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ABSTRACT
Currently, drug development efforts and clinical trials to test them are often 

prioritized by targeting genes with high frequencies of somatic variants among 
tumors. However, differences in oncogenic mutation rate—not necessarily the 
effect the variant has on tumor growth—contribute enormously to somatic variant 
frequency. We argue that decoupling the contributions of mutation and cancer 
lineage selection to the frequency of somatic variants among tumors is critical to 
understanding—and predicting—the therapeutic potential of different interventions. 
To provide an indicator of that strength of selection and therapeutic potential, the 
frequency at which we observe a given variant across patients must be modulated 
by our expectation given the mutation rate and target size to provide an indicator of 
that strength of selection and therapeutic potential. Additionally, antagonistic and 
synergistic epistasis among mutations also impacts the potential therapeutic benefit 
of targeted drug development. Quantitative approaches should be fostered that use 
the known genetic architectures of cancer types, decouple mutation rate, and provide 
rigorous guidance regarding investment in targeted drug development. By integrating 
evolutionary principles and detailed mechanistic knowledge into those approaches, 
we can maximize our ability to identify those targeted therapies most likely to yield 
substantial clinical benefit.

The sequencing of the human genome at the 
beginning of this century ushered in a revolution in 
genomic medicine [1, 2], and many promising therapeutic 
approaches are in development that make primary use 
of a patient’s genotype data, such as genetic markers in 
tumor cells. The synergistic combination of personalized 
medicine with molecular therapeutics that target specific 
cancer drivers has yielded some remarkable successes, 
but also a string of disappointments [3-5]. More than 
thirty targeted cancer therapeutics have been approved 
for clinical use, but the efficacy of these new drugs has 
proven variable, with limited durable responses seeming 
to depend on tumor type and secondary biomarkers 

[6-12]. Therapeutics that specifically target a single 
gene product—and especially those that target the 
mutant, oncogenic form—have the potential to produce 
fewer unwanted effects on non-tumor cells relative to 
conventional chemotherapeutics that target all dividing 
cells. For targeted therapeutics to achieve optimal 
effectiveness, though, requires accurate application of 
personalized medicine. If a drug targets a specific genetic 
variant, it will likely only benefit a patient whose tumor is 
carrying that variant, and in whom that variant is driving 
tumorigenesis.

Although this “matching” of targeted therapeutic to 
a precision-medicine profiled patient is straightforward—
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in principle—the list of potential molecular targets (and 
drugs targeting them) continues to expand [13, 14], as 
does our understanding of the frequency at which specific 
genetic variants are found in various cancers [15, 16] 
and our understanding of the genetic heterogeneity of 
tumors [17-19]. This expansion of targets across cancer 
types naturally generates a huge number of plausible 
hypotheses: specific patient populations who might 
benefit from specific targeted therapies, or combinations 
of therapies [20, 21]. As it is not possible to test every 
mutation type in every cancer, a tissue-agnostic approach 
bringing an agent forward to the clinic may be necessary 
once there is strong preclinical rationale that inhibiting a 
specific pathway has efficacy in a different cancer model. 
Testing the hypothesis of efficacy based on a different 
preclinical model with strong laboratory and genomic 
evidence still requires subsequent clinical trials [22]. 

As the numbers of candidate therapies and 
putative targets increase, the development of theoretical 
frameworks providing rational, quantitative methods for 
identifying drug/target combination becomes increasingly 
important. The number of ideas that can be defended on 
the grounds of plausibility is large, but the fraction of these 
ideas that result in superior therapies is likely to be small. 
Not only considerations of cost- and time-effectiveness, 
but also moral considerations regarding patient welfare, 
demand that we develop approaches that have predictive 
value regarding the potential success or failure of targeted 
drug development [23], derived from what we know about 
the genetic architecture of cancer. 

While precision medicine tumor boards and 
programs like NCI-MATCH [24] explicitly aim to pair 
patients with treatment options based on the tumor 
genomic profile, we feel that these and future efforts can 
be enhanced by informing decisions with all available 
sources of data and insight on cancer progression and 
treatment. One such additional source of information 
potentially derives from taking an evolutionary 
perspective on tumor progression [25, 26], employing 
tools and insights from population genetics. In this paper, 
we discuss the value and importance of considering the 
strength of selection favoring the persistence and spread 
of specific high-fitness genetic variants within the context 
of the heterogeneous tumor environment. “Selection” 
or “fitness” of somatic genetic variants in this context 
refers to the differential survival and reproduction of 
cell lineages within the patient, and not the fitness of the 
patient. Estimates of the strength of this selection suggest 
an upper bound for the potential efficacy of therapies 
targeting oncogenic mutations, before pre-clinical data 
can be obtained that provides pharmacokinetic guidance or 
biologically effective doses (e.g. [27, 28]). We also discuss 
how estimates of selection will be affected by variation 
in the oncogenic mutation rate and by epistasis among 
oncogenic mutations.

For newly developed targeted therapies, it is 

tempting to focus on oncogenic targets found in a high 
fraction of patients (although some drugs work well for 
targets found in a low fraction). This approach is sensible 
not only because there is a larger patient population 
available and because the required accrual for a clinical 
trial is easier, but also for effectiveness and impact. 
First, a variant found at high frequency in a particular 
type of tumor is likely to play a causal role in tumor 
growth. Second, should the clinical trial prove effective, 
a therapy targeting a more common variant will have a 
greater downstream impact on public health. For example, 
mutations in the BRAF gene are found in over 50% of 
melanomas [29], which made this cancer an attractive 
candidate for clinical trials on therapies that target BRAF-
mutant tumors via the oncogenic variant gene product. 
One decision rule for the execution of novel clinical trials 
is to test therapies that have proven effective against one 
cancer by applying them to other tumor types [30]. As 
mentioned above, there may not be a sufficient preclinical 
model to test the efficacy in the laboratory for a particular 
cancer in which extensive testing suggests benefit. In this 
situation, there may be merit to a tissue-agnostic approach, 
as it focuses on drugs with in vivo anti-tumor activity and 
known side effects, in contrast with early stage drugs with 
unknown safety profiles. But if an anti-BRAF therapy 
proves effective against melanoma, should we expect 
that effectiveness to carry over to patients with BRAF 
mutations in other cancers in which BRAF mutations are 
found at much lower frequencies?

The “causal-role” logic of the argument to perform 
clinical trials that focus on therapeutics targeting high-
frequency somatic variants argues against trials of their 
efficacy in cancers in which the variants are rarely 
found. But there is more guidance that can be derived 
from the somatic genetic architecture of cancer types 
than this simple logic would dictate. The frequency at 
which genetic variants are found in particular cancers is 
determined by two factors: 1) the rate at which oncogenic 
mutations arise, and 2) the effect of natural selection on 
those mutations within the population of cancerous (or 
pre-cancerous) cells. Both mutation rate, which varies with 
gene location [31] and gene expression levels [32], and 
mutation target size, vary tremendously across the genome 
[16]. Strength of selection is also enormously variable 
across the genome and ontogeny [33], highly dependent 
on the tissue type and cellular environment (including 
the presence of anti-cancer therapy), and complicated 
by epistatic interaction among oncogenic variants [34]. 
Decoupling the contributions of mutation and selection 
to the frequency of somatic variants is critical to 
understanding—and predicting—the therapeutic potential 
of different interventions within individual cancer types. 
The potential benefit of a therapeutic will relate to the 
strength of selection favoring the oncogenic variants, 
and will generally be unrelated to the rate at which the 
oncogenic mutations occur. However, the observable 
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data—the frequency of a variant in the context of a given 
cancer—is affected by both the strength of selection and 
rate of mutation. Thus, estimations of selection, and the 
associated predictions regarding therapeutic benefit, 
require an appropriate accounting for any variation in the 
mutation rate.

VARIATION IN THE ONCOGENIC 
MUTATION RATE

The per-gene mutation rate varies across the genome 
by more than an order of magnitude. This extensive 
variation is attested to and accounted for by established 
tools like MutSigCV [16] that aim, by correcting for 
the mutation rate, to help identify the genes burdened 
with mutations in a higher-than-expected fraction in a 
particular cancer. The use of a well-estimated mutation 
rate to identify genes contributing to cancer represents an 
important first-order correction necessary for disentangling 
the effects of mutation and selection. In addition to the 
variation in mutation rate across the genome, there is 
substantial variation in the rates of specific types of 
mutations by nucleotide and cell type. For instance, G→A 
and C→T transitions are more common than A→T and 
T→G transversions due to biochemical properties of the 
nucleotides, and lung cancers have a characteristically 
high G→T transversion incidence attributed to tobacco-
specific mutagens [35].

Equally important for decoupling the effects of 
mutation and selection is understanding the variation in the 
oncogenic mutation target size. For genes where loss of 
function is oncogenic, there will be a variety of missense, 
nonsense, deletion, and insertion mutations that will 
disrupt gene function and drive tumorigenesis. However 
when the druggable target is the result of an activating 
missense mutation, activation likely depends on a small 
number of very specific mutations. For example, of the 
approximately 50% of melanoma patients whose tumors 
carry mutations in BRAF, nearly 90% have a substitution 
at amino acid position 600, and 90% of these substitutions 
are V600E, which occurs only from a nucleotide position 
1799 T → A substitution [36]. Transition mutations occur 
at roughly twice the frequency of transversions [37]. At 
position 1799 T, approximately 50% of new mutations 
would be T → C transitions while T → G and T → A 
transversions would account for 25% each. Thus, the 
most common substitution, observed in over 40% of 
melanomas, results from the least probable point mutation 
at that single nucleotide position . This combination of 
high frequency and mutational rarity implies that the 
V600E substitution must confer a high selective advantage 
in melanoma tumor cell populations. 

Other oncogenic mutations have a broader 
distribution of substitutions at a single site. For instance, 
approximately 20% of melanoma patients have tumors 
carrying mutations in NRAS, and of these approximately 

80% have amino acid substitutions at position 61, 
including Q61R (38%), Q61K (24%), and Q61L (15%) 
[38]. Like BRAF V600E, the Q61K and Q61L substitutions 
result from transversion mutations (181 C → A and 182 
A → T, respectively). The Q61R substitution results 
from a transition mutation (182 A → G). Thus the BRAF 
V600E substitution is observed at twice the frequency of 
NRAS Q61 substitutions in melanoma—despite the fact 
that oncogenic mutations at NRAS Q61 likely arise at a 
higher frequency, both because there are more oncogenic 
mutations available (Q61K, Q61L, and Q61R, versus 
V600E), and because one of those mutations relies on 
the more frequent transition process. These ratios imply 
that the impact of selection on the frequency of observing 
the BRAF V600E substitution is many times greater than 
the impact of selection on the frequency of the common 
oncogenic NRAS Q61 substitutions. The relative maximum 
therapeutic benefits of targeting BRAF and NRAS should 
scale similarly.

This example comparing BRAF and NRAS in 
melanoma illustrates a general point that, in addition to 
the variation among genes in the per-nucleotide mutation 
rate, there are at least two other sources of variation that 
affect what we might call the “oncogenic mutation rate,” 
meaning the rate of occurrence of mutations that actually 
contribute to cancer growth. The first source of variation 
is the number of distinct substitutions that result in an 
oncogenic phenotype. The second is the difference in rates 
of different types of mutational processes (e.g., transitions 
versus transversions). The frequency at which a gene is 
observed as a high-frequency variant in tumor tissues of a 
given cancer depends both on the rate at which oncogenic 
mutations occur and on the selective advantage that they 
confer. For a variant occurring at a given frequency, the 
rarer the mutation, the greater the selective advantage 
the alteration must have conferred. The potential for 
variation in the oncogenic mutation rate becomes even 
more pronounced when we consider mutation processes 
other than nucleotide substitutions, such as deletions that 
remove entire exons, or translocations that give rise to 
specific fusion proteins. The rates at which these other 
types of mutations occur are generally less well known 
than nucleotide substitution rates, but understanding them 
is critical for our interpretation of the frequencies at which 
the resulting variants are found in different cancers.

SELECTION, THERAPEUTIC POTENTIAL, 
AND EPISTASIS

If a particular mutation seldom occurs, yet is found 
at high frequency among cancers, this contrast implies that 
the mutation confers a strong positive selective advantage 
to the cells possessing it. An intervention that specifically 
targets that mutation, and thereby removes that selective 
advantage, would have a substantial therapeutic impact. 
The mutation rate for the BRAF V600E mutation described 



Oncotarget22246www.oncotarget.com

above is very low, but the mutation is nonetheless present 
in tumors at an incommensurate frequency in primary 
skin cutaneous melanoma and colon adenocarcinoma, 
where it is a known driver, and in low-grade glioma 
and lung adenocarcinoma where it has been calculated 
to be intensely selected [39]. It is not surprising then, 
that therapies that specifically target that variant are 
particularly effective for patients with melanoma [40], at 
least in the short term. At the other end of the spectrum 
are examples like TTN, which, with its ~33,000 amino 
acids, is the largest known human protein. TTN has shown 
up in many tumor sequencing projects as a putative 
cancer driver but, as a structural component of muscle 
sarcomeres, is widely discredited as such. Rather, its 
extreme size means that it presents an extraordinarily large 

mutational target; tumors will often contain one or more 
TTN mutations, even if little or no selection is involved 
[16]. The extent to which natural selection favors a given 
oncogenic variant is directly connected to that variant’s 
contribution to cancer progression. Within a population of 
cancer (or pre-cancerous) cells, those genotypes that lead 
to the cell dividing more frequently—and those that lead 
to the cell undergoing cell death or terminal differentiation 
less frequently—increase in frequency in the same kind 
of evolutionary process that leads to the spread of fitness-
enhancing variants in cellular populations. The fitness 
associated with a new mutation is directly related to its 
enhancement of the cancer phenotype within its current 
environment. And the frequency at which we observe 
a given variant across patients—modulated by our 

Figure 1: Tumor evolution and treatment under high and low mutation and high and low selection scenarios. Each 
tumor is initiated by an original cell population (orange), and populations expand in size (vertical axis) over time (horizontal axis). As the 
tumor grows, a new subclone (blue) can be founded via a mutation that confers a more extensive cancer phenotype, and can grow alongside 
or supplant the original population. Targeted treatment (blue line) specifically eliminates the new population that it targets (blue), leading 
to a varying consequence on the tumor that depends on the extent of intra-tumor heterogeneity, which is determined by its selective effect. 
Tumors with a high proportion of their cells belonging to the population affected by treatment are most likely to experience the greatest 
reduction of tumor burden, the longest remission before recurrence, and the greatest opportunity for cure.



Oncotarget22247www.oncotarget.com

expectation given the mutation rate and target size—is an 
indicator of that strength of selection. That is, an oncogenic 
driver mutation is simply a “beneficial” mutation that is 
under positive selection within the population of tumor 
cells.

Tumors exhibit some degree of intra-tumor 
heterogeneity. It is this heterogeneity that provides the 
context within which selection can act; the greater fitness 
conferred by particular mutation, the more common it 
will become within that heterogeneous population. Put 
another way, if we observe that a particular variant is very 
common among patients with a tumor type—and/or very 
common within heterogeneous tumor-cell populations—
this high frequency suggests that the variant has a large 
effect on the ability to grow, divide, survive and indeed, 
to contribute to any of the hallmarks of cancer [41] other 
than increasing mutation rate. Consequently, if we have a 
therapeutic agent that inactivates that variant, we expect 
it to have a correspondingly large and negative impact 
on cancer cells within the tumor. If, however, that same 
variant is rare in a second tumor type, then that is an 
indication that the mutation provides less of a selective 
advantage in that cell type. Consequently, counteracting 
that mutation with a targeted drug would likely have a less 
severe impact on the ability of cancer cells to thrive, and 
a lower salutary impact on the patient (Figure 1). Clearly, 
for heterogeneous tumors, the efficacy of any targeted 
therapy will be limited to the subset of cells expressing 
the appropriate target. Thus, targeting oncogenic driver 
mutations that are more strongly favored by selection 
will also tend to lead to the greatest reductions in tumor 
volume.

The strength of selection favoring a particular 
genetic variant will predict not only the potential efficacy 
of targeted therapeutics, but also the strength of selection 
favoring the evolution of resistance following the 
application of those therapeutics [42]. The fitness of the 
mutation within the tumor environment is dependent on 
the context within which mutations and therapies interact. 
The introduction of any therapy alters that landscape, 
creating new selective pressures favoring mutations that 
interfere with the therapy or bypass its locus of action 
[43]. Moreover, other factors can modulate the selective 
advantage conferred by a mutation. For instance, the 
BCR-ABL1 fusion is present in 90–95% of patients with 
chronic myeloid leukemia [44]. This fusion arises from 
a t(9;22) (q34.1;q11.21) translocation that results in the 
Philadelphia chromosome [45]. While the exact rate at 
which this translocation spontaneously occurs is unknown, 
it appears that it occurs frequently in white blood cells of 
healthy individuals [46]. The translocation is considered 
a major driver of chronic myeloid leukemia, apparently 
because as cellular fitness declines with age or potentially 
other influences, the translocation becomes increasingly 
strongly favored by natural selection [47, 48]. It would be 
no coincidence, then, that therapeutics specifically targeted 

against the BCR-ABL fusion protein (e.g., imatinib) have 
provided an outstanding example of successful targeted 
chemotherapy, potentially providing patients with long-
term health outcomes similar to those of the general 
population [49, 50]. The substantial rate of evolution 
of resistance and recurrence is consistent with imatinib 
imposing a strong selective pressure.

The strength of natural selection favoring each 
genetic variant in each cancer type can be inferred using 
theoretical approaches and tools derived from population 
genetics [39, 42]. Then it can be used as a predictor for 
the efficacy of therapeutics targeting specific oncogenic 
variants in different cancers or in individual molecular 
subsets of a cancer type defined by epigenetic states or 
cellular context [51]. However, estimates of selection 
intensity based solely on somatic variant frequency and 
mutation rate will have to be interpreted with caution, due 
to the complicating effects of epistasis—the phenomenon 
in which the strength of selection acting on a mutation 
depends on the presence or absence of other mutations 
elsewhere in the genome. Epistasis is known to be present 
among causal somatic variants in cancer, usually identified 
in cancer genomics by mutual exclusivity or co-occurrence 
of mutations [52-55]. However, statistical identification of 
epistatic interactions typically requires strong epistasis and 
large sample sizes. Fortunately, mechanistic knowledge of 
the biochemical interactions in the cell and the signaling 
pathways where dysregulation often leads to cancer 
provides a way to focus a search for epistasis in principled 
ways [55, 56]; in turn, knowledge of epistatic interactions 
can serve as a further guide to the potential efficacy of a 
targeted therapeutic agent. This knowledge can facilitate 
more accurate characterization of selection strengths 
acting on individual genes and a better understanding of 
how those selection strengths vary based on other genetic 
markers.

To understand the effect of epistatic interactions 
on the potential efficacy of a targeted therapeutic, it will 
help to categorize interactions as either “antagonistic” 
or “synergistic”. When the selective advantage of two 
mutations is less than expected from the advantages 
conferred by the single mutations, the interaction is 
antagonistic. Antagonistic epistasis affecting selection 
on oncogenic mutations manifests in patterns of mutual 
exclusivity. Two different mutations may be favored by 
selection separately. However, with antagonistic epistasis, 
the presence of one mutation reduces or eliminates the 
selection favoring the other one. As a result, while we 
would find each mutation at high frequency in cancer 
cells, rarely would we find both mutations in the same cell. 
Biochemically, antagonistic epistasis can arise when one 
gene product is downstream from another in a signaling 
pathway—though other antagonistic interactions are 
known [57]. 

One example is the interaction between activating 
mutations of EGFR and downstream RAS genes. 
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Oncogenic mutations in these genes result in constitutive 
activation of a mitogenic signaling pathway, but only one 
of the two mutations is required to achieve an oncogenic 
effect. If a mutation has activated EGFR, activating RAS 
mutations have little additional growth effect, and do not 
spread through the population of cancer cells. Likewise, 
if a downstream RAS becomes constitutively active and 
no longer dependent on upstream activation, mutations in 
EGFR will exert no downstream effect, and no selective 
advantage. For example, in lung adenocarcinoma, ~30% 
of tumors carry a mutation in the KRAS gene and ~15% 
carry a mutation in EGFR, but these mutations are 
mutually exclusive [58, 59]. If antagonistic epistasis 
is sufficiently strong, the presence of both mutations 
together can actually be deleterious (disfavored by 
selection), even though each is beneficial (favored by 
selection) individually (Figure 2). In fact, there is evidence 
from transgenic mouse models and cancer cell lines that 
simultaneous activating mutations in KRAS and EGFR 
lead to cell death in lung adenocarcinoma [60]. Despite 
differences in their roles in signalling and in therapeutic 
implications, a similar mutually exclusive pattern of 
mutation extends to KRAS and downstream BRAF [61], 
and extends further down mitogen-activated protein kinase 
pathways.

Existing methods can estimate the intensity of 
selection acting on specific genes and variants within a 
particular cancer type [39, 42]. The most straightforward 
application of those methods—and possibly the only 
statistically supportable one—estimates selection under 
the assumption that there is no epistasis. To the extent that 
antagonistic epistasis is present, assuming it is not would 
lead to underestimation of the level of selection on the 
antagonistic mutations and thus underestimation of the 
potential clinical benefit of targeted therapy. Assuming 
no epistasis effectively yields averages over the different 
genetic contexts in which the mutation may arise: weak 
or even negative selection in the presence of the epistatic 
partner and strong positive selection in the absence of that 
partner. However, under antagonistic epistasis, most or all 
tumor tissues with one somatic variant of an epistatic pair 
will lack the partner variant, leading to a situation where 
no matter what the selection coefficient on acquisition of 
the partners are, neither can reach the highest frequencies 
across tumors that mutations without antagonistic epistasis 
can. The somatic variant frequency across tumors stalls 
at a virtual “ceiling” created by the incidence of its 
epistatic somatic variant; the strength of selection will 
be underestimated, even after fully accounting for the 
oncogenic mutation rate. The clinical benefit of effective 
targeted therapy for these patients will be enhanced 
relative to the benefit predicted from the average selective 
strength inferred under an assumption of no epistasis.

Patterns of antagonistic epistasis or mutual 
exclusivity can furthermore provide insight into possible 
modes of drug resistance due to selective pressure by a 

targeted agent [62]. These mutational patterns indicate 
alternative molecular mechanisms for achieving the same 
oncogenic cellular phenotype. For example, RAS mutations 
(most commonly at the G12 and G13 sites) represent a 
common form of evolved resistance to therapies targeting 
EGFR in metastatic colorectal cancer [63]. The strong 
positive selection on EGFR-activating mutations predicts 
a substantial clinical response to treatments targeting the 
activated protein. However, due to epistasis, this treatment 
has a side-effect of altering the strength of selection on 
other genes—e.g., making activating RAS mutations that 
would have been lethal in the presence of uninhibited 
EGFR become strongly beneficial for the cancer lineage(s) 
in the presence of targeted EGFR treatment. Thus, 
understanding the patterns of epistasis in these cells can 
not only provide a better ability to identify potential drug 
targets, but also to predict the likely modes of resistance 
to future therapies.

In contrast to antagonistic epistasis, the selective 
advantage of two mutations can also be greater than 
expected from the advantages conferred by the single 
mutations, in which case the interaction is synergistic. 
Synergistic epistasis in cancer manifests in patterns of co-
occurrence. In the case of two synergistic mutations, each 
of them on their own is favored only modestly by selection 
(and they are only modestly oncogenic). But when both 
mutations are present together, selection on the pair is 
strong. That is, selection strongly favors one mutation 
only in the presence of the other. Thus, finding either 
mutation alone will be rare, but the pair of mutations will 
be highly enriched. The first case of synergistic epistasis 
described for cancer was between RAS and MYC, when 
researchers demonstrated that full tumorigenic conversion 
of fibroblasts required introduction of both oncogenes 
[64, 65]. Other genes have been found to also interact 
synergistically with RAS, as oncogenes promoting hyper-
proliferation such as RAS can also promote cell-induced 

Figure 2: Illustration of negative epistasis between 
oncogenic EGFR and KRAS mutations in lung tissue. 
Individually, EGFR and KRAS mutations both confer a survival 
and/or reproductive benefit to lung cells, and are thus positively 
selected. However, if a cell contains both oncogenic mutations, 
there is a decline in survival and/or reproduction. Therefore, 
the double mutant is subject to negative selection—in this case, 
an epistatic effect of the possession of one mutation upon the 
selection imposed on the second mutation.
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senescence [66], and negation of this senescence by other 
mutations in genes, such as p53, exacerbates cellular 
proliferation [67]. A similar synergistic mechanism 
involving p53 was also discovered for BRCA2 [68] 
and BRCA1 [69], FGFR2 [70] and for amplification of 
other genes [71] including ERBB2. This well-described 
mechanistic epistasis can give rise to a more abstract 
statistical epistasis: mutations in TP53 are found nearly 
twice as often in ovarian cancers with BRCA1 or BRCA2 
mutations compared with tumors with wild-type BRCA1 
and BRCA2 [72, 73]. This pattern of co-occurrence 
is a consequence (and an indicator) of the fact that the 
selective advantage of an loss-of-function TP53 mutation 
depends on the genotype at these other loci. We would 
expect that loss-of-function mutations in TP53 and other 
apoptosis genes should be positively epistatic (synergistic) 
with activating mutations in oncogenes.

As was the case with antagonistic epistasis, the 
presence of synergistically epistatic interactions means 
that targeted therapies could provide greater clinical 
benefit to the appropriately targeted population than 
would be predicted on the basis of estimates of selection 
that assume no epistasis. An estimate of selection on 
TP53 would average over cases with and without BRCA 
mutations. Therapies targeting TP53-mutant cells would 
be most effective in cases where those cells also carried 
mutations in BRCA1 and/or BRCA2. Tumors exhibiting 
a TP53 mutation would be enriched for exactly those 
mutations. The patient population toward which such a 
targeted treatment should be directed would constitute 
those who exhibit the common pattern of co-occurrence.

Synergistic epistasis is at the core of the multiple-
hits model of cancer progression. Implicit in the model 
that you need a certain number of mutations before you get 
cancer progression is the idea that selection on individual 
variants is weak, and only becomes strong when multiple 
oncogenic variants are present simultaneously. The model 
also implies that targeting any one of causal variants 
should be sufficient to yield a beneficial response—
although targeting multiple co-occurring variants might 
reduce the opportunity for the evolution of resistance to 
therapy. Similarly, synergistic epistasis may also play a 
role in “cancer fields”, where collections of cells carry 
potentially oncogenic variants, but do not develop into 
full-blown cancer until one or more additional mutations 
arise. In this case, weak selection on the pre-cancerous 
field cells may contribute modestly to their expansion, but 
selection does not become strong until an epistatic partner 
arises through mutation.

Antagonistic and synergistic epistasis not only have 
distinct implications for the efficacy of therapy, but also 
often reflect different sorts of biochemical relationships in 
the cell. Antagonistic epistasis can arise between genes in 
linear or linear-like pathways with upstream-downstream 
relationships, whereas synergistic epistasis can arise 
between genes with partially overlapping or redundant 

functionality. Nevertheless, the two forms of epistasis 
have similar implications for how we should interpret 
the relationship between estimates of the strength of 
selection favoring an oncogenic variant and the potential 
clinical benefit of therapies targeting that variant. Due 
to limitations imposed by small sample sizes, it is often 
viewed as unavoidable in analyses of genome-scale 
data to assume that there is no epistasis. However, for 
variants that are subject to strong epistasis (antagonistic 
or synergistic), the selective advantage in the clinically 
relevant genetic context will be greater than a no-epistasis 
estimate would indicate. Thus, the potential clinical 
benefit of therapeutic targeting of genes that have epistatic 
partners is higher than would be predicted by an analysis 
that assumes the effects of therapeutic targeting of each 
gene are independent.

CONCLUSIONS

The development of increasing numbers of cancer 
therapeutics designed for specific molecular targets can 
provide significant efficacy in appropriately selected 
populations, as well as a reduction in side effects. 
However, this burgeoning multiplicity of treatment 
options simultaneously leads to a large number of 
potential combinations of therapies that each can be 
tested on a large number of classifications of tumor types 
often where hypothesis testing may not be feasible in the 
laboratory setting. When sufficient preclinical evidence 
exists for efficacy with a useful agent, each novel therapy 
or combination of therapies will need to be validated in 
clinical trials before general adoption, putting high strain 
on the resources required for drug development and for 
conducting clinical trials. Ethical considerations for the 
well-being of patients and financial considerations arising 
from the high up-front costs of a well-powered clinical 
trial demand that we develop systematic approaches 
that have predictive power to identify those therapies 
and therapeutic combinations that are most likely to be 
successful.

When treatments site-specifically target and inhibit 
a gain of function caused by an oncogenic mutation the 
potential of a targeted therapy is linked to the capacity of 
a targeted variant to drive tumor growth. That capacity is 
related most directly not to the frequency of that variant 
among tumors, but rather to the selective advantage 
associated with the oncogenic variant. Provided that 
an effective and tolerable pharmacological agent can 
be developed, those variants that provide the greatest 
selective advantage provide the greatest potential as 
promising therapeutic targets. Disruption of these targets 
will have the greatest impact on the growth and survival 
of tumor cells. To accurately estimate the selective 
advantage of oncogenic mutations requires accounting 
not only for the variant frequency across tumors, but also 
for variation in the underlying oncogenic mutation rates. 
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Mutation rates vary not only across the genome and but 
also among different types of mutation. Moreover, genes 
vary in the number and types of mutations that will give 
rise to oncogenic variants. Accurately accounting for these 
sources of variation will substantially enhance our ability 
to identify and target causal oncogenic variants. 

Attempts to estimate selection are also complicated 
by antagonistic and synergistic epistasis, which are likely 
widespread among oncogenes and tumor suppressors. 
Due to limited sample sizes, epistasis is often challenging 
to identify conclusively on purely statistical grounds. 
However, knowledge of the biochemical relationships 
among gene products of interest can help to identify 
likely epistatic interactions. Where those biochemical 
relationships suggest epistasis, the selective advantage 
of oncogenic variants and the therapeutic opportunity 
is likely to be much greater than would be expected by 
genomic analyses of underlying mutation rate and variant 
frequency alone. Thus, all else being equal, a selectively 
favored molecular target—especially one suspected 
of having strong epistatic interactions—represents a 
promising candidate. Quantitative approaches need further 
development that use the known genetic architectures 
of cancer types to provide rigorous guidance regarding 
investment in prospective clinical trials. By integrating 
evolutionary principles and detailed mechanistic 
knowledge into those approaches, we will be able to 
maximize our ability to identify those combinations of 
targeted therapies and cancer types most likely to yield 
substantial clinical benefit.
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