several candidates, we provide experimental 
evidence supporting our functional predictions that they may be involved in the 
cell cycle or the EMT. Overall, our work identifies lncRNAs associated with key CRC 
characteristics and provides insights into their respective functions. Our findings 
constitute a further step towards understanding the contribution of lncRNAs to CRC 
heterogeneity. They may open new therapeutic opportunities.
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INTRODUCTION

According to the latest statistics, colorectal cancer 
is the third most common cancer in men worldwide 
(746,000 cases, representing 10% of all cases) and the 
second in women (614,000 cases, 9.2% of all cases) 
[1]. One of the key obstacles to devising strategies for 
prognosis and treatment (e.g., anti-EGFR therapies) 

is CRC heterogeneity [2]. Nevertheless, a variety of 
molecular features have helped clinicians to better classify 
various types of colorectal tumors and scientists to better 
understand the molecular defects causing colorectal 
adenomas and carcinomas [3–5]. Such characteristics can 
be associated with prognosis and/or response to treatment 
and have been used to identify CRC subtypes [4, 6, 7]. 
The most commonly used molecular features include: (i) 
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microsatellite instability (MSI) caused by a deficient DNA 
mismatch repair (MMR) machinery [7], (ii) chromosome 
instability (CIN) resulting from mutations in the APC gene 
[8], (iii) the CpG island methylator phenotype (CIMP), 
and (iv) KRAS, BRAF, and TP53 gene mutations. 
Unfortunately, CRC cases which may seem similar in 
terms of these molecular characteristics can have different 
outcomes or responses to treatment [2, 4, 5, 9]. This 
explains current efforts to discover additional features and 
new dimensions for describing and understanding CRC 
heterogeneity. The main focus of this quest has been on 
gene expression profiles (GEPs). These have been used, 
along with the above-mentioned molecular features, to 
distinguish up to six distinct CRC subtype [5, 10–12]. 
Such studies confirm how complex the etiology of CRC 
can be. Their findings help to explain the divergent fates 
of molecularly similar cases, as tumors with distinct GEPs 
may share similar molecular characteristics [12]. 

While GEPs are an invaluable resource in our effort 
to better understand tumor physiology, they have so far 
focused mostly on protein-coding mRNAs [4, 5, 12]. 
More recently, high-throughput sequencing has revealed 
the considerable size of the noncoding transcriptome [13], 
highlighting multiple “classes” of noncoding RNAs. One 
such class consists of long noncoding RNAs (lncRNAs), 
some of which have been shown to be functional  
[14, 15]. A long noncoding RNA is a transcript more 
than 200 bp long, which is often polyadenylated and 
spliced but which does not code for a protein product 
[16]. According to recent studies, the human genome 
could contain up to 48,000 lncRNA genes [17], i.e. more 
than twice the number of coding genes. Yet investigators 
have only just begun to study the functions of lncRNAs. 
Evidence already suggests that lncRNAs could be 
involved in nearly all aspects of cell function, from the 
regulation of pluripotency and proliferation to the etiology 
of diseases including cancer [15, 18–20]. Multiple teams 
have revealed individual lncRNAs that contribute to 
CRC, e. g. MALAT1, which promotes cell proliferation 
and migration [21], CCAT-1, which regulates chromatin 
conformation [22], and BANCR, which regulates EMT 
[23]. It remains unclear, however, in which types of CRC 
these lncRNAs intervene. Others have exploited lncRNA 
gene expression profiles to identify CRC subtypes, using 
them to define new tumor groups not discernable on the 
basis of mRNA levels [24]. These findings hint at potential 
contributions of lncRNAs to CRC and support the idea 
that long noncoding transcripts should be integrated 
into subtyping strategies. Much remains to be learned, 
however, to understand their functions and to fully assess 
their contribution to CRC heterogeneity.

To our knowledge, no genome-scale effort has been 
made to identify lncRNAs associated with colon cancer 
heterogeneity and to explore their potential functions. In 
the present study, we have used microarray data generated 
from 566 extensively annotated CRC samples from the Gene 

Expression Omnibus (GEO) public repository. To study the 
possible contribution of 4898 lncRNAs to pathways driving 
CRC diversity, we looked for transcripts whose levels 
correlated with the following heterogeneity and outcome 
markers: tumor location, genome-scale molecular alterations, 
oncogene mutations, mRNA-based CRC subtypes, and 
relapse-free survival (RFS). We then inferred functions of 
relevant transcripts and studied the in vitro consequences 
of depleting cells of several candidate lncRNAs in the light 
of their predicted functions. Overall, this work explores the 
lncRNA landscape across tumor diversity and investigates 
the potential functions of heterogeneity-associated lncRNAs. 
Our findings thus help create a better and more complete 
picture of the complex molecular networks at play in distinct 
CRC cases. We trust that this will pave the way to new 
prognostic and therapeutic opportunities. 

RESULTS

Certain lncRNA genes are differentially 
regulated according to essential anatomical and 
genome-related characteristics of CRC

Our initial aim was to identify lncRNAs which 
might contribute to CRC heterogeneity. We reasoned that 
the corresponding genes should show particular expression 
patterns in relation to tumor characteristics. We thus used 
a large cohort of colorectal tumors and looked for lncRNA 
genes differentially expressed according to key molecular 
and anatomical features commonly used to characterize 
CRC [8]. We focused on tumor location (distal or 
proximal), CpG Island Methylator Phenotype status (CIMP 
positive or negative), Mismatch Repair (MMR) machinery 
status (deficient or proficient), and Chromosome Instability 
status (CIN high or CIN low), as associations have been 
evidenced between these features and CRC subtypes 
based on mRNA [12] and lncRNA [24] profiles. We stress 
that our aim was not to distinguish groups of tumors but 
to identify lncRNA genes whose expression level varies 
according to the presence or absence of a particular feature. 

Array-based gene expression data were downloaded 
from the Gene Expression Omnibus (GEO) public 
repository. We selected the GSE39582 dataset for the 
following reasons: (i) it is, to our knowledge, the largest 
cohort (n = 566) of colorectal tumor samples with GEP 
data arising from the same study; (ii) each tumor has been 
assigned to a robust mRNA-based CRC subtype, and 
(iii) the dataset contains extensive clinical information, 
including relapse-free survival data (Figure 1A and 
Supplementary Table 1). All probe sets present on the 
Affymetrix Human Genome U133 Plus 2.0 array were 
reassigned in order to monitor levels of 14851 mRNAs 
and 4898 lncRNAs (Supplementary Table 2). 

We first focused on the MMR status. Because 
the status of the mismatch repair machinery reflects 
microsatellite stability/instability, it is one of the three 
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main molecular characteristics used to describe colorectal 
tumors [7, 8]. The tumors of the studied cohort were 
described as either MMR-deficient (dMMR) or MMR-
proficient (pMMR). Upon comparing the expression levels 
of the 4898 lncRNA genes in pMMR and dMMR tumors, 
we found 55 lncRNA genes to be differentially expressed 
between the two groups (for dMMR versus pMMR: 0.67 
> FC > 1.5, FDR < 0.05) (Figure 1B and Supplementary 
Table 3). According to the adopted criteria, twenty-one 
lncRNA genes displayed higher expression and 34 showed 
lower expression in the dMMR tumors. It is noteworthy 
that the gene corresponding to lnc-OR10H5-2 (commonly 
called UCA1), whose overexpression is well known in 
CRC tissues and associated with poorer prognosis [25], 
was lower in the dMMR tumors (FC = 0.59, FDR = 0.006, 
Figure 1C). 

CIMP status (positive or negative), commonly 
defined on the basis of the DNA methylation patterns 
of the promoters of 4-8 protein-coding genes [26–28], 
is another major molecular feature used to characterize 
CRC tumors [2]. As shown in Figure 1B, we found 36 
lncRNA genes to be differentially expressed in CIMP-
positive versus CIMP-negative tumors. Twelve showed 
higher expression and 24 displayed lower expression in 
the CIMP-positive tumors (Figure 1B and Supplementary 
Table 3). Interestingly, the greatest difference between 
CIMP-positive and CIMP-negative tumors was observed 
for lnc-AC009336.1-2 (commonly called HAGLR) (Figure 
1C), a lncRNA linked to neuroblastoma progression [29]. 
We thus compared the expression of HAGLR in tumor 
versus normal tissues in the colon adenoma dataset 
downloaded from The Cancer Genome Atlas (TCGA) 
database (see Materials and Methods). HAGLR was 
found to be downregulated in tumor samples (n = 155) as 
compared to normal tissue (n = 19) (Supplementary Figure 
1A). Next, to examine the DNA methylation landscapes 
of the 36 identified “CIMP-lncRNA” genes in CRC, we 
downloaded and reannotated the Infinium 450 k data from 
the TCGA database [4] (see Materials and Methods). Of 
the 36 lncRNA genes differentially expressed according 
to CIMP status, 28 were represented on the methylation 
array. Of these, seven - including HAGLR - displayed 
differentially methylated regions in colorectal tumors as 
compared to normal tissue (Supplementary Figure 1B–1C 
and Supplementary Table 3). 

The third most commonly used molecular descriptor 
of CRC is the CIN status [3] (high or low). We found ten 
lncRNA genes to show higher expression and eight to show 
lower expression in CIN-high than in CIN-low tumors 
(Figure 1B and Supplementary Table 3). Intriguingly, 
HAGLR appeared to be downregulated in CIN-high 
tumors (FC = 0.46, FDR = 6.11E-08, Figure 1C). 

Only five lncRNA genes showed differential 
expression in distal versus proximal samples. The levels of 
all five transcripts were higher in distal tumors (Figure 1B  
and Supplementary Table 3). Although differences in 

molecular features and outcome have been evidenced in 
previous studies [7], we show here that lncRNAs are part 
of the molecular profile distinguishing proximal from 
distal tumors. 

Overall, we found 64 unique lncRNA genes showing 
differential expression according to the tumor site or the 
MMR, CIMP, or CIN status. Supplementary Table 3 
provides the detailed list of these lncRNAs, highlighting 
associations between lncRNA gene expression and CRC 
heterogeneity. Expression profiles limited to these 64 genes 
were established for the 566 studied tumors (Figure 1D). 
Supervised consensus clustering of the tumors on the basis 
of these profiles (Figure 1E and Supplementary Figure 2) 
revealed, as expected, associations with each of the studied 
features.

TP53, BRAF, and KRAS mutations are 
associated with differential lncRNA expression

Previous studies having revealed the existence of a 
BRAF-activated lncRNA involved in CRC [23] and of a 
p53-regulated lncRNA [30], we reasoned that oncogenic 
mutations might influence or be associated with the 
expression levels of certain lncRNA genes. The data 
available for our cohort included mutation information 
for TP53, KRAS, and BRAF (Figure 2A). As shown in 
Figure 2B, only two lncRNA genes showed differential 
expression in tumors with a TP53 or KRAS mutation as 
compared to wild-type tumors. Interestingly, lnc-multi-
POTEM-2 appeared upregulated in TP53-mutant tumors 
but downregulated in KRAS-mutant tumors (Figure 2C 
and Supplementary Table 3). Fifty-five lncRNAs showed 
differential regulation in BRAF-mutant as compared to 
wild-type tumors (Figure 2B and Supplementary Table 3).  
When a BRAF mutation was present, lnc-ITGB8-4 
showed the strongest downregulation and HAGLR, the 
strongest upregulation (Figure 2D). 

Of the 4898 lncRNA genes whose expression we 
monitored, 59 showed significantly higher or lower 
expression in tumors harboring a mutation in BRAF, 
KRAS, or TP53 (Supplementary Table 3). Our results 
thus reveal new lncRNAs which may be affected by 
these mutations commonly found in CRC. We believe 
that additional mutation-status-associated lncRNAs will 
emerge as relevant data become available. 

lncRNA levels vary across CRC subtypes

Large cohorts of heterogeneous tumors can be 
classified into subtypes based on both mRNA expression 
profiles and the above-mentioned clinical characteristics 
[12]. These subtypes can in turn be studied individually to 
reveal specificities useful in selecting appropriate treatment 
solutions [5, 9, 19, 31]. Pursuing our search for lncRNAs 
which may contribute to tumor diversity, we sought to 
identify transcripts displaying subtype-associated patterns 
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of expression. On the basis of mRNA expression profiles, 
Marisa et al. have described six CRC subtypes (Figure 3A 
and Supplementary Table 1) associated with molecular 
and clinical characteristics as well as disease outcome 
[12]. To find lncRNA genes distinctively expressed in a 
particular subtype, we compared the mean expression level 
of each of the 4898 lncRNA genes in each subtype with 
the mean of the means of the other subtypes (because of 
this ‘one versus all others’ approach, we use below the 
term “distinctive expression” rather than “differential 
expression” to describe the results). We identified 160 
unique lncRNA genes showing particularly high or low 
expression in at least one subtype. Clustering of the tumors 
according to these 160 unique lncRNA gene expression 
profiles revealed six significant clusters (Figures 3B and 
Supplementary Figure 3), but only two of these appeared 
almost exclusively enriched in a single subtype (see the 
boxed profiles corresponding to the magenta cluster, rich 
in C3, and the green cluster, rich in C4). 

The lncRNAs showing up- or downregulation in 
each subtype are detailed below.

C1 subtype 

As shown in Figure 3C, 21 lncRNA genes displayed 
distinctive expression (11 high and 10 low) in the C1 
subtype. Among the downregulated transcripts, lnc-
PARD3B-4 (also called AK024680) has been associated 
previously with disease outcome [32]. 

C2 subtype

 In this subtype, 38 lncRNAs were downregulated 
and 13 were upregulated (Figure 3C). The lncRNA FTX 
(identified here as lnc-RLIM-2), linked to regulation of the 
XIST noncoding transcript [33], was downregulated (FC = 
0.44, FDR = 8.12E-21, Figure 3D). 

C3 subtype 

In this subtype, 19 lncRNAs were downregulated and 
23 were upregulated (Figure 3C). In particular, LINC00261 
(lnc-FOXA2-2), involved in EMT regulation [34], was 
upregulated (FC = 5.18, FDR = 2.14E-14, Figure 3D). 

C4 subtype

 We found 108 distinctively regulated lncRNA 
genes, 40 downregulated and 68 upregulated (Figure 3C).  
We notably found H19 (lnc-C11orf89-2) and lnc-
FAM172A-2 to be upregulated in C4 samples (FC = 3.63 
and FC = 1.6, respectively, FDR < 0.001, Figure 3D and 
Supplementary Figure 4A). 

C5 subtype

Our analysis associated 20 lncRNA genes with the 
C5 subtype (5 downregulated, 15 upregulated genes) 
(Figure 3C). In this subtype, we observed downregulation 
of LINC01207 (identified here as lnc-C4orf39-2), which 
promotes cell proliferation in lung adenocarcinoma [35] 
(FC = 0.452816992, FDR = 4.09E-11, Figure 3D). 

C6 subtype 

In the C6 subtype, 20 lncRNA genes showed 
distinctive expression. The levels of four lncRNAs were 
lower in this subtype than in any other, while another 16 
lncRNAs were upregulated (Figure 3C). Interestingly, 
CRNDE (FC = 0.4, FDR = 0.0001, Figure 3D) appeared 
downregulated, whereas it was upregulated in subtype-C5 
tumors (Supplementary Table 3). 

CRC subtypes have been defined on the basis of 
mRNA profiles. Specific mRNA expression profiles 
have revealed driving pathways in each set of tumors 
[12] whereas the analysis of distinctive lncRNA gene 
expression in these subtypes potentially extends the 
pools of molecules contributing to these diverse tumor 
phenotypes. We believe that such transcripts might 
represent a new set of diagnostic or prognostic markers or 
therapeutic targets.

lncRNAs are associated with relapse-free 
survival in CRC

RFS is another parameter capturing tumor 
heterogeneity. We thus used both uni- and multivariate 
analyses to seek associations between lncRNA gene 
expression profiles and RFS. We performed a Cox 

Figure 1: In CRC, the expression levels of 64 lncRNA genes vary according to specific tumor characteristics. (A) 
Description of the colorectal cancer tissue samples analyzed in this study. (B) Numbers of lncRNA genes showing differential regulation 
(1.5 > FC < 0.67; FDR <  0.05) according to tumor location and/or MMR, CIN, and/or CIMP status. (C) Box plots displaying the expression 
levels of selected differentially regulated lncRNA genes taken as examples. UCA1 was downregulated (FC = 0.59, FDR = 0.006) in 
tumors with a deficient mismatch repair machinery (dMMR). HAGLR displayed the highest fold change (FC = 2.14, FDR = 3.10E-07) in 
CIMP-positive (CIMP+) versus CIMP-negative (CIMP−) tumors, but it was downregulated (FC = 0.46, FDR = 6.11E-08) in tumors with 
high chromosome instability (CIN high). (D) Heatmap illustrating the expression profiles of the 64 unique lncRNA genes differentially 
expressed according to the tumor location and/or the MMR, CIN, and/or CIMP status. (E) Supervised clustering of the CRC samples 
according to their lncRNA gene expression profiles based on the 64 genes just mentioned. P-values were assessed with a t-test and corrected 
for multitesting with the Benjamini-Hochberg method. Box plot description: the bold line is the median, the borders of each box are the first 
and third quartiles, and the whiskers (error bars) are the most extreme expression values not greater than 1.5 times the interquartile range. 
The notches represent the 95% confidence interval.
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Figure 2: lncRNA gene expression levels depend on the oncogene mutation status in CRC. (A) Description of the cohort 
as regards oncogene mutations. (B) Number of differentially expressed lncRNA genes per mutation. (C) Box plots displaying expression 
levels of certain lncRNA genes taken as examples. lnc-multi-potem2 was upregulated in tumors with a mutation in the TP53 gene (FC = 1.8, 
FDR = 0.005) but downregulated in tumors with a KRAS mutation. (D) In tumors with a BRAF mutation, lnc-ITGB8-4 was downregulated  
(FC = 0.35, FDR = 0.001) whereas HAGLR was upregulated (FC = 3.10, FDR = 2.72913E-09). P-values were assessed with a t-test and 
corrected for multitesting with the Benjamini-Hochberg method. Box plot description: the bold line is the median, the borders of the box are 
the first and third quartiles, and the whiskers (error bars) are the most extreme expression values not greater than 1.5 times the interquartile 
range. The notches represent the 95% confidence interval. 
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Figure 3: lncRNA gene expression patterns vary across CRC subtypes. (A) Distribution of six mRNA-profile-based CRC 
subtypes [12] in the studied cohort. (B) Supervised clustering of tumors based on their lncRNA gene expression profiles. The profiles 
were based on levels of 160 unique lncRNAs identified as distinctively regulated in at least one subtype. (C) Number of distinctively 
regulated lncRNAs in each colorectal cancer subtype. The average expression level of an lncRNA in a given subtype is compared to its 
average level in all remaining subtypes. An lncRNA was considered to be distinctively regulated in a subtype when the fold change was 
above 1.5 or below 0.67 (FDR < 0.05) (D) Box plots illustrating the distinctive regulation of exemplative lncRNAs in given subtype. 
lnc-PARD3B-4 (also identified as AK024680), was downregulated (FC = 0.6, FDR = 8.7E-25) in C1-subtype tumors. lnc-RLIM-2 (also 
identified as FTX), was downregulated (FC = 0.44, FDR = 8.12E-21) in C2-subtype tumors. lnc-FOXA2-2 (also identified as LINC00261), 
appeared upregulated (FC = 5.18, FDR = 2.14E-14) in C3-subtype tumors as compared to all the other subtypes. H19 (identified here as 
lnc-C11orf89-2), was upregulated (FC = 3.6, FDR = 1.2E-06) in the C4 subtype. LINC01207 (identified here as lnc-C4orf39-2), appeared 
downregulated (FC = 0.45, FDR = 4.09E-11) in the C5 subtype. lnc-IRX3-4 (also identified as CRNDE), was downregulated (FC = 0.4, 
FDR = 0.0001) in the C6 subtype. P-values were assessed with t-test and corrected for multitesting with the Benjamini-Hochberg method. 
Box plot description: the bold line is the median, the borders of the box are the first and third quartiles and the whiskers (error bars) are 
the most extreme expression values not greater than 1.5 times the interquartile range. The notches represent the 95% confidence interval.
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regression analysis for each of the 4898 lncRNAs, using 
the array and RFS data pertaining to the GSE39582 
cohort. In our multivariate analysis we included the 
mismatch repair machinery status, the KRAS mutation 
status, and the disease stage as covariables, chosen for 
their strong association with RFS in the univariate Cox 
regression analyses (Supplementary Table 6). We did not 
limit our analyses to a specific time window but used the 
full extent of the RFS data available (see Materials and 
Methods). As shown in Figure 4A, we found in both the 
uni- and multivariate analyses a significant association 
between the expression levels of 105 lncRNA genes and 
relapse-free survival time (Hazard ratio (HR) < 0.67, 
HR>1.5; p < 0.05). The list of these genes is supplied 
in Supplementary Table 3. The observed correlation was 
positive for 51 of these genes and negative for 54 of them 
(Figure 4A–4B), and in what follows the corresponding 
lncRNAs are respectively called ‘RFS-positive’ and 
‘RFS-negative’ lncRNAs. Hazard ratios (HR) across 
all 105 lncRNAs ranged from 9.3 to 0.2 (Figure 4B 
and Supplementary Table 3). Among the RFS-positive 
lncRNAs, lnc-PLA2G7-2 was the most significantly 
associated with RFS in the univariate analysis (HR = 
0.27, p = 0.000835), remaining a top predictor in the 
multivariate analysis (HR = 0.25, p = 0.000485). Figure 
4C shows a Kaplan–Meier curve for the association of 
lnc-PLA2G7-2 with RFS, where patients with high 
expression of this lncRNA (red curve) display a lower 
relapse tendency. Figure 4D, on the other hand, shows 
a Kaplan–Meier curve for lnc-FAM172A-2, which was 
negatively associated with RFS. This effect was most 
significant in the univariate analysis (HR = 1.9, p = 
1.4E-06) but FAM172A-2 remained a top predictor in the 
multivariate analysis (HR = 1.84, p = 3.31E-05) (Figure 
4B and Supplementary Tables 6–7). 

In all, we identified 282 unique long noncoding 
genes on the basis of associations with tumor location, 
genome-scale molecular features, oncogene mutations, 
CRC subtypes, or RFS. To gain further insight into their 
potential contribution to CRC heterogeneity, the next 
step was to investigate their potential functional roles in 
colorectal cancer.

Feature- and subtype-related lncRNAs are 
associated with key CRC-related processes

We used guilt-by-association (GbA) analysis [36] 
(see Materials and Methods) to gain insights into potential 
functions of the 282 identified lncRNAs. Briefly, we 
computed a correlation matrix for each of these lncRNAs 
and the protein-coding mRNAs corresponding to 70 gene 
sets. The gene sets spanned five major aspects of tumor 
biology (cell adhesion, metabolism, cell cycle, immunity, 
and signaling pathways) and other relevant biological 
processes such as the epithelial-to-mesenchymal transition 

and angiogenesis (Supplementary Tables 8 and 9). We then 
used the correlation coefficients to generate ranked lists 
of mRNAs for each of the 282 lncRNAs and subjected 
these lists to Gene Set Enrichment Analysis (GSEA)  
[37, 38]. This yielded Normalized Enrichment Scores 
(NESs) associating each of the 282 selected lncRNAs 
with each of the 70 gene sets (Supplementary Figure 5). 
Then all NESs pertaining to lncRNAs of the same group, 
i.e., lncRNAs associated with the same clinical parameter 
(CIMP status, CRC subtype, RFS…), were aggregated 
to obtain an Enrichment Metascore (EM) describing the 
relationship between a given group of lncRNAs and a 
particular gene set. We then focused on significant (FDR < 
0.05) EMs. This provided insights into potential functions 
of lncRNAs associated with the studied markers of tumor 
heterogeneity. 

No significant EMs were observed for the lncRNAs 
associated with tumor location or with a KRAS or P53 
mutation. Figure 5A shows the numbers of lncRNAs 
associated with the MMR, CIMP, CIN, and BRAF statuses 
(left panel) and a heatmap of their respective EM profiles, 
describing their relation to gene sets (right panel). MMR-
, CIMP-, and BRAF-associated lncRNAs shared rather 
similar Enrichment Metascore profiles, quite different 
from that of the CIN-associated lncRNAs. In the following 
sections we describe the putative functions of lncRNAs 
associated with key CRC characteristics.

MMR-associated lncRNAs

This was the only group showing a significant 
association with the DNA repair gene set (EM = 22.1, 
FDR < 0.01) (Figure 5A, right panel, blue arrows). We 
observed a unique association between MMR-associated 
lncRNAs and the reactive oxygen species (ROS) (EM = 
16.8, FDR < 0.001) and mTORC1 gene sets (EM = 32.6, 
FDR < 0.05) (Figure 5A, right panel, blue arrows). It is 
noteworthy that this group was also strongly and positively 
associated with the inflammation (EM = 74.85, FDR < 
0.05), interferon α/γ (EM = 87.97, FDR < 0.01), and IL6/
JAK-STAT3 (EM = 57.91, FDR < 0.05) gene sets (Figure 
5A, red frame). These results show that the lncRNAs 
showing differential regulation in dMMR versus pMMR 
tumors might influence interactions with components of 
the immune system. 

CIMP-associated lncRNAs

as seen in Figure 5A, this group also exhibited 
positive associations with the inflammation (EM = 67.35, 
FDR < 0.001), interferon α/γ (EM = 68.01, FDR < 0.001), 
and IL6/JAK-STAT3 (EM = 44.40, FDR < 0.01) gene sets 
(red frame). CIMP-associated lncRNAs, however, were 
distinguished by their association with the NFκB/TNFα 
(EM = 53.80, FDR < 0.05) gene set. 
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CIN-associated lncRNAs

 had a very distinct EM profile. They only showed 
negative EMs, for adipogenesis (EM = −8.01, FDR < 
0.05) and for fatty acid metabolism (EM = −9.93, FDR 
< 0.05) (Figure 5A, right panel). Our data thus highlight 
a unique relationship between CIN-positive tumors and 
adipogenesis, possibly mediated by lncRNAs. 

BRAF-mutation-associated lncRNAs

Among the highest and most significant EMs 
exhibited by BRAF-associated lncRNAs were those 
corresponding to the inflammation (EM = 91.26, FDR < 
0.001), VEGF (EM = 18.83, FDR < 0.001), and IL6/JAK-
STAT3 (EM = 59.94, FDR = 0.03) gene sets (Figure 5A, 
right panel, red frame). 

Figure 4: lncRNAs associated with the relapse-free survival time in CRC. Uni- and multivariate Cox regression analyses 
revealed 105 lncRNAs to be associated with RFS (Supplementary  Table 3).  (A) Numbers of lncRNAs positively and negatively associated 
with the RFS time. (B) Forest plot showing the log2 HR values with SDs (boxes) and 95% confidence intervals (bars). The data are 
from the relapse-free survival analysis (multivariate Cox analysis) of the five most significantly RFS-associated lncRNAs. The data for 
positively RFS-associated lncRNAS are in green and the data for negatively RFS-associated ones are in red. (C)Top: Kaplan–Meier curve 
illustrating the univariate association of lnc-PLA2G7-2 with RFS. Bottom: Multivariate analysis. (D)Top: Kaplan–Meier curve illustrating 
the univariate association of lnc-FAM172A-2 with RFS. Bottom: Multivariate analysis. K-M p = Kaplan–Meier curve associated p-value.



Oncotarget27614www.oncotarget.com

Overall, and apart from the above-mentioned 
specific associations (MMR-associated lncRNAs and 
DNA repair, CIMP-associated lncRNAs and NFκB/
TNFα), we observed strong associations with immune-
system-related gene sets and a general association with 
the VEGF signaling pathway for all groups of lncRNAs 
except CIN-associated lncRNAs. 

Next, to extend our view of the molecular networks 
involved in CRC heterogeneity, we proceeded as described 
above to generate EM profiles for the lncRNAs associated 
with each CRC subtype and to infer potential functions. In 
Figure 5B, the left panel shows the number of lncRNAs 
distinctively regulated in each subtype and the right 
panel shows the clearly distinctive EM profile of each 
subtype. These profiles are described below. All lncRNAs 
associated with CRC subtypes are listed in Supplementary 
Table 3.

C1-associated lncRNAs 

These lncRNAs notably displayed negative EMs for 
the NFκB/TNFα (EM = –39.4, FDR < 0.05), IFN α & γ 
(EM = −41.34, FDR < 0.01), and IL6/JAK-STAT3 (EM = 
–35.74, FDR < 0.001) gene sets (red frame), corresponding 
to essential immunity-related pathways. C1-associated 
lncRNAs also exhibited negative correlations with the 
angiogenesis (EM = –32.36, FDR < 0.01) and EMT (EM 
= –55.55, FDR < 0.05) gene sets (green frame). 

C2-associated lncRNAs

 These lncRNAs showed positive EMs for all gene 
sets negatively associated with the C1-associated group: 
C2-associated lncRNA levels were found to correlate 
tightly with those of mRNAs involved in the NFκB/TNFα 
and IL6/JAK-STAT3 pathways (Figure 5B, right panel, 
red frame). As C2-subtype tumors exhibit a highly active 
immune system signature [12], our results suggest that 
lncRNAs identified here may contribute to the different 
immune response behaviors of these two subtypes. 

C3-associated lncRNAs

This group exhibited the most negative EMs for 
motility-related gene sets, i.e. the cell adhesion (EM = 
–43.14, FDR < 0.05), myogenesis (EM = –54.81, FDR < 
0.01), angiogenesis (EM = –64.3, FDR < 0.001), and EMT 
(EM = –115.4, FDR < 0.001) gene sets. These results tally 
with previous observations describing this subtype as 
having a weak mRNA-based motility signature [12].

C4-associated lncRNAs

 This subtype differs strongly from the C3 subtype 
in terms of clinical outcome [12]. C4-associated and 
C3-associated lncRNAs displayed opposite EM profiles 
(Figure 5B, right panel, black frames), since the C4-

lncRNAs had the most positive EMs for the cell adhesion 
(EM = 158.89, FDR < 0.001), myogenesis (EM = 174.50, 
FDR < 0.001), angiogenesis (EM = 190.94, FDR < 0.001), 
and EMT (EM = 340.01, FDR < 0.001) (Figure 5B, right 
panel, green frame) gene sets. These associations highlight 
the importance of the EMT-angiogenesis axis in CRC 
etiology, while suggesting it may involve an lncRNA 
component. 

C5-associated lncRNAs

This group appeared associated only with the 
WNT/β-catenin signaling data set, in a positive manner 
(EM = 6.64, FDR < 0.05) (Figure 5B, right panel). 
This constitutes additional evidence that this pathway 
is particularly dominant in these tumors [5, 12]. It is 
noteworthy that CRNDE, which appears upregulated in 
this subtype (Supplementary Figure 4B), has recently been 
demonstrated to promote renal carcinoma cell proliferation 
via the WNT/β-catenin pathway [39].

C6-associated lncRNAs

The lncRNAs showing distinctive regulation in the 
C6 subtype appeared associated only with the fatty acid 
metabolism gene set (EM = 12.45, FDR < 0.05) (Figure 
5B, right panel). 

The above analyses highlight important potential 
functions for subtype-associated lncRNA genes, as their 
expression levels correlate tightly with those of well-
described sets of coding genes. These findings give 
additional support to the essential nature of some pathways 
or processes (EMT, angiogenesis, IL6/JAK-STAT3, WNT/
β-catenin) in different types of CRC, while adding a new 
molecular dimension to their networks. 

Relapse-associated lncRNAs

 To gain insight into the potential roles of the 105 
lncRNAs identified here as associated with RFS (see 
Figure 4), we separated them into two categories: those 
negatively associated (RFS-negative) and those positively 
associated (RFS-positive) with survival (Figure 5C, left 
panel). We then generated Enrichment Metascores (EMs) 
for each category separately. The right panel of Figure 5C 
shows a heat map of the most significant EMs associated 
with these two groups of lncRNAs. As expected, we 
observed a striking difference in EM directionality. We 
found the RFS-negative lncRNAs to correlate positively 
with the KRAS Signaling Down gene set (EM = 48.56, 
FDR < 0.001) and the RFS-positive lncRNAs to correlate 
negatively with it (EM = –62.03, FDR < 0.001) (Figure 
5C, right panel, blue arrow). The two groups of lncRNAs 
also showed opposite associations with the genes 
downregulated by VEGF A activation (red arrow). This 
again highlights the importance of this axis in CRC. 
We additionally found a negative correlation between 
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RFS-negative lncRNAs and gene sets involved in cell 
cycle regulation (Cell cycle EM = –55.13, FDR < 0.01 
and G2M Checkpoint EM −93.60, FDR < 0.001), while 
RFS-positive lncRNAs showed no significant correlation 
with these gene sets (Figure 5C, right panel, green 
arrows). RFS-positive lncRNAs did display a positive 
correlation with the following immune-system-related 
gene sets: TGF-β (EM = 40.01, FDR < 0.05), IFNα & γ 
(EM = 59.06, FDR < 0.01), and androgen response (EM = 
56.45, FDR < 0.001) (Figure 5C, right panel, red frame). 
These observations highlight the potential contribution of 
lncRNAs to key pathways known to contribute to CRC 
outcome [4, 5]. Furthermore, the evidenced correlations 
between RFS-associated lncRNAs and less described 
pathways suggest new possible roles for these pathways 
in the context of CRC. 

Overall, these results give lncRNAs a place in 
important processes related to colorectal cancer and shed 
new light on their involvement in the various avenues 
leading to this complex disease. Our findings provide a 
basis for further experimental investigation of lncRNA-
related mechanisms. Such studies may yield new 
therapeutic opportunities for colorectal and other cancers. 

Functional characterization of identified 
lncRNAs: 

Having used computational approaches to generate 
our functional hypothesis regarding the 282 heterogeneity-
associated lncRNAs, we then selected three lncRNAs for 
further in vitro functional characterization and to bring 
experimental support to their potential functions inferred 
from the GbA analysis. We selected lnc-BLID-5, lnc-
GNB4-1 and lnc-AKAP3-1 for the following reasons: 
(i) the first two transcripts displayed upregulation in the 
C4 “EMT-active” subtype and direct correlation with the 
EMT and cell migration gene sets, while lnc-AKAP3-1 
was selected for its upregulation in the C3 “EMT-weak” 
subtype and its negative correlation with the EMT gene set 
(Supplementary Figure 6A and 6C), (ii) ZEB1, a master 
regulator of EMT [9], was among the top mRNAs whose 
levels correlate with the expression levels of lnc-BLID-5 
and lnc-GNB4-1 (Supplementary Figure 6B) and (iii) 

lnc-BLID-5 and lnc-GNB4-1 correlated negatively with 
the cell cycle gene set, but only lnc-GNB4-1 showed 
a significant correlation. lnc-AKAP3-1 displayed no 
significant association with this gene set (Supplementary 
Figure 6C). 

To assess the function(s) of these lncRNAs, we 
performed RNA-interference-mediated knockdown in 
the following colon carcinoma cells: HCT-116, RKO, and 
HT-29 (see Material and Methods). These cell lines were 
selected as they possess distinct molecular features [40]. 
It is worth noting that HCT-116 and RKO cells display 
microsatellite instability (dMMR) and are both CIMP 
positive but CIN negative. These cell lines also share a 
BRAF V600E mutation while remaining of the wild type 
for TP53 and KRAS [40]. The HT-29 cell line, on the 
other hand, presents microsatellite stability (pMMR) and 
is both CIMP and CIN positive. In this cell line, the KRAS 
oncogene allele is of the wild type but both BRAF and 
TP53 are mutated. Another important feature considered 
when selecting the CRC cell lines was their EMT activity. 
Loboda et al., who have developed an EMT activity 
signature, describe the HCT-116 and RKO cells as EMT 
“active” and HT-29 cells as “not active” [10].

Candidate lncRNAs affect cell proliferation

To test the influence of our candidate lncRNAs on 
cell proliferation, we used xCELLigence technology to 
assess real time proliferation. The top panels of Figure 6A  
illustrate the average levels of depletion obtained with 
siRNA for each candidate lncRNA (see Materials and 
Methods). The bottom left panel of Figure 6A depicts the 
proliferation curves of HCT-116 cells treated with siRNAs 
against lnc-BLID-5 (blue curve), lnc-AKAP3-1 (dark 
cyan curve), and lnc-GNB4-1 (dark green curve) for 96 
hours. After 96 hours, cells treated with the control siRNA 
reached an average cellular index of 1.2 (Figure 6A, 
bottom right panel), whereas cells depleted of lnc-BLID-5 
transcripts were impaired in their proliferation and only 
reached an average cell index of 0.3 (Figure 6A, bottom 
right panel). The impact of lnc-AKAP3-1 depletion on cell 
proliferation appeared greater than that of lnc-BLID-5, as 
cells depleted of this transcript never reached an average 

Figure 5: Guilt-by-association analysis: functional predictions for selected lncRNAs. Heatmaps illustrating the pathways 
whose activation (orange to red tones) or inhibition (blue tones) correlates with the expression of clinical-parameter-associated lncRNA 
genes. To relate each group of lncRNAs to gene sets, an enrichment meta-score (EM) was computed. For example, a high EM was 
computed for CIMP-associated lncRNAs and the NFκB/TNFα gene set, indicating a tight correlation between CIMP-associated lncRNA-
gene expression levels and those of genes involved in the NFκB and TNFα signaling pathways (5A, right panel, red frame). (A) Left: 
numbers of lncRNAs differentially regulated according to the CIMP, MMR, CIN, or BRAF status. Right: EM profiles of the lncRNAs 
associated with each genomic alteration, reflecting their specific and shared associations with gene sets. (B) Left: Numbers of lncRNAs 
distinctively regulated in each of the six CRC subtypes described by Marisa et al. (C1 to C6). Right: Heatmap showing the EM profiles 
of the lncRNAs associated with each subtype, reflecting their specific and common associations with gene sets. (C) Left: Numbers of 
lncRNAs positively (RFS-Pos) or negatively (RFS-Neg) associated with relapse-free survival. Right: Heatmap showing the EM profiles 
of RFS-associated lncRNAs. Blue, yellow and red tones reflect significant (FDR <   0.05) associations with gene sets. White rectangles 
represent no significant association.
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cell index greater than 0.05 after 96 hours (Figure 6A, 
bottom right panel). Moreover, during the proliferation 
assays, the density of cells treated with an siRNA against 
lnc-AKAP3-1 decreased, possibly reflecting cell death 
and loss of adherence. When lnc-GNB4-1 was depleted in 
HCT-116 cells, these cells reached an average cell index of 
0.26 (Figure 6A, dark green curve) and also showed signs 
of cell death, as the final cell index was inferior to the 
initial one (in at least one experiment). Average levels of 
expression reached after siRNA treatment of RKO cells are 
depicted at the top of Figure 6B. Depletion of lnc-BLID-5 
in RKO cells also impaired cell proliferation (Figure 6B, 
bottom left panel, blue curve): cells treated with an siRNA 
against this transcript reached an average cell index of 
only 0.53 after 96 hours, whereas control cells averaged 
at 1.24 (Figure 6B, bottom right panel). We also found 
cells depleted of lnc-GNB4-1 and lnc-AKAP3-1 to display 
diminished proliferation, as after 96 hours they reached 
cell indexes of 0.46 and 0.51 respectively (Figure 6B, 
bottom right panel). The top panels of Figure 6C illustrate 
the achieved depletion levels in HT-29 cells. These cells 
retained their ability to proliferate when treated with lnc-
BLID-5 siRNA (Figure 6C, bottom left panel, blue curve), 
but depletion of both lnc-AKAP3-1 and lnc-GNB4-1 led 
to strikingly decreased proliferation (Figure 6C, bottom 
left panel, dark cyan and dark green curves respectively): 
HT-29 cells treated with the CTL siRNA reached a cell 
index of 1.8, while cells with reduced levels of lnc-
AKAP3-1 and lnc-GNB4-1 appeared unable to reach cell 
indexes greater than 0.5. 

Candidate lncRNAs affect cell migration

We then evaluated the effects of candidate 
knockdowns on migration, a process closely linked to 
ECM interactions and EMT [41] (the corresponding 
gene sets being directly associated with lnc-BLID-5 
and lnc-GNB4-1 and indirectly associated with lnc-
AKAP3-1, Supplementary Figure 6C). For this we used 
the xCELLigence system again, this time with fetal bovine 
serum (FBS) as a chemoattractant placed in the lower 
chamber. We monitored cell migration for 48 hours. The 
left panels of Figure 7 illustrate the migration curves of 
cells (HCT-116, RKO, and HT-29) treated with CTL 
siRNA (red curve) or with an siRNA targeting lnc-BLID-5 
(blue curve), lnc-AKAP3-1 (dark cyan curve), or lnc-
GNB4-1 (dark green curve). Migration of HCT-116 cells 
occurred after sixteen hours and appeared finished after 32 
hours. After 24 hours, control cells displayed an average 
cell index (CI) of 2, while the CI reached by cells depleted 
of lnc-BLID-5 transcripts was only 1.4 (Figure 7A, right 
panel). At the same time point, cells treated with an siRNA 
against lnc-GNB4-1 reached an average CI of 0.8. These 
observations suggest a positive influence of both of these 
lncRNAs on cell migration. In contrast, cells in which lnc-
AKAP3-1 had been knocked down appeared unchallenged 

in their ability to migrate. Compared to HCT-116, RKO 
cells displayed an eight-hour delay in the initiation of 
migration, as most of this process occurred between 24 and 
40 hours. In this cell line, lnc-BLID-5 and lnc-GNB4-1 
again appeared necessary for proper cell migration, as their 
depletion caused the average CI reached after 32 hours to 
decrease significantly (Figure 7B, right panel). As in HCT-
116 cells, lnc-AKAP3-1 depletion did not impair migration 
of RKO cells (Figure 7B, right panel). In the HT-29 cell 
line, only lnc-GNB4-1 depletion significantly affected 
migration. After 24 hours, control cells reached a CI of 3.4, 
whereas cells depleted of lnc-GNB4-1 reached an average 
CI of only 1.6 (Figure 7C, right panel). 

Because the levels of lnc-BLID-5 and lnc-GNB4-1 
correlated with those of ZEB1 mRNAs (Supplementary 
Figure 6D), we assessed the impact of their depletion on 
ZEB1 protein levels. In HCT-116 and RKO cells, both 
lnc-BLID-5 and lnc-GNB4-1 caused the ZEB1 protein 
level to drop, by ~80% and ~40% respectively (Figure 
8, left and middle panels). In HT-29 cells, the basal level 
of ZEB1 protein appeared lower than in HCT-116 and 
RKO cells (Figure 8, right), and so was the corresponding 
mRNA level (Supplementary Figure 8). Nevertheless, 
No significant reduction of the ZEB1 protein level was 
observed in HT-29 cells depleted of either lnc-BLID-5 or 
lnc-GNB4-1 (Figure 8, right panel). 

Overall, these experiments support our in silico 
predictions showing that (i) all three candidate lncRNAs 
are required for proper cell proliferation, (ii) both 
transcripts directly associated with the EMT gene set (lnc-
BLID-5 and lnc-GNB4-1) appear to favor cell migration, 
and (iii) both depletion of either of these transcripts results 
in a reduced level of ZEB1 protein, a transcription factor 
essential to the regulation of the EMT [9, 42]. While 
we have focused on proliferation, migration, and EMT 
for illustrative purposes, these results lend weight to the 
other associations uncovered in this study. We believe 
our findings should facilitate further research into the 
roles played by lncRNAs in the various types of CRC, 
thus, most likely, expanding the range of treatment and 
prognosis options.

DISCUSSION

CRC heterogeneity is a major problem in the 
treatment of this cancer. It complicates the choice of a 
therapeutic strategy, leads to diverse drug responses, and 
makes the development of new targeted therapies more 
complex [2, 5, 9]. Recent efforts to assess CRC subtypes 
have improved our comprehension of the molecular 
networks at play in the main types of CRC, but we are 
far from understanding all molecules contributing to CRC 
development and heterogeneity. This leaves pools of 
potential therapeutic targets untapped. Although lncRNAs 
have been used to classify CRC tumors [24] and although 
several functional and mechanistic studies have extended 
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our understanding of individual lncRNAs [43, 44], little is 
known about the functions of lncRNAs in particular types 
of CRC. 

To identify lncRNAs potentially contributing to 
distinct CRC phenotypes, we first looked for lncRNAs 
displaying expression patterns associated with key 
features of colorectal tumors: location, MMR status, CIN 
status, CIMP status, mutational status (TP53, BRAF, and 
KRAS), and subtype. This first screen yielded 282 unique 
lncRNA genes. We then used a guilt-by-association (GbA) 
analysis to generate hypotheses on the function(s) of these 
transcripts. The results of our GbA analysis point to the 
involvement of lncRNAs in the pathways distinctively 
altered in CRC subtypes. The key findings of this analysis 
are summarized and discussed below. 

First, our computational approach has generated several 
associations corroborated by previous studies. For instance, 
our analysis suggests a link between UCA1 (lnc-OR1OH5-2) 
and the cell cycle (cf its correlation with the Cell Cycle 
and G2M Checkpoint gene sets, Supplementary Table 8).  

Accordingly, multiple studies have demonstrated both in 
vitro and in vivo the influence of UCA1 on proliferation 
[45, 46]. Likewise, we have found H19 to be most strongly 
associated with the EMT gene set (Supplementary Table 8), 
in agreement with recent work describing the mechanism 
by which H19 promotes EMT in colorectal cancer through 
miRNA sequestration [47]. Finally, according to our GbA 
analysis, only one group of lncRNAs appears associated 
with the WNT/β-catenin signaling pathway: those showing 
distinctive regulation in the C5 subtype. This finding 
is in line with previous work describing subtype C5 as 
having a strong WNT pathway activation signature [12]. 
More importantly, our results indicate that lncRNAs may 
participate in dysregulation of this pathway. We believe that 
these observations further support the reliability of our GbA 
approach, thus strengthening other associations revealed by 
our study. 

A second point worth discussing is the link 
between lncRNAs and both EMT and angiogenesis. 
This link has been mentioned previously [23, 48], and 

Figure 6: Selected lncRNA candidates affect cell proliferation. (A) Top panel: from left to right: RNA interference mediated 
knockdown of lnc-BLID-5, lnc-AKAP3-1, and lnc-GNB4-1 in HCT-116 cells. Error bars represent standard deviations of three biological 
replicates. Bottom left panel: real-time proliferation curves of HCT-116 cells treated with the CTL RNAi (red) or an RNAi targeting lnc-
BLID-5 (blue), lnc-AKAP3-1 (dark cyan), or lnc-GNB4-1 (dark green). A representative experiment is shown for at least three biological 
replicates. Error bars represent standard deviations of four technical replicates. Bottom right panel: average cell indexes after 96 hours, errors 
bars represent standard deviations of three biological replicates. (C and B) Same as A for RKO and HT-29 cells. Significant differences 
were evaluated with a two-tailed paired t-test (N.S. = not significant, p <  0.05 = *, p <  0.01 = **, p <  0.001 = ***). 
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Figure 7: Selected lncRNA candidates affect cell migration. (A) Left panel: real-time migration curves of HCT-116 cells 
treated with the CTL RNAi (red) or RNAi targeting lnc-BLID-5 (blue), lnc-AKAP3-1 (dark cyan) or lnc-GNB4-1 (dark green) in the 
presence of 20% FBS used as chemoattractant. A representative experiment is shown for at least three biological replicate. Error bars 
represent the standard deviation of four technical replicates in the. Right panel: average cell indexes after 24 hours, errors bars represent 
standard deviation of three biological replicates. (B) Left panel: real-time migration curves of HCT-116 cells treated with the CTL RNAi 
(red) or RNAi targeting lnc-BLID-5 (blue), lnc-AKAP3-1 (dark cyan) or lnc-GNB4-1 (dark green) in the presence of 20% FBS used as 
chemoattractant. A representative experiment is shown for at least three biological replicate. Error bars represent the standard deviation of 
four technical replicates in the. Right panel: average cell indexes after 32 hours, errors bars represent standard deviation of three biological 
replicates. (C) Same as A for HT-29 cells. Significant differences were evaluated with a two-tailed paired t-test (N.S. = not significant, p 
<  0.05 = *, p <  0.01 = **, p <  0.001 = ***).



Oncotarget27621www.oncotarget.com

there is evidence that EMT promotes the expression of 
proangiogenic factors and increases tumor angiogenesis 
[49]. EMT is also widely described as a crucial process 
in colorectal cancer [9, 10, 41]. Our data show that both 
C3-associated and C4-associated lncRNAs are associated 
with EMT and angiogenesis, but in opposite ways. This 
suggests that these lncRNAs might be new molecular 
players involved in these CRC-outcome-influencing 
processes. A study by Chen et al. has demonstrated 
that it is possible to discriminate tumors on the basis 
of lncRNA gene expression [24]. These investigators 
identified 229 lncRNAs and succeeded in clustering 
tumors into five clinically relevant subtypes on the basis 
of their levels. Our reannotation method has enabled us 
to monitor the expression of 67 of these 229 lncRNAs. 
We have found only nine of them to be associated with 
heterogeneity markers: eight with the C4 subtype and 
one with dMMR tumors (Supplementary Table 3). 
These findings again highlight the peculiarity of the 
C4 subtype as regards lncRNAs, suggesting that these 
molecules may participate in EMT, the driving process 
of this subtype [5, 12]. The poor overlap between our 
set of lncRNAs reflective of CRC heterogeneity and the 
set of lncRNAs identified by Chen et al., suggests that 
other factors may influence lncRNA-gene transcription 
in CRC. The fully non-supervised clustering approach 
followed by Chen et al. might have identified transcripts 
whose levels are indicative of particular tumors but are 

not associated with the molecular features studied here. 
Third, we have found RFS-positive and RFS-negative 
lncRNAs to show opposite associations with the VEGF-A 
gene set (composed of genes repressed by VEGF-A 
activation) and we have observed a tight correlation of 
RFS-positive lncRNAs with genes of the TGF-β pathway. 
The potential involvement of lncRNAs in these pathways 
might be worthy of further investigation, since VEGF 
and TGF-β inhibitors are among the few drugs shown to 
increase patient survival [50, 51]. Hence, RFS-associated 
lncRNAs might represent a new angle from which to 
target these pathways. Another reason for targeting 
lncRNAs is that developing an antisense oligonucleotide 
that block production of a protein should be easier than 
designing protein-targeting compounds [52]. Previously, 
Hu et al. identified a signature predictive of CRC relapse, 
composed of six lncRNAs [32]. We therefore tested the 
prognostic value of this signature in our multivariate 
analysis and likewise found it to be associated with RFS 
(Supplementary Table 7). We failed, however, to find one 
of the lncRNAs of this signature, CR622106, in either 
the Ensembl or the REF-Seq reference transcriptome, 
and no single lncRNA in this group proved predictive 
of relapse. Furthermore, we found three of the lncRNAs 
composing the signature - lnc-ITGBL1-2 (also called 
AK026784), lnc-PARD3B-4 (AK024680), and lnc-RP1-
239B22.1.1-1 (AK123657) - to show distinctive regulation 
in the C4 and C1 subtypes. Interestingly, we evidenced 

Figure 8: The EMT-associated transcripts lnc-BLID-5 and lnc-GNB4-1 regulate the ZEB1 protein level. Top panel: 
Western blot analysis of ZEB1 and β-ACTIN protein levels in cells treated with the CTL RNAi (red) or an RNAi targeting lnc-BLID-5 
(blue) or lnc-GNB4-1 (dark green). A representative experiment is shown for three biological replicates. Bottom panel: average relative 
protein levels. The ZEB1 band intensity was quantified with the ImageJ software and normalized to the intensity of the β-ACTIN band. 
Errors bars represent standard deviations of three biological replicates. Significant differences were evaluated with a two-tailed paired t-test 
(N.S. = not significant, p <  0.05 = *, p <  0.01 = **, p <  0.001 = ***).
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a positive association between lnc-ITGBL1-2 and lnc-
PARD3B-4, both associated with shorter RFS, and the 
EMT and angiogenesis gene sets. On the other hand, lnc-
RP1-239B22.1.1-1, linked to longer RFS, had a negative 
association with these gene sets (Supplementary Table 8). 
Our GbA analysis thus offers new insights into the roles 
of certain RFS-associated lncRNAs in CRC. Overall, the 
105 RFS-associated lncRNAs identified here by both uni- 
and multi-variate analysis may represent a new pool of 
prognostic markers liable to be used individually or in 
combination to identify patients with a low risk of relapse 
and who could thus be excluded from aggressive therapies. 

To get some idea of the reliability of our computer-
based functional predictions, we have performed a series 
of loss-of-function studies describing the influence of three 
candidate lncRNAs on cell proliferation and migration. 
Lnc-BLID-5 depletion resulted in impaired proliferation 
in both the HCT-116 and RKO cell lines yet did not affect 
HT-29 cells. This cell line’s apparent indifference to Lnc-
BLID-5 depletion may be due to the low level of this 
transcript, as HT-29 cells displayed a lower basal level of 
lnc-BLID-5 (Supplementary Figure 7A) than either HCT-
116 or RKO cells. Silencing lnc-AKAP3-1 or lnc-GNB4-1 
resulted in significant inhibition of cell proliferation in all 
three cell lines. While both lnc-BLID-5 and lnc-GNB4-1 
displayed a significant (and negative) association with the 
cell cycle gene set, lnc-AKAP3-1 did not (Supplementary 
Figure 6C). lnc-AKAP3-1 did, on the other hand, display a 
negative correlation with the EMT gene set, although it did 
not significantly influence cell migration. lnc-GNB4-1 and 
lnc-BLID-5 correlated positively with EMT and appeared 
to favor cell migration. These observations may be due 
to the difficulty of translating in vivo observations to in 
vitro models. Indeed, despite sharing similar molecular 
characteristics a cell line cannot perfectly represent a 
population of tumors and cannot behave as tumor cells 
within a tumor and its micro-environment. Moreover, 
transcriptomic correlation observed in the RNA of 
biopsies could reflect distinct cellular composition and be 
the result of adipocytes or lymphocytes infiltration which 
vary across colorectal subtypes. This said, the role of lnc-
GNB4-1 and lnc-BLID-5 in the regulation of migration 
and EMT was further supported by our findings that their 
depletion is accompanied by a loss of ZEB1 protein levels 
in HCT-116 and RKO cells. Various mechanisms might 
explain the effect of lnc-BLID-5 and lnc-GNB4-1 on 
ZEB1 protein production. For instance, transcripts could 
serve as precursors for miRNAs involved in the repression 
of ZEB1 mRNAs as is the case with the miR-200 family 
of miRNAs [53, 54]. Alternatively, these transcripts 
may recruit transcription factors required for ZEB1 
transcription or interfere with epigenetic repressive agents, 
as described before for certain lncRNAs [55]. Further 
investigation will be necessary to understand how lnc-
BLID-5 and lnc-GNB4-1 regulate ZEB1. The knowledge 

gained could result in the development of new ways to 
target EMT in CRC. Of note, depletion of lnc-GNB4-1 
impaired migration of HT-29 cells but did not result in 
lower levels of ZEB1 proteins, suggesting that other 
factors mediate this transcript’s control over migration. 

Finally, the present study does have its limitations. 
Firstly, our microarray approach is restricted to detecting 
lncRNAs targeted by probe sets present on the Affymetrix 
U133 Plus array, which represent only a fraction of the 
lncRNAs encoded by the human genome (up to ~10% 
of certain databases) [17]. Nevertheless, our study has 
generated important insights and advances, by providing 
a detailed list of lncRNAs associated with key tumor 
characteristics, along with potential function(s). Moreover, 
the clinical information available for our cohort was more 
extensive than the clinical annotation of the TCGA cohort, 
especially as regards heterogeneity markers and median 
follow-up (3.58 years for the cohort used here, versus 2.17 
years for the TCGA microarray cohort and 2.25 years for 
the TCGA RNA-Seq cohort). Secondly, our study differs 
from previous work in that we have focused on tumor 
tissues only. This contrasts, for instance, with the work of 
Chen et al., who by comparing lncRNA gene expression 
profiles of lncRNAs between normal tissue, primary 
tumors, and metastasis identified lncRNAs associated 
with metastasis and thus prognostic of disease progression 
[56]. One should note, however, that of the 282 lncRNAs 
identified here, 209 were also present on the Agilent 
G4502A microarray used in the TCGA cohort and 61 of 
these have been found to be dysregulated in cancers as 
compared to normal tissues (Supplementary Figure 9 and 
Supplementary Tables 3, 4). This suggests an involvement 
of the 61 transcripts in the development of CRC, while 
highlighting the fact our approach has captured CRC-
heterogeneity-associated lncRNAs that would have been 
overlooked had we focused on lncRNAs dysregulated in 
tumors as compared to normal tissue. 

In conclusion, the present in-depth analysis of the 
lncRNA transcriptome in colorectal cancer has identified 
282 lncRNAs reflecting the heterogeneity of this cancer. 
We have further predicted potential functions of these 
lncRNAs, showing that they may be at play in major 
pathways/processes relevant to CRC, and most importantly 
in the TGF-β and WNT pathways, immunity, EMT, and 
angiogenesis [5, 9, 10, 12]. Results supporting the predicted 
functions of lnc-BLID-5, lnc-GNB4-1 and lnc-AKAP3-1 
were obtained in several experiments, arguing in favor of 
the overall effectiveness of our integrated approach. We 
therefore believe our work (i) will expand our view of 
the molecular networks composing the above-mentioned 
essential pathways so as to include lncRNAs and (ii) will 
highlight the prevalence of these axes in the different 
types of CRC. This should facilitate further research that 
may lead to exploiting lncRNAs as prognostic markers or 
therapeutic targets for customized treatment of CRC.
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MATERIALS AND METHODS

Colorectal cancer gene expression data and 
Affymetrix microarray reannotation

We downloaded from the GEO database gene 
expression data from the microarray study of Marisa 
et al. (U133 Plus 2.0 Affymetrix) (accession number: 
GSE39582). The raw CEL files were frma normalized in 
the R environment, using the limma and frma packages 
to obtain a log2 normalized expression signal for each 
probe set. We then applied the combat algorithm from 
the sva library with default parameters to adjust the data 
for batch effects. The probe sets were locally mapped 
by sequence alignment (NCBI BLAST 2.2.29+) against 
a reference transcriptome composed of the ENSEMBL 
74 transcriptome (excluding long noncoding transcripts) 
and the LNCIPEDIA database V3, dedicated to lncRNAs 
[57]. For lncRNA profiling in tumor samples, we required 
that at least 80% of a probe set target a transcript of the 
LNCipedia database and discarded probes with discordant 
transcript biotype information between LNCipedia and 
Ensembl. 

We also excluded probe sets having multiple targets, 
unless a target lncRNA arose from a duplicated region of 
the genome. To identify duplicate lncRNAs, we blasted 
all lncRNA transcripts against the LNCipedia database, 
and two transcripts with different names were defined as 
duplicates if the shorter transcript shared at least 95% of 
its sequence with the longer one. Since duplicate lncRNAs 
could not be distinguished from each other, they were 
considered to correspond to a single gene whose name 
was generated by adding the tag ‘multi’ to the name of 
one of the duplicate lncRNAs. Alternative transcripts were 
viewed as only one lncRNA arising from the largest locus 
determined by transcript mapping. When multiple probe 
sets were assigned to the same gene, the one with the 
highest variance across samples was selected. We provide 
a full annotation table for the 4898 lncRNAs, including 
each one’s genomic location, category, nearest coding 
genes, and the probe sets matching it (Supplementary 
Table 2). We believe providing this information will 
facilitate further comparisons of our results with those of 
other studies. Most importantly, this detailed reannotation 
should facilitate the use of microarray data obtained with 
U133 Plus 2.0 Affymetrix, a widespread platform, for the 
analysis of lncRNAs in other contexts. 

CRC primary tumor and normal tissue gene 
expression data from TCGA and Agilent 
microarray reannotation

We downloaded colon adenocarcinoma (COAD) 
gene expression profiles from TCGA. Raw data were 
processed as previously described [4]. Probes of the TCGA 
microarray were mapped to the LNCipedia database, using 

the TCGA annotation file. Briefly, coordinates targeted 
by TCGA microarray (Agilent 4502A) probes were 
first extracted from the annotation file available at the 
TCGA website and converted to the hg19 genome build. 
Then probes where at least 58 bp of the targeted region 
overlapped, in a strand-specific way, with exons of lncRNA 
transcripts in the LNCipedia V3 database were selected. 
Because the boundaries of the exons are not always clearly 
defined, we added 5 bp on both sides of each lncRNA exon. 

DNA methylation data (Infinium 450 k) from 
TCGA and Illumina Infinium 450 k array 
reannotation

The Infinium 450k array was annotated for 
lncRNAs by intersecting targeted cytosine positions on 
the Human hg19 genome with long noncoding transcript 
positions from LNCipedia v3. A probe was defined as 
located in the promoter of an lncRNA gene if the targeted 
cytosine was located –2 kb to +1 kb from the TSS. It 
was defined as located in the gene body if it was located 
anywhere else between the TSS and the TTS. The same 
approach was used with transcripts from GENCODE v19, 
RefSeq v58, and UCSC (downloaded in 2013) to annotate 
probes for coding and small noncoding transcripts. TCGA 
450k colon adenocarcinoma data were downloaded (in 
March 2015) as raw data from the TCGA Data Portal 
and pre-processed with in-house scripts. Briefly, raw 
Infinium data were filtered by removing low-quality 
data, using a detection p-value threshold of 0.05. Cross-
reactive probes (i.e. targeting several genomic locations) 
and probes containing SNPs were filtered out, using the 
extended annotation provided by Price et al. [58] (see 
Dedeurwaerder et al. [59] for a detailed description). 
Probes associated with X and Y chromosomes were 
removed from the analysis. β-values were computed 
with the formula: β-value = M/[U+M], where M and U 
are the raw “methylated” and “unmethylated” signals, 
respectively. The β-values were corrected for type I and 
type II bias by peak-based correction [59, 60]. Cytosines 
differentially methylated between normal tissues and 
cancers were identified according to the recommendations 
in [59]. First the methylation values were converted to 
M-values with the following formula: M-value = log2(β-
value/(1 – β-value)). The statistical significance of 
differential methylation was assessed with a t-test applied 
to these M-values. In parallel, a delta-β was computed as 
the absolute difference between the median β-value within 
each category (cancer versus normal). Cytosines showing 
a p-value < 0.05 together with an absolute delta-β > 0.2 
were reported as differentially methylated.

Clinical data and molecular subtype prediction

Clinical data were downloaded from GEO 
(Supplementary Table 5). Tumor location and the MMR, 



Oncotarget27624www.oncotarget.com

CIMP, and CIN statuses were determined as described in 
the original studies. CRC subtypes were determined on the 
basis of sample mRNA expression profiles as described by 
Marisa et al. [12].

Identification of lncRNAs associated with 
particular anatomical or genome-scale molecular 
features or with oncogene mutational status

To identify noncoding transcripts relevant to 
colorectal cancer biology, we focused on transcripts 
associated with available clinical parameters. We selected 
transcripts differentially expressed between samples with 
different tumor locations or different MMR, CIN, or 
CIMP statuses. We also selected lncRNA genes showing 
differential expression between samples having or not a 
mutation in the BRAF, KRAS, or P53 gene. Fold change 
had to be above 1.5 or below 0.67, with FDR < 0.05. 

Identification of lncRNA genes showing 
distinctive expression in CRC subtypes

We identified lncRNA genes distinctively expressed 
in one particular CRC subtype as compared to all 
the others combined. For this we compared the mean 
expression level of each lncRNA gene in a given subtype 
to the mean of the means calculated for the remaining 
subtypes. Fold change had to be above 1.5 or below 0.67, 
with FDR < 0.05. 

Identification of lncRNAs associated with clinical 
outcome 

To find lncRNAs that might be associated with 
RFS, we performed both univariate and multivariate Cox 
regression analyses, using the “survival” library in R. We 
included the KRAS mutational status, MMR machinery 
status, and disease stage in the multivariate analyses 
as covariables, because they appeared significantly 
associated with RFS in a univariate Cox regression 
analysis. Proportional hazard assumptions were tested with 
the “cox.zph” function (threshold 0.01). In all analyses, an 
lncRNA was considered associated with RFS if it satisfied 
the following criteria: (i) the corresponding hazard ratio 
was above 1.5 or below 0.67; (ii) the p-value was equal to 
or smaller than 0.05. 

Functional predictions for lncRNAs by guilt-by-
association analysis

GbA analysis was used to correlate expression 
levels of the selected lncRNA genes with those of 70 
sets of protein-coding genes known to be involved in 
particular functions. We computed the correlations and 
generated a ranked list of mRNAs for each lncRNA. This 
list was then subjected to GSEA. The gene sets were 

obtained from the KEGG (Kyoto Encyclopedia of Genes 
and Genomes) database and the Molecular Signatures 
Database (MsigDB). The 70 gene sets used in the 
GSEA covered five major aspects of tumor biology (cell 
adhesion, metabolism, cell cycle, immunity, and signaling 
pathways) and other biological processes considered to 
be relevant in the current context. A complete list of the 
gene sets used is supplied in Supplementary Table 9. In 
accordance with GSEA software guidelines, we grouped 
gene sets containing redundant genes as follows: (i) we 
computed a distance matrix between gene sets using the 
overlap distance (defined as the number of common genes 
divided by the number of genes composing the smallest 
gene set), (ii) we performed hierarchical clustering based 
on this matrix (complete linkage), (iii) we used a threshold 
of 0.5 to cut the tree and grouped the gene sets belonging 
to the same cluster. GbA analysis enabled us to generate 
hypotheses regarding the functions of given lncRNAs. We 
chose to focus only on the 282 lncRNAs identified here 
because GbA analysis is computationally demanding. First, 
we divided our colorectal tumor expression data into two 
datasets, each corresponding to 283 samples. In the two 
groups of samples the CRC subtype distribution was the 
same, but otherwise allocation to the groups was random. 
For each dataset, we computed a Pearson correlation matrix 
linking each lncRNA to each coding gene, thus producing 
two matrices of 282 lncRNAs x 9,675 mRNAs. We then 
ranked the mRNAs in each matrix on the basis of their 
coefficients of correlation to a given lncRNA. The Gene 
Set Enrichment Analysis (GSEA) software (parameters: 
1000 permutations on gene sets, min size = 15, max size 
= 500) was then used to calculate an enrichment score for 
each gene set on the basis of the relative ranks of members 
and non-members of the investigated gene set. We thus 
obtained two matrices containing an enrichment score and 
an FWER statistic for each “lncRNA/gene set” pair (282 
lncRNAs x 70 gene sets). To obtain a high-confidence 
association of lncRNAs with functions, we finally selected 
gene sets that were statistically (FWER < 0.05) associated 
with an lncRNA in both matrices, and computed the mean 
of their enrichment scores. 

To link sets of subtype- or tumor-feature-
associated lncRNAs with particular functions/gene 
sets, we computed for each identified set of lncRNAs 
an enrichment metascore (EM) defined as the weighted 
sum of the enrichment scores obtained for each lncRNA 
member in the set, the attributed weight being -1 if the 
lncRNA appeared downregulated and 1 otherwise. Then 
10,000 random groups of lncRNAs of the same size as 
the lncRNA set of interest were generated by random 
selection. The same weighted sum approach was used 
to calculate a metascore for each of these groups. The 
p-value of the metascore was defined as the proportion 
of randomly generated metascores that were at least as 
high (low) as the metascore of the positively (negatively) 
associated set.
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Culture of the CRC cell lines and target lncRNA 
genes silencing

HCT116 and HT-29 cells were grown at 37° C under 
5% CO2 in McCoy’s medium (Gibco) supplemented 
with 10% FBS (Gibco). RKO cells were grown at 37° 
C under 5% CO2 in Eagle Minimum Essential Media 
(Sigma) supplemented with 10% FBS (Gibco). To silence 
the target lncRNA gene, we used locked nucleic acid 
(LNA) Gapmers® (Exiqon) to induce RNA interference 
silencing. Briefly, cells were transfected in a 6-well plate 
(or an xCELLigence 16-well plate) with 35 nM LNA 
Gapmer and 5 µl lipofectamine 2000® (Invitrogen) in 3 
ml total volume (or 200 µl in the case of 16-well plates) 
and incubated for 48 hours before collection for qPCR 
and western blot analysis. In the case of proliferation/
migration assays cells were transfected 40 minutes 
after being seeded. LNA Gapmer sequences: Negative 
control (A), 5′-AACACGTCTATACGC-3′; lnc-BLID-5,  
5′-CGATGACTCGACAATC-3′; lnc-GNB4-1, 5′-AAT 
CGCTGAGGTCATA-3′; lnc-AKAP3-1, 5′-CGTG 
CTTCCGGTGATA-3′.

RNA purification and real-time quantitative 
PCR 

RNA purification was performed with the RNAeasy 
kit (Qiagen) according to the manufacturer’s instructions. 
DNase treatment was performed with a DNA-free 
DNase kit (Ambion) according to the manufacturer’s 
protocol. Quantitative PCRs were performed with 
SYBR Green dye (Eurogentec) in a LightCycler 480 
(Roche). Briefly, cDNA was reverse-transcribed from  
1 μg RNA with random hexamers (Amersham/Pharmacia 
Biotech) and Superscript II reverse transcriptase (Life 
Technologies, Inc.). Results were normalized with 
respect to the housekeeping genes SDHA, GAPDH, and 
HPRT1. qPCR assay primer sequences: lnc-BLID-5, 
5′-TGCGTGTTTCCAAAGTGAGG-3′ (forward), 
5′-AAGCCAGCATCATCGGTAGT-3′ (reverse). Lnc-
AKAP3-1, 5′- GCCAAGAACTTCGGAAGCAT-3′ 
(forward), 5′- GGGTCAGTCTGAGGGATGTT-3′ (reverse). 
Lnc-GNB4-1, 5′- GGATCACGAGGTCAGGAGTT-3′ 
(forward), 5′- CCTCACGAGTAGCTGACAGG-3′ 
(reverse). ZEB1, 5′-TGAATGCGAGTCAGATGCAG-3′ 
(forward), 5′-CTCTTCAGGTGCCTCAGGAA-3′ (reverse). 

Cell proliferation/migration

To evaluate the proliferation capacity, cells were 
seeded in wells. Given their different proliferation rates, 
HCT-116 was seeded at 8000 cells/well, RKO cells at 
20000 cells/well, and HT-29 at 12000 cells/well in an 
xCELLigence E-plate 16 (Roche). After 40 minutes of 
stabilization, the cells were transfected with an LNA 
Gapmer directed against a given lncRNA candidate. The 

instrument derives a cell index from the electric impedance 
and gives a real-time representation of the growth 
characteristics of the cell population. Measurements were 
automatically collected every 15 min for 96 hours. Data 
were analyzed with the provided real-time cell analysis 
(RTCA) software. A similar protocol was applied to 
monitor the migration of cells transfected with an LNA 
Gapmer directed against a candidate lncRNA. HCT-
116 cells were seeded 24 h post-transfection into the 
xCELLigence CIM-plate 16 (Roche) and 165 µl fresh 
medium containing 10% FBS (chemoattractant) or not 
(control) was added to the lower chamber of the CIM-plate 
16. The upper chamber was filled with serum-free medium 
(50 µl/well) and the plate was incubated at 37° C under 
5% CO2 for 1 h. Cells (80000 cells/well) were then added 
to each well of the upper chamber and cell migration was 
assessed at 30-min intervals for 48 hours at 37° C under 
5% CO2. Upon migration, cells adhere to the surface of 
the filter electrode and increase the impedance, which is 
then used to derive a cell index reflecting the ability of the 
cell population to migrate. 

Protein extraction and western blot analyses 

Whole-cell extracts were prepared in 250 µl 
or 500 µl (depending on the pellet size) of IPH lysis 
buffer (50 mM Tris-HCl pH 8, 150 mM NaCl, 5 mM 
ethylenediaminetetraacetic acid (EDTA), 0.5% NP40) 
supplemented with anti-protease cocktail (Promega). 
The suspensions were placed on ice for 30 minutes with 
periodic shaking and then centrifuged at 12,000 g for 10 
min at 4° C. Supernatants were then collected and stored 
at −80° C until use. Supernatants were thawed on ice and 
added in appropriate proportions to 6X loading buffer (50 
mM Tris-HCl pH 6.8, 2.5% v/v glycerol, 1% w/v SDS, 
1% v/v beta-mercaptoethanol). Samples were then boiled 
at 95° C for 5 minutes. Migration was carried out in 7% 
acrylamide gel at 100 V for 80 minutes and then the 
proteins were transferred to a PVDF membrane (Millipore) 
at 100 V for 70 minutes. Membranes were incubated 
with blocking buffer (PBS, 1% Tween-20, 5% w/v non-
fat dried milk) for 1 h at room temperature and primary 
antibodies were then added for overnight incubation at 
4° C. Proteins were detected with West Femto Maximum 
Sensitivity Substrate (ThermoFisher). For ZEB1 we used a 
rabbit mAb (Cell Signaling Technology, 3396S) at 1/1000 
dilution, for ACTB we used a mouse mAb (Sigma, A5316, 
also at 1/1000 dilution.

Statistical analyses

Normal distribution of expression signals was 
assessed using the Shapiro.test function in the Rstudio 
software. We considered the distribution to be when 
the returned “Shapiro value” was greater than 0.05. 
Homoscedasticity was probed with the Bartlett test 
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function and values were considered homoscedastic 
when the returned “Bartlett value” was greater than 0.05. 
As a few cases did not respect normal distribution or 
homoscedasticity we applied the Wilcoxon test (with the 
wilcox.test function, default parameters) to assess the 
significance of the observed differences. P values were 
then corrected for multi-testing with the p.adjust function 
of the Rstudio software, with the method parameter set 
at “BH” (Benjamini-Hochberg). Events were considered 
significant when the associated p-value or q-value (FDR) 
was smaller than 0.05. Association of the lncRNA level 
with the relapse-free survival period was assessed with 
the cox.zph function in Rstudio. 

To identify significant differences in qPCR 
or western blot analyses, a t-test was applied to the 
observed measurements. Differences were considered 
significant when the associated p-value was smaller  
than 0.05.
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