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ABSTRACT
According to the World Health Organization (WHO), cancer is one of main causes 

of death worldwide, with 8.2 million people dying from this disease in 2012. Because of 
this, new forms of treatments or improvement of current treatments are crucial. In this 
regard, Photodynamic therapy (PDT) has been used to successfully treat cancers that 
can be easily accessed externally or by fibre-optic endoscopes, such as skin, bladder 
and esophagus cancers. In addition, this therapy can used alongside radiotherapy 
and chemotherapy in order to kill cancer cells. The main problem in implementing 
PDT is penetration of visible light deeper than 10 mm in tissues, due to scattering 
and absorption by tissue chromophores. Unfortunately, this excludes several internal 
organs affected by cancer. Another issue in this regard is the use of a selective cancer 
cell-photosensitizing compound. Nevertheless, several groups have recently developed 
scintillation nanoparticles, which can be stimulated by X-rays, thereby making this 
a possible solution for light production in deeper tissues. Alternative approaches 
have also been developed, such as photosensitizer structure modifications and cell 
membrane permeabilizing agents. In this context, certain channels lead to transitory 
plasma membrane permeability changes, such as pannexin, connexin hemmichannels, 
TRPV1-4 and P2X7, which allow for the non-selective passage of molecules up to 1,000 
Da. Herein, we discuss the particular case of the P2X7 receptor-associated pore as a 
drug delivery system for hydrophilic substances to be applied in PDT, which could also 
be carried out with other channels. Methylene blue (MB) is a low cost dye used as a 
prototype photosensitizer, approved for clinical use in several other clinical conditions, 
as well as photodynamic therapy for fungi infections.

INTRODUCTION

Photodynamic action: a brief history of cancer 
treatment

In the western World, the term photodynamic action, 
a literal translation of the German word “Wirkung der 
photodynamischen”, was coined by von Tappeiner and 

collaborators to differentiate photodynamic action from 
the sensitization that occurs in photography films [1, 2]. 
At the time, Von Tappeiner’s group was investigating 
the effect of antimalarial drugs on certain protozoa. A 
PhD student, Raab, discovered that certain dyes, such 
as Acridine, display phototoxic effects on Paramaecium 
caudatum only when exposed to sunlight [3, 4]. This was 
observed by chance, with controversial results, since the 
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effects apparently depended on the sunlight conditions of 
their Laboratory at the Munich University. It is relevant to 
point out that Marcacci had recognized the phototoxicity 
of quinine on oocytes [5], but this seems to have been 
unknown by Von Tappeiner’s team at the time.

Von Tappeiner quickly recognized the clinical 
potential of Raab’s data, since he was apparently familiar 
with the work of a French neurologist that attempted to 
apply eosin to treat epilepsy, causing photoxicity skin 
effects [6]. Possibly based on that study, and on their own 
data, Von Tappeiner, H., and Jesionek, A. treated three 
patients presenting skin cancer and other pathologies with 
Photodynamic Therapy (PDT) [7]. In 1905, they treated 
more five patients presenting skin cancer, with good 
results [8]. The use of PDT to treat in vivo tumors was 
little explored until 1972, when Diamond and co-workers 
demonstrated a small decrease in tumors derived from 
a glioma cell line implanted in rats exposed to light and 
treated with haematoporphyrin [9]. In 1975, a breakthrough 
study was published on eleven human bladder carcinomas 
xenografted to artificially immunosuppressed mice treated 
with PDT, that demonstrated remarkable damage to the 
tumors [10]. Since then, PDT has been used to treat several 
cancer types easily exposed to light sources [11]. Most 
are skin cancers or tumors easily accessed by endoscopy 
devices. The largest obstacle for PDT application is the 
light necessary to reach deep into the cancer tissues.

General photodynamic therapy aspects 

PDT has emerged as a promising alternative or as 
a possible combination to conventional treatments, such 
as surgery, chemotherapy and radiotherapy [12]. It is 
based on the use of a systemically or locally administrated 
photosensitive molecule. Once “excited” by light at an 
appropriate wavelength, the photosensitive molecule 
undergoes electronic transitions to higher energy 
states, making it reactive to several compounds in the 
surrounding environment [13–18]. Photosensitizers, as 
these photosensitive molecules are known, are excited 
in the presence of light. In the presence of molecular 
oxygen, this process, leads to a series of photochemical 
reactions that culminate in the generation of free radicals 
and singlet oxygens (highly reactive chemical species 
derived from molecular oxygen). These photochemical 
reactions cause oxidative damage and target cell death [13, 
14]. The existence of modern laboratory apparatuses and 
fiber-optic endoscopy systems allow for light application 
at the appropriate wavelength in several parts of the 
body, permitting PDT application to internal tumors [19]. 
Figure 1 illustrates photodynamic therapy principles.

PDT efficiency depends on a high number of 
physicochemical and physiological properties, such as 
type of photosensitizer, drug concentrations, location of 
the photosensitizer in the tumor, adequate dosimetry (total 
light dose, exposure time and form of light exposure) 

and oxygen availability [16, 17]. PDT success requires 
specific conditions aiming at the high production of singlet 
oxygen, since numerous studies have demonstrated that 
this chemical species is the primary responsible for PDT 
cytotoxic effects [15, 20, 21]. Tissue light penetration 
is dependent on tissue characteristics and wavelength. 
Wavelengths in the red or infrared range are recommended 
for clinical application, since they exhibit greater tissue 
penetration within a “therapeutic window”, from 600 nm 
to 800 nm, which produces enough energy to support 
the formation of singlet oxygen species [15, 18]. To 
overcome this light penetration problem, Chen et al., 
2006 [22] proposed the use of synthesized nanoparticles 
(nanoscintillators), which can absorb X-rays and generate 
visible light.  

Nanoscintillators

Scintillation is the capability that certain substances 
present to emit light, triggered by interactions with 
ionizing radiation. Nanoparticles, as the name suggests, 
range from 10 to 1000 nm, although in terms of biological 
significance, the range from 10 to 100 nm is the most 
applied [23]. Nanoscintillators are composed of inorganic 
salts, most doped with rare earth metals as depicted in 
Table 1.

The great advantage of nanoscintillators is the 
possibility of applying low energy X-rays (300 KeV) 
to generate light, thus diminishing radiotherapy side 
effects or allowing for combined use with chemotherapy. 
Radiotherapy normally applied energies ranging from 6 to 
20 MeV. X-rays show great penetration capacity, reaching 
regions inaccessible to visible light, such as the brain or 
deep regions in tumors (more than 5 mm).

Photodynamic therapy clinical applications 

PDT is a promising alternative for the treatment of 
infectious diseases and infected blood and derivatives, 
as well as for the photoinactivation of multiresistant 
strains or microbial biofilms [24–26] (see Table 2). In 
comparison to the usual cancer treatment procedures 
(radiotherapy, chemotherapy and surgery), PDT displays 
a number of advantages. It is non-invasive and can be 
applied to virtually all types of cancer. For example, 
Temoporfin Foscan® (a first generation photosensitizer), 
was applied for the treatment of lung, gastric, prostate 
and skin cancers [27]. PDT may also be used repeatedly 
without producing side effects, usually showing excellent 
healing results [28]. In addition, tissue preservation 
leads to practically no fibrosis, thereby conserving 
the functional anatomy and mechanical integrity of the 
organs undergoing the procedure, as well as selective 
tumor removal without secondary detrimental effect on  
surrounding healthy tissues [29]. PDT can also be used 
before or after aforementioned conventional treatments 
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without compromising these therapeutic modalities. In 
addition, due to the inactivation of the photosensitizer in 
the absence of light, PTD shows low systemic toxicity. 
Finally, many PDT procedures can be performed in an 
ambulatory environment, lowering costs and making 
the procedure more acceptable to patients, resulting in 
increased patient adherence to treatment [28, 30, 31].

Photosensitizers

Photosensitizing (PS) agents are essential PDT 
components. They are responsible for transferring the 
energy required for the occurrence of photochemical 
reactions that result in selective cell or tissue destruction 
[32]. A wide range of natural and synthetic compounds are 
capable of absorbing radiation in the UV-visible spectrum 
and generating singlet oxygen species, such as plant-derived 
products and synthetic macrocyclic complexes [14]. To 
function as a photosensitizer, a molecule must exhibit the 
following properties: (1) a high absorption coefficient in 

the spectral region of the excitation light source; (2) an 
appropriate triplet energy state (ET ≥ 95 kJ.mol-1), in order to 
transfer to molecular oxygen in the ground state; (3) a high 
quantum triplet yield (φT ≥ 0.4), long triplet half-life state 
(τT ≥ 1 µs) and (4) a high photostability state [33].

Over 1450 molecules with potential PDT 
applications have been catalogued [34]. However, only 
some may be applied for this purpose, since the costs 
for their introduction into the clinical practice related to 
clinical tests are quite high. Thus, only sensitizers with 
“exceptional” properties justify the financial expenditure 
[34]. In addition to suitable chemical and physical 
properties, other characteristics are recommended for 
a drug to be considered optimal for PDT, including 
high chemical purity and rigorous and simple chemical 
synthesis; preferential accumulation at the site of interest; 
lack of toxicity in the dark; strong phototoxicity; rapid 
clearance from normal tissues; amphiphilicity; easy 
administration by various routes; low manufacturing cost 
and easy storage and marketing [15, 35, 36].

Table 1: Use of X- rays with nanoscintillators in different biological models

Year Nanoparticle Size Nanoparticle 
concentration Photosensitizer X-rays

energy
Biological 

Model References

2008 LaF3:Tb3+ 15 nm 0.035 M Meso-tetra (4-carboxyphenyl) 
porphine (MTCP) 120 keV N/A Liu YF, et al. [88]

2010 ZnO nanorods 
(NRs) 0.5 μm N/A P rotoporphyrin dimethyl 

ester (PPDME) N/A T47D cells Kishwar S, et al. [89]

2011 Y2O3 12 nm 2.5–95 μg/mL Psoralen 2 Gy, 160 or 
320 kVp PC3 cells Scaffidi JP, et al. [90]

2011 Gd2O2S:Tb 20 μm 5 mg/mL Photofrin II 120 keV, 20 
mAs

Human 
glioblastoma 

cells
Abliz E, et al. [91]

2013 Tb2O3 10 nm 1 mM Porphyrin N/A N/A Bulin AL, et al. [92]

2013 ZnO 50 nm 0.3–0.6 μM
meso-tetra 

(4-sulfonatophenyl) porphyrin 
(TSPP)

N/A Escherichia 
coli Senthilkumar S, et al. [93]

2014 LaF3:Ce3+ 2 μm 1 μg/mL Protoporphyrin IX (PPIX) 3 Gy PC3 cells Zou X, et al. [94]

2016 Sr2MgSi2O7:Eu2+, 
Dy3+ 273 nm 10 μg/mL Protoporphyrin IX (PPIX) 1-7 Gy PC3 Homayoni H, et al. [95]

2014 Cu−Cy 50−100 
nm 50 μg Self 5 Gy MCF-7 

xenograft L Ma, et al. [96] 

2016 ZnS:Cu, Co 4 nm 0.05 mM Tetrabromorhodamine-123 
(TBrRh123) 2 Gy PC3 cells L Ma, et al. [97] 

2015 SrAl2O4:Eu2+ 80 nm 50 μg/mL Merocyanine 540 (MC540) 0.5 Gy U87MG 
xenograft Chen H, et al. [98]

2015 LaF3:Tb 3−45 nm N/A Rose Bengal (RB) 2−10 keV N/A Tang Y, et al. [99]

2015 LaF3:Tb 3−45 nm 20 mg/mL Rose Bengal (RB) N/A Tumor model Elmenoufy AH,  
et al. [100] 

2016 CeF3 7−11 nm 0.1–0.9 μM Veterporfin (VP) 6 Gy, 8 keV, 
or 6 MeV Panc-1 Clement S, et al. [101]

2015 LiYF4:Ce3+ 34 nm 25-50 μg/mL ZnO 8 Gy HeLa cells Zhang C, et al. [102]

2015 SiC/SiOx NWs 20 nm 50 μg/mL Porphyrin 2 Gy, 6 MV A549 cells Rossi F, et al. [103] 

2015 ZnO/SiO3 98 nm 0.005–0.05 M ZnO 200 kVp, 
2 Gy

LNCaP and 
Du145 cells Generalov R, et al. [104]

2015 GdEuC12 micelle 4.6 nm 500 μM Hypericin (Hyp) 5–40 KeV HeLa cells Kascakova S, et al. [105]

N/A = Not applicable.
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Photosensitizers can be classified according to their 
structure or origin. A traditional classification separates 
these compounds into three generations. Porphyrins and 
other substances developed in the 70’s or early 80’s are 
named first-generation photosensitizers, while porphyrin 
derivatives or synthetic compounds produced in the late 
80’s are termed second-generation photosensitizers. Third 
generation photosensitizers refer to changes carried out in 
their structures leading to selective tumor accumulation, 
like organic conjugates (liposomes or conjugated to 
antibodies) [32, 35]. Furthermore, existing photosensitizers 
can be classified into three large families: (1) porphyrin-
based photosensitizers (eg, Photofrin, ALA/PpIX, BPD-
MA); (2) chlorophyll-based photosensitizers (eg chlorins, 
purplish, bacteriochlorins); and (3) dyes (phthalocyanines, 
naphthalocyanines, methylene blue) [35].

Clinically- or experimentally-applied photosensitizers 
include many metallocomplexes which generally exhibit 
maximum absorption bands in the visible red spectrum and 
a molar extinction coefficient ranging from 103 to 105 M−1.
cm−1 [37]. Most are based on a tetrapyrrole aromatic nucleus, 
similar to the protoporphyrin found in hemoglobin. These 
rings exhibit a relatively broad absorption band in the 400 
nm region, known as the Soret band, and a group of minor 
bands directed to red wavelengths, known as the Q-band [38]. 
Hematoporphyrin derivatives (HpD) and porfirmer sodium 

(Photofrin) obtained from subsequent purifications are 
prototype drugs and were the first to be applied in the clinical 
practice. Despite their success as tools for the treatment of 
cancer and other conditions, these compounds display some 
disadvantages, such as lack of chemical homogeneity, slow 
skin clearance, resulting in long-term photosensitivity, and 
poor absorption in the clinical wavelength (ε = 103 M−1. cm−1 

at 640 nm), where light shows adequate tissue penetration [14, 
36]. This has motivated the search for new photosensitizers 
that would exceed these limitations and present appropriate 
photophysical and photochemical properties.

Methylene blue (MB) characteristics

Among second-generation photosensitizers, 
phenothiazine dyes are noted for displaying desirable 
photophysical and photochemical characteristics for PDT 
applications, such as high production of singlet oxygen 
species and strong absorption in therapeutic range (600–
750 nm) [39]. Chemically, these compounds are formed 
by two main portions, namely chromospheres, which 
are aromatic ring systems with delocalized p-electrons, 
and peripheral modifications, such as side chains and 
auxochromes. This heterocyclic ring system has long been 
established and its chemical synthesis is well understood, 
allowing for easy analogue preparation [40]. Two main 

Table 2: Use of MB in different PDT 
Year Patient 

number MB concentration Administration Indication Light 
Energy

Wavelength 
light source References

2005 60 2% dissolved in 
acetone Injection Onychomycosis 18 J/cm2 600 to 750 nm Tardivo JP, et al. [46]

2005 10 2% aqueous 
solution Intratumor injection

Metastatic melanoma, 
Basal cell carcinoma, 
Squamous cell, Breast 

cancer, Kaposi’s 
sarcoma.

18 to 36 J/
cm2 600 to 750 nm Tardivo JP, et al. [46, 85]

2015 20
2% aqueous 

solution and 0,2% 
hydrogel

Intralesional 
injection and 

topically

Nodular or ulcerative 
basal cell carcinoma 48 J/cm2 N.I Samy NA, et al. [106]

1997 3 10% Topically chronic plaque-stage 
psoriasis 5 J/cm2 600 to 700 nm Schick E, et al. [107]

2006 26 5% aqueous 
solution Gargle Oral Lichen Planus 120 J/cm2 632 nm Aghahosseini F,  

et al. [108]

2009 16 0,1% hydrogel Topically Resistant psoriatic 
plaque 565 mW 670 nm Salah M, et al. [109]

2014 80 2% aqueous 
solution Oral administration onychomycosis 18 J/cm2 630 nm Figueiredo Souza L W, 

et al. [110]

2009 13 0,1% hydrogel Topically Acne vulgaris Fadel M, et al. [111]

2014 18 1% aqueous 
solution

Irrigation using 
syringes and 

catheters

Neuropathy, ulceration 
and infection in diabetic 

patin
30 J/cm2 400 to 725 nm Tardivo JP, et al. [112]

1995 3 1% aqueous 
solution Intratumor injection Inoperable oesophageal 

tumours 7 J/cm2 662 nm Orth K, et al. [52]

2012 12 0.01%
applied at the 
bottom of the 

periodontal pocket

Periodontitis in HIV 
patients 0,03 W 660 nm Noro Filho, et al. [113]

N.I = not informed.
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classes of phenothiazines are used in the medical practice: 
oxidized phenothiazines, planar and tricyclic (MB, 
thionine and toluidine blue), and non-oxidized molecules, 
such as promethazine and chlorpromazine, that are not 
completely aromatic or planar. Typically, phenothiazine 
dyes present a delocalized positive charge at neutral pH 
in the ring system, whereas phenothiazine neuroleptics 
exhibit a positive charge located at the nitrogen distal 
side chain. Phenothiazine compounds display great 
versatility concerning possible applications in medical 
practice, and are studied regarding their therapeutic role 
in the local treatment of bacterial infections, tuberculosis, 
trypanosomiasis, malaria, rickettsia infections, fungal 
infections and cancer [41]. Regarding cancer PDT 
applications, the most researched compounds are 
methylene blue (IUPAC name: 3,7-bis(Dimethylamino)-
phenothiazin-5-ium chloride) and toluidine blue, which 

are structurally and physicochemically similar. Both 
possess a nitrogen atom capable of accepting protons in 
the center ring and two nitrogen atoms that contribute to 
charge relocation in the chromophore by stabilizing the 
cationic form.

MB has been widely applied as a vital dye for over a 
century [42, 43]. It was first synthesized in the nineteenth 
century (1876) by Heinrich Caro, who worked at Badische 
Anilin und Soda-Fabrik, a German chemical industry, 
from the oxidation of p-dimethylaniline [44]. In the late 
nineteenth century, scientists Robert Koch and Paul 
Ehrlich used MB to stain microorganisms. Based on these 
studies, Erlich envisioned that these could also be applied 
therapeutically. In fact, in 1891, he demonstrated that MB 
was effective in treating malaria in humans [45]. 

MB shows an intense color in aqueous solutions due to 
the intense absorption of the phenothiazine chromophore at 

Figure 1: Schematic representation of photodynamic therapy. (A) A photosensitizer (PS) is systemically or topically administered. 
(B) After systemic PS distribution, it selectively accumulates in the tumor, represented by red circles. (C) In cooperation to laparoscopic 
techniques, the cancer cells are irradiated with red light. Irradiation activates the PS and triggers a photochemical reaction in the presence 
of molecular oxygen, culminating in the production of singlet oxygen species (1O2). (D) Damage to cellular macromolecules leads to tumor 
cell death by different processes, such as apoptotic, necrotic and autophagic mechanisms.
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600–700 nm in the visible spectrum, with a well-defined peak 
at 664–666 nm [39, 46]. A less intense peak can be observed 
in or near the UV region, particularly from 284 to 300 nm 
[42]. Moreover, this compound can also generate radicals, 
even in the presence of reducing agents [46]. In aqueous 
solutions, the excitation spectrum is concentration-dependent 
due to dimerization and oligomerization phenomena, whose 
equilibrium constant is 3.8 × 10−3 M−1 [46]. Between 10−5 
and 10−3 M, MB aggregation is limited to dimer formation. 
Dimerization increases with ionic strength and can increase 
or decrease the presence of charged interfaces, depending 
on the relationship between the dye and the interface [47]. 
Monomers and dimers have very distinct absorption bands, 
with the dimer band 60 nm shorter compared to the monomer 
band. Similarly to many inorganic dyes, MB does not follow 
the Beer-Lambert law [43], probably due to the reversible 
formation of polymers, which are maintained together by the 
dispersion forces originating from delocalized p electrons 
in the individual dye molecules [44]. The photodynamic 
mechanism for MB is quite complex. It has a high quantum 
yield of intersystem crossing (ΦΔ ~ 0.5), which can generate 
high singlet oxygen species concentrations and mediate 
cytotoxicity to form hydroxyl radicals, which in turn can alter 
intracellular Ca2+ homeostasis [48, 49]. 

MB is characterized by its low toxicity and can 
be used in the intraoperative or endoscopic marking of 
various tumors, as well as in the clinical treatment for 
methemoglobinemia [14, 49]. Although idiosyncratic 
reactions may occur, MB doses are high without 
the occurrence of measurable toxicity. For example, 
concentrations routinely used for staining the oral 
and nasopharyngeal mucosa are in the millimole 
range (1% w/w or 31,2 mM) [39]. Additionally, 
MB pharmacokinetics are well established and have 
shown different distribution profiles, depending on the 
administration route [50].

Several studies considering MB for the treatment 
of neoplasms have been reported. In vitro studies have 
demonstrated that MB shows phototoxicity against several 
tumor cell lines, such as cervical cancer adenocarcinomas 
(HeLa) and bladder carcinomas [51]. Local MB 
administration has also been applied in the treatment of 
inoperable esophageal tumor [52]. However, oncology 
MB clinical applications have been limited due to its 
lack of activity when applied systemically. This weak 

pharmaceutical activity results in poor penetration of 
tumor cellular environment [53].

Strategies to improve MB cell entry

In this scenario, it is, thus, essential to search for 
pathways that may facilitate MB a hydrophilic drug, uptake 
into target cells, leading to feasible tumor treatments. 
In this context, pore-forming proteins are present in 
the plasma membrane of many mammalian cell types, 
able to open under physiological or pathophysiological 
conditions, such as changes in cell volume, hypoxia 
and alterations in extracellular pH, among others. When 
open, they allow for the passage of molecules of up to 
1,000 Da without necessarily leading to cell death. 
Among pore-forming proteins, pannexin-1 [54], connexin 
hemichannels [55], TRPV1-4 subtypes and TRPA1 [56], 
calcium homeostasis modulator 1 (CALHM1) [57], Maxi 
anion [58], plasma membrane VDAC [59] and ATP-gated 
subtypes P2X2 [60–62], P2X4 [63–65] and, especially, 
P2X7 receptors [66–68] are noteworthy (Figure 2). One 
possibility would be to study the involvement of the P2X7 
associated-pore as an MB uptake route in the cytoplasm 
of neoplastic cells, and, in this regard, we have recently 
demonstrated that P2X7 can function as a drug delivery 
system in the J774 tumor cell line [69].

Since this receptor is related to several physiological 
processes, such as T-cell maturation, innate immune 
response activation, epithelial secretion, mineralization 
regulation, bone resorption and fast synaptic transmission, 
among others, it is not surprising that it is also associated 
to several pathological conditions. Indeed, P2X7 
polymorphisms have been associated with susceptibility 
to infectious neurodegenerative diseases, depression, 
osteoporosis and inflammatory diseases [70–77]. 

In this context, several groups have investigated 
the role of P2X7 in tumor pathophysiology, mainly 
due to its cytotoxic potential, which can exploited as 
a pharmacological target. Its expression (mRNA and 
protein) has been demonstrated in different tumor and 
tumor cell lines subtype (Table 3), but no consensus ion its 
function has been reached. Nevertheless, evidence clearly 
shows a dependence on the cellular model under study, as 
this receptor may be involved with growth/proliferation or 
death induction (apoptosis/necrosis) [78–84].

Figure 2: Using the pore associated with P2X7 receptor and other pores as an entry pathway for methylene blue (319 
Da) in PDT.
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MB and the P2X7 receptor

Although knowledge on tumor biology has advanced 
greatly in recent years, the approval of new cancer treatment 
drugs is still limited. In addition, traditional therapies, such 
as chemotherapy and radiotherapy, lack selectivity and 
possess numerous side effects. Accordingly, PDT emerges 
as a promising alternative, displaying very positive results 
over the years. MB stands out among photosensitizers with 
possible applications in clinical practice, since it displays 
excellent photodynamic properties and low toxicity in 
humans. However, its use has been limited due to its 
low tumor penetration [85, 86] The literature describes 
several strategies to increase MB uptake by tumor tissues, 
such as altering its chemical structure in order to increase 

lipophilicity, or its association with three-dimensional 
structures, allowing access to the cytoplasm, as cited 
previously. Herein, we propose another possibility, of using 
transient membrane pores, such as the pore induced by 
activation of the P2X7 receptor. Interestingly, this receptor 
has been described in certain types of tumors, making it 
an adequate target for pharmacological tumor therapy. This 
strategy could enhance PDT once MB is at a size able to 
pass through the pore (319 Da). Figure 3 displays a scheme 
representing this hypothesis, in which a cell is exposed 
to MB along with ATP administration at concentrations 
sufficient enough to open the P2X7 pore for 15 to 20 
minutes. After the incubation period, the cells would be 
exposed to light in the appropriate wavelength (600–700 
nm) in order to activate MB photodynamic activity. 

Figure 3: Photodynamic therapy may increase selectivity when applied concurrently to photosensitizing (PS) 
radioluminescent molecules (RL). (A) A tumor with high P2X7 expression can be treated with the application of Methylene blue 
(MB), a potent Photosensitizer (PS), nanoparticles and ATP. (B) These compounds in solution form are administered directly into the 
venous circulation via syringe and, once in the blood, can migrate to any part of the body. ATP administration activates the pore associated 
to the P2X7 receptor, allowing for MB passage. (C) The RL, once excited by low intensity X-rays, emit luminescence in the red spectrum. 
Thus, the luminescence produced by the radioluminescent molecule leads to an excited state of the photosensitizer (PS*), initiating a series 
of photochemical reactions in the tumor environment, resulting in the production of singlet oxygen species (1O2) from molecular oxygen 
(3O2), which is a highly reactive and cytotoxic chemical species.
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Furthermore, following the system upgrades as displayed 
in Figure 3, radioluminescent molecules, which produce 
luminescence in the red spectrum excited by low-intensity 
X-ray, would become even more selective and exhibit fewer 
side effects [87], as previously outlined in Figure 3.
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