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Role of tumor microenvironment in ovarian cancer pathobiology 
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ABSTRACT

Ovarian cancer is the fifth most common cancer affecting the female population 
and at present, stands as the most lethal gynecologic malignancy. Poor prognosis 
and low five-year survival rate are attributed to nonspecific symptoms and below par 
diagnostic criteria at early phases along with a lack of effective treatment at advanced 
stages. It is thus of utmost importance to understand ovarian carcinoma through 
several lenses including its molecular pathogenesis, epidemiology, histological 
subtypes, hereditary factors, diagnostic approaches and methods of treatment. Above 
all, it is crucial to dissect the role that the unique peritoneal tumor microenvironment 
plays in ovarian cancer progression and metastasis. This review seeks to highlight 
several important aspects of ovarian cancer pathobiology as a means to provide the 
necessary background to approach ovarian malignancies in the future.
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INTRODUCTION

Several aspects of ovarian cancer (OvCa) deem it a 
very challenging malignancy to diagnose and treat. Even 
though the five-year survival rate is high when women are 
diagnosed in the early stages of OvCa, most women are 
rarely diagnosed in early stages as the symptoms are merely 
vague abdominal discomfort or bloating [1]. The five-
year survival rate of women diagnosed with OvCa drops 
precipitously when women are diagnosed with stage III or 
IV as aggressive metastasis to neighboring abdominal organs 
has already progressed [1, 2]. Patients’ survival is strongly 
correlated with the outcome of the surgical debulking [3]. 
The standard clinical management for advanced stage 
OvCa includes debulking surgery followed by adjuvant 
chemotherapy or neoadjuvant chemotherapy followed by 
surgery in patients who present with un-resectable disease 
[4]. However, after initial response, tumor recurrence from 
residual disease is encountered in about 70% of patients who 
will eventually die of a progressively chemo-resistant cancer 
[4]. Indeed, optimal surgical debulking of tumors (< 1 cm 

of residual tumor) significantly improves patients’ survival 
compared to sub-optimal debulking [4]. Unfortunately, 
suboptimal debulking (>1 cm of residual tumor) is 
frequently encountered due to widespread microscopic and 
inaccessible lesions throughout the abdomen preventing 
complete removal of the tumor [4]. There remains a need 
for improved OvCa treatment that addresses the current 
limitations of surgical debulking and reduces treatment 
resistance that often arises in response to chemotherapy [4].

OvCa is heterogeneous and affected by epigenetic 
and genetic factors [5]. A major reason for the lack of 
success in effectively eradicating OvCa can be due to 
the complex interconnected signaling networks coupled 
with the distinctive peritoneal tumor microenvironment 
(TME) [6]. Several immune cells, including tumor 
associated macrophages (TAMs), T cells, natural killer 
(NK) cells in addition to fibroblasts and a wide host of 
chemokines and cytokines all interact with each other 
to promote the growth and metastasis of OvCa cells [7]. 
Therefore, understanding the pathobiology of OvCa and 
its unique TME that hosts this malignancy, is crucial in 
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our development of more sensitive diagnostic tools and 
enhanced treatment options.

Epidemiology

Epithelial OvCa (EOC) is the leading cause of 
gynecologic cancer-related death in the USA. More than 
70% of patients are diagnosed with advanced disease (Stage 
III or IV) [4, 8]. In the year 2017 alone, a growing 22,240 
new cases and 14,080 cancer-related deaths occured in USA 
[9]. The incidence is higher in Caucasians than in Hispanics, 
American Indian/Alaska Natives, Blacks, and Asian/Pacific 
Islanders [10]. The mean age of diagnosis of ovarian cancer 
is 63 years. Differences in age distribution are summarized 
in (http://seer.cancer.gov/statfacts/html/ovary.html).

Risk factors

Genetic risk factors 

The lifetime risk of developing OvCa in the USA 
is currently 1.4%. The risk increases with mutations in 
several genes namely, BRCA1/2, mismatch repair and 
ARID1 genes [11]. Women with BRCA mutations have 
an increased risk of developing ovarian, fallopian tube and 
peritoneal cancer, specifically, 20–50% in BRCA1 and 10–
20% in BRCA2 [12]. Women with mutations in mismatch 
repair genes associated with type 2 Lynch syndrome are at 
higher risk of developing colon, endometrial and ovarian 
cancers [13, 14]. Similarly, women with mutations in 
ARID1A are at risk of developing endometrial or clear cell 
ovarian carcinoma [11]. 

Non-genetic risk factors 

Include incessant ovulation as well as repeated 
rupture and repair of ovarian follicles with continued 
exposure to gonadotropins [15]. Nulliparity and infertility, 
both interfere with protective hormone release, are 
considered risk factors. In support of this, multiparous 
women who are pregnant after the age of 35 years are at 
a reduced risk of developing EOC [16–18]. Gynecologic 
diseases such as endometriosis, polycystic ovary syndrome 
(PCOS), and postmenopausal hormonal therapy perturb 
the estrogen and progesterone cycle and increase the risk 
of OvCa [19, 20]. Intrauterine devices, obesity, cigarette 
smoking, exposure to talc and asbestos have also been 
shown to increase the risk of OvCa [21–24]. 

Protective factors 

Include oral contraceptives, multiparity, salpingo-
oophrectomy, tubal ligation, hysterectomy, breast feeding, 
nonsteroidal anti-inflammatory (NSAID) drugs and 
acetaminophen.

Pathological subtypes 

Many pathological subtypes are described for 
EOC. These are further classified into serous, clear cells, 
mucinous, and endometrioid.

Serous cancer

High-grade serous cancer (HGSC) compromise 70 to 
80% of all cases and typically arises from either the surface of the 
ovary or from the distal fallopian tube [25]. HGSC strongly and 
diffusely expresses p53 and p16. HGSC also expresses Wilm’s 
tumor-1 (WT-1), estrogen receptor (ER), and Paired Box-8 
(PAX-8) in most cases as well as a high Ki67 proliferative index. 
Genetic alterations in BRCA1 or BRCA2 germline mutations 
are present in up to 10% of women with HGSC. Additional 
associated genetic alterations that are specific to HGSC are 
TP53 (as high as 96%), NF1, RB1, CDK12, PTEN and PIK3CA  
[5, 26, 27]. 

Low-grade serous cancer (LGSC) comprise less than 
5% of OvCa. LGSC has a low Ki67 proliferative rate with 
normal p53 expression, and commonly expresses WT-1, 
ER, and progesterone receptor (PR). Mutations in BRAF 
and KRAS typically lead to LGSC [2, 28]. 

Endometrioid carcinoma 

Comprises 10% of epithelial types. Cancer cells 
express vimentin, ER, PR, PAX-8, and CA125. Genetic 
mutations of CTNNB-1 (β-catenin), PTEN, PIK3CA and 
ARID1A with microsatellite instability are also present  
[29, 30]. Endometrioid carcinoma as with clear cell 
carcinoma, typically arise from endometriosis which is 
linked to the theory of retrograde menstruation [25].

Clear cell carcinoma 

Comprises 10% of epithelial cases. Hypoxia-
inducible factor 1 alpha (HIF-1 α) [31], glypican-3 
[32], and hepatocyte nuclear factor 1-beta (HNF-1 beta) 
are highly expressed [33]. Genetic alterations include 
mutations in ARID1A KRAS, PTEN, and PIK3CA [34]. 

Mucinous carcinoma 

Comprises 3% of epithelial cases. Gastrointestinal 
markers CK20, CDX2, CK7 and molecular mutations as 
KRAS as well as mucin genes MUC2, MUC3, and MUC17 
are commonly expressed [35, 36]. 

Molecular pathogenesis

Tumors of the ovary have been divided into type I 
which includes LGSC, mucinous, low grade endometrioid 
and clear cell carcinoma and type II which includes HGSC, 
high grade endometrioid and undifferentiated/malignant 
mixed carcinomas. Type I tumors include mutations in 
KRAS, BRAF, PTEN and CTNNB-1, while type II tumors 
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are typically associated with p53 mutations. However, 
evidence from mouse models of OvCa indicated that 
p53 mutations alone are not sufficient to drive invasive 
carcinoma. As HGSC composes 70% of all ovarian serous 
tumors, its pathogenesis is especially important [35]. 

The pathogenesis of OvCa can also be segregated 
by anatomical origins namely ovarian or tubal (fallopian 
tube) derived [37]. The ovarian subtypes arise from 
ovarian surface epithelia which are derived from 
mesothelial coelomic epithelia covering the ovaries. They 
are often a result of the repeated formation of cortical 
inclusion cysts and endometriosis. It is hypothesized that 
ovarian carcinoma of this subtype arises from ovarian 
inclusions cysts that underwent Mullerian metaplasia 
[38]. The Fallopian or tubal subtypes originate from the 
coelom, namely the Mullerian or paramesonephric ducts. 
The majority of serous tumors appear to arise from the 
secretory cells in the distal fallopian tube. Serous tubal 
intraepithelial cancer (STIC) is the precursor lesion with 
TP53 mutations similar to those found in HGSC [39–41]. 
More recent studies theorize that the exact origin of tubal 
subtypes is at the junctional zone between the fallopian 
tube epithelium and the mesothelium of the tubal serosa. 
This site in particular, confers extensive connections 
with the lymphatic system making it relatively easy to 
invade and metastasize to the abdominal cavity. Thus, 
prophylactic salpingectomy is encouraged for women 
undergoing hysterectomy for benign conditions [42].

Clinical features

OvCa can manifest as either acute or subacute in 
nature. Acute forms are usually due to advanced stages 
of cancer spread leading to bowel obstruction and pleural 
effusion. Subacute cases will manifest as a unilateral or 
bilateral adnexal mass, pelvic pain or abdominal pain, 
postmenopausal bleeding, rectal bleeding or atypical 
glandular cells on cervical cytology [1, 43].

Diagnosis of EOC

Diagnostic studies are categorized into two phases: 
an initial evaluation of the presumed adnexal or abdominal 
mass by imaging studies such as abdominal ultrasound and 
MRI followed by surgical evaluation, and pathological 
identification of the subtype, grading, and staging. 
Pathological grading and identification of the subtypes 
are achieved after percutaneous fine needle biopsy or after 
cytoreduction [44]. Several tumor markers are considered 
in the diagnosis such as CA125 (cancer antigen 125), 
human epididymis protein 4 (HE4) and carcinoembryonic 
antigen (CEA) that are increased in advanced EOC and 
are considered as prognostic markers, though they lack 
specificity and sensitivity [44]. 

Determinants of peritoneal metastasis

Cancer cells

EOC is unique among cancers in that cancer cells 
have diverse progenitors, ovarian surface epithelium 
(OSE)  and fimbrial epithelia, that express common 
epithelial markers as keratins, EpCAM and E-cadherin as 
well as mesenchymal markers as vimentin and N-cadherin 
[45–47]. Malignant cells are shed from the primary 
tumor into the peritoneal cavity where they survive 
as free-floating single cells or aggregate as spheroids 
in the peritoneal fluid “malignant ascites”. Single 
cells and spheroids can not only survive anchorage-
independent apoptosis “anoikis”, but also can proliferate 
in suspension and seed onto the mesothelial cells lining 
the peritoneal cavity resulting in extensive peritoneal 
dissemination [48, 49]. Phenotypic characterization 
of single and multicellular malignant cells isolated 
from ascitic fluid revealed that these cells exhibit dual 
“hybrid” as well as heterogeneous E-and N-Cadherin 
expression [49]. The latter study also reported cadherin-
dependent diversity in cell-cell interactions, spheroid 
formation, and ultrastructure. This is further supported by 
an elegant report from the same group [50] implicating 
cadherin-plasticity in mesothelial adhesion, clearance and 
collagen invasion. Cadherin plasticity is also implicated 
in the dynamic switch between epithelial-mesenchymal 
transition (EMT) and mesenchymal-epithelial transition 
(MET). EMT-MET switch is regulated by complex 
sequential transcriptional machinery with early induction 
of the transcription factors SNAIL (SNAI1) and slug; 
whereas SNAI2, ZEB1/2 and TWIST were induced at later 
phases [51–55]. EMT- transcription factors are induced 
by a plethora of upstream factors that act individually or 
synergistically to induce an invasive phenotype of EOC 
cells. The expression of EMT-inducing transcription 
factors (Snail, Slug, Twist and Zeb1/2) is associated 
with metastatic, recurrent and chemo-resistant tumors 
and poor prognosis [51, 53, 55–58]. Correlation between 
EMT and aggressiveness of OvCa is supported by the 
downregulation of E-cadherin [59] and overexpression 
of mesenchymal signatures specifically transforming 
growth factor beta and its receptors (TGFβ/TGFβRs), 
CD44 [60], bone morphogenetic proteins and their 
receptors (BMPs/BMPRs), receptor tyrosine kinases and 
their ligands [54], Wnt [61, 62] and Notch [53] signaling 
pathways. In addition to intrinsic EMT inducers activated 
in cancer cells, cues from the peritoneal TME strongly 
induce EMT. For example, mesothelial cells, adipocytes 
and ascitic fluid rich in growth factors, bioactive lipids, 
matrix metalloproteases (MMPs), as well as inflammatory 
and immune cells; all induce hypoxia, inflammation and 
oxidative stress and corroborate to induce EMT [63–66]. 



Oncotarget22835www.oncotarget.com

Mesothelial cells

Mesothelial cells are the first barrier that faces 
metastatic OvCa cells. They are organized as a single layer 
of simple epithelium covering the sub extracellular matrix 
(ECM). rich in collagen I that covers abdominal, pelvic  as 
well as visceral organs including the omentum [67–69]. 
Apically, mesothelial cells secrete glycosaminoglycans, 
surfactant and proteoglycans to establish an anti-adhesive 
surface. The bidirectional cross-talk between cancer 
and mesothelial Cells promotes cancer cell chemotaxis 
to the mesothelial cells, followed by integrin-mediated 
adhesion and invasion with subsequent increase in MMPs, 
and urokinase type plasminogen activator (uPA) and its 
receptor (uPAR) [70–73]; eventually leading to mesothelial 
clearance and invasion of the sub-mesothelial layers [74–
76]. In addition, clinical reports show that cancer cells 
preferentially bind to regions of disrupted mesothelium at 
sites of entry of lymphatic and blood vessels [67–69, 77]. 

The propensity of OvCa to metastasize to the 
mesothelial cells is initially instigated by cancer cell 
secretome that preconditions the mesothelial cell niche 
to induce the expression of multiple pro-inflammatory 
mediators as bioactive lipids (e.g. LPA)/inflammatory 
cytokines/chemokines [78–80], ECM/integrins  
[67, 68, 81–86], cell adhesion molecules as VCAM1, 
ICAM1, CD44/HA [87–89], and uPA/uPAR [71, 90]. 
OvCa cell adhesion to mesothelial cells is mediated by 
bidirectional binding of ECM, integrins and cell adhesion 
molecules. This binding activates multiple downstream 
signaling pathways that in corroboration with activation 
of oncogenic signaling pathways, promote cancer cell 
colonization, invasiveness, and metastasis.

The omentum and omental adipocytes

The omentum, which is subdivided into lesser and 
greater, is a double layered peritoneal fold that covers 
the intestines and abdominal organs. Physiologically, it 
functions as a fat and energy depot due to the abundance 
of white adipocytes [91, 92]. It also has a role in immune 
surveillance via aggregates of macrophages known as 
milky spots that play an important role in containing 
intraperitoneal infections [93, 94]. Milky spots also play 
an important role in the tropism of OvCa cells to the 
omentum [95–97]. Importantly, omental adipocytes release 
cytokines/chemokines “adipokines”, which contribute 
to OvCa cell homing, invasion and metastasis [91, 92, 
95, 98]. The bidirectional interaction between omental 
adipocytes and cancer cells causes dedifferentiation and 
reprogramming of adipocytes into cancer-associated 
adipocytes (CAA) [98]. In this process, cancer cells 
secrete cytokines and chemokines that induce lipolysis 
in adipocytes, breaking their lipids (triglycerides), 
and releasing fatty acids and glycerol. Consequently, 
adipocytes undergo de-differentiation into a pre-adipocyte 
stage (fibroblastoid) and secrete adipokines [91, 98] 

(Figure 1). In turn, the uptake of fatty acids by cancer cells 
increases where they are used for generation of energy by 
beta oxidation [91] to meet the increasing demands of the 
rapidly proliferating OvCa cells.

Fibroblasts

Cancer associated fibroblasts (CAFs) play an 
important role in the EOC progression. In the peritoneal 
milieu, the origin of CAFs is unclear. The activation of 
resident fibroblasts and mesenchymal stem cells has long 
been considered the main origin of CAFs in the tumor 
microenvironment [99]. However, mesothelial cells have 
been shown as an important source of activated fibroblasts 
in inflammatory and fibrotic peritoneal pathologies 
as peritoneal dialysis, in which mesothelial cells are 
converted into myofibroblasts through mesothelial to 
mesenchymal transition (MMT) [100]. This hypothesis 
was supported in clinical specimens from patients with 
peritoneal metastases from ovarian and colon cancers, 
in which submesothelial fibroblasts expressing both 
mesothelial (calretinin, cytokeratins, mesothelin) and 
myofibroblasts (α-SMA) markers were detected by 
immunostaining [101]. More recently, mechanistic studies 
by Rynne-Vidal and colleagues [102] demonstrated that 
mesothelial cells isolated from ascitic fluid of OvCa 
patients with peritoneal metastases underwent MMT 
and promoted in vivo growth of xenografts through 
TGF-β-Smad-dependent MMT program, highlighting 
the crucial impact of the TGF-β-mediated bidirectional 
communication between OvCa cells and mesothelial cell-
derived CAFs to form a suitable metastatic niche [102]. 

Another source of CAFs in the unique peritoneal 
TME is the omental adipocytes that have undergone 
delipidation and de-differentiation into pre-adipocyte 
fibroblastoid or stem-like stage [98, 103, 104]. Although 
this hypothesis has not yet been reported in OvCa, our 
unpublished data as well as reports in breast and pancreatic 
cancer [98, 103, 104] support its implication in OvCa. 
This is further supported by earlier reports of adipocyte 
de-differentiation into fibroblasts in inflammatory fibrotic 
changes encountered in dysfunctional adipose tissues in 
obesity and type 2 diabetes [105]. Moreover, endothelial 
to mesenchymal transition that has been reported in 
vasculopathies and atherosclerotic plaques [106] was 
suggested as a source of CAFs in OvCa [107]. 

The CAF phenotype is induced by environmental 
cues (Figure 2) characterized by inflammation, and 
hypoxia activating fibroblasts to exhibit characteristics 
of both myofibroblasts and secretory phenotype further 
contributing to inflammatory TME, cancer invasiveness 
and metastasis [101, 102, 108–111]. Increased number 
of CAFs corresponds with a more advanced OvCa stage, 
higher frequency of lymph node metastases, and amplified 
lymphatic and micro-vessel density [111]. CAFs can be 
activated by multiple mechanisms triggered by secreted 
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factors from OvCa cells as TGF-β1, inflammatory 
cytokines and chemokines, reactive oxygen species (ROS) 
as well as MMPs [108]. The activation of CAF by TNFα 
has been shown to upregulate transforming growth factor 
α (TGF-α) through an inflammatory process activating 
NFkB. In turn CAF-derived TGFα induces epidermal 
growth factor (EGFR) signaling in cancer cells which 
stimulates cancer cell growth [112]. CAFs can also be 
activated through increased expression of progranulin 
(PGRN) peptide that stimulates EMT in cancer cells 
and upregulates the expression of smooth muscle actin α 
(α-SMA) in fibroblasts. High levels of both PGRN and 
α-SMA and low E-cadherin levels were associated with 
poor prognosis [108, 113]. Importantly, the molecular 
cross-talk between cancer cells and CAFs in the ovarian 
TME has been shown to be regulated by TGFβ/TGFβRs/
SMAD pathway in CAFs with subsequent overexpression 
and secretion of target genes as versican [110]. The latter 
mediates tumor migration and invasion through binding 
to CD44 with subsequent activation of the NFkB and JNK 
signaling pathways in OvCa cells further supporting a pro-
inflammatory TME and tumor progression [110].

Tumor associated macrophages (TAMs)

The pro-inflammatory peritoneal TME characterized 
by increased LPA is continuously produced by cancer 
and mesothelial cells with subsequent increase in 
several pro-inflammatory cytokines and chemokines 
including macrophage chemoattractant protein-1 (MCP-
1/CCL2) which recruits macrophages to the peritoneal 
TME promoting tumor growth, invasiveness, vascular 
permeability and angiogenesis. The cross-talk between 
cancer cells and TAMs upregulates the secretion of 
MMPs, uPA/uPAR, and prostaglandin E2 (PGE2)  
[79, 80, 114–117] which influence tumor migration 
and invasion through activation of NFkB, the key 
regulator of pro-inflammatory molecules in both TAMs 
and cancer cells, making them even more important in 
tumor progression [79, 80]. In addition, the increased 
infiltration of TAMs in the peritoneal TME not only 
promotes cancer cell invasiveness but also contributes 
to an immunosuppressive environment that suppresses 
the function of T cells, dendritic cells (DCs) and natural 
killer (NK) cells [7]. TAMs also contribute to the 

Figure 1: Schematic Representation of the key cell types in Ovarian Cancer Microenvironment and the molecules 
involved in their interactions. HGSC: high grade serous cancer; LGSC: low grade serous cancer; CCC: clear cell carcinoma; EC: 
endometrial carcinoma; CIC: carcinoma in situ; CAA: cancer-associated adipocyte; CAF: cancer-associated fibroblast; FFA: free fatty acids; 
VEGF: vascular endothelial growth factor; bFGF: basic fibroblast growth factor; PDGF: platelet-derived growth factor; VCAN: versican; 
CD8+, cytotoxic T cell; Treg: regulatory T cell; DCs: dendritic cells; MDSCs: myeloid-derived suppressor cell; ECM, extracellular matrix; 
IL-x, interleukin-x; ICAM/VCAM: intercellular/vascular adhesion molecule; HA: hyaluronic acid; CA125: cancer antigen 125; LPA: 
lysophosphatidic acid; NK: natural killer cell; TAM: tumor-associated macrophage; TGFβ: growth transforming growth factor β; TNFα: 
tumor necrosis factor-α.



Oncotarget22837www.oncotarget.com

phenotypic switch of fibroblasts into cancer associated 
fibroblasts (CAFs), and in turn activate multiple pathways 
specifically TGFβ pathway that leads to inflammation 
and immune suppression, and the associated chemo-
resistance, recurrence and poor prognosis [118, 119]. In 
addition, increased TAMs in the OvCa milieu was found 
to decrease the sensitivity to VEGF targeting therapy 
[120]. The augmented inflammatory TME promoted 
many clinical trials targeting inflammatory cytokines/
chemokines and their receptors, TGFβ/TGFβRs as well as 
COX-2 inhibitors (Table 1).

Myeloid-derived suppressor cells (MDSCs) 

These represent a heterogeneous population of cells 
of myeloid origin that, in the steady immature state, are 
present in the bone marrow, but not in secondary lymphoid 
organs and lack suppressive activity. The phenotype of 
MDSCs is Lin-HLA−DR-CD33+ or CD11b+CD14−CD33+ 
and have also been identified within a CD15+ population 
in human peripheral blood [121]. When activated by ROS, 
reactive nitrogen species (RNS), or arginase, arginase they 
become potent suppressors of various T-cell functions. 
MDSCs accumulate in lymphoid organs and in tumors in 

response to growth factors and inflammatory cytokines/
chemokines [122] as well as PGE2 enriched in the OvCa 
TMDC. Obermajer and colleagues [123] showed that 
PGE-2 attracts MDSC into ascites of OvCa patients by 
inducing expression of functional CXCR4 in cancer-
associated MDSCs, and plays a role in the production of its 
ligand CXCL12 [123]. These studies provided a rationale 
for targeting COX-2, and CXCR4 in cancer therapy [123] 
(Table 1). In tumor tissues, MDSCs can be distinguished 
from TAMs by their granulocytic morphology, high 
expression of arginase, inducible nitric oxide synthase 
(iNOS), and Gr1 (which are not expressed by TAMs) as 
well as low expression of F4/80 (expressed by TAMs) 
[121]. In addition to suppressing T-cell functions, high 
numbers of immunosuppressive MDSCs in the OvCa 
TME were identified and were shown to promote and 
maintain the OvCa stem cell pool by stimulating miR-101 
expression and targeting co-repressor CtBP2 in OvCa cells 
[124]. 

Dendritic cells (DCs)

Dendritic cells (DCs) are specialized antigen-
presenting mononuclear cells, that in their immature 

Figure 2: Schematic illustration of ovarian cancer cell-induced phenotypic commitment of stromal cells into 
cancer-associated phenotype. CAFs: cancer-associated fibroblasts, CAA: cancer-associated adipocytes, BM: bone marrow, MSCs: 
mesenchymal stem cells.
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Table 1: Clinical trials targeting the ovarian cancer cells and their interactions with tumor microenvironment

Drug Target Clinical Trial NCT Trial 
Aflibercept (VEGF trap) vascular endothelial growth factor (VEGF) Phase 2 NCT00327171

NCT00327444
NCT00396591

Bevacizumab +  paclitaxel and 
carboplatin

VEGF-A Phase 3 NCT01239732

Bevacizumab and Erlotinib VEGF-A + EGFR Phase 2 NCT00130520
Bevacizumab + Carboplatin VEGF-A Phase 2 NCT00937560

NCT00744718
Chiauranib serine-threonine kinases: aurora kinase B (aurora B), 

VEGF receptors (VEGFRs), stem cell factor receptor 
(c-KIT), and platelet-derived growth factor receptors 

(PDGFRs)

Phase 1
Phase 2

NCT03166891

Nintedanib + Bevacizumab VEGFR1/2/3, FGFR1/2/3 and PDGFRα/β 
(angiogenesis and fibrosis)

Phase 1 NCT02835833

INCB062079 fibroblast growth factor receptor 4 (FGFR4) Phase 1 NCT03144661
Sorafinib + paclitaxel and 
carboplatin

Multi-targeted Receptor Tyrosine Kinase Inhibitor 
(RTKi)

Phase 2 NCT00390611

Sunitinib (SU11248) Multi-targeted RTKi Phase 2 NCT00543049
NCT00768144
NCT00453310

Tocilizumab and Interferon 
alpha 2-b (IFN-α2b)+ 
Carboplatin and Caelyx or 
doxorubicin

Interleukin-6 receptor (IL-6R) Phase 1 NCT01637532

Siltuximab (CNTO 328) IL-6R Phase 2 NCT00841191
Plerixafor CXCR4 Phase 1 NCT02179970

NCT03277209
PD 0360324+ 
cyclophosphamide

Macrophage colony stimulating factor (M-CSF) Phase 2 NCT02948101

Celecoxib + 
cyclophosphamide

cyclooxygenases (COX-1 and COX-2) Phase 2 NCT00538031

Ketorolac COX-1 and COX-2/GTPase inhibition Phase 0 NCT02470299
Metformin + paclitaxel and 
carboplatin

Antidiabetic medication/metabolism Phase 1
Phase 2

NCT02312661
NCT02437812

Metformin Antidiabetic medication/metabolism Phase 2 NCT01579812
Metformin+ atorvastatin + 
doxycycline+ mebendazole

Antidiabetic medication/metabolism (glucose and 
lipid levels)

Phase 3 NCT02201381

INCAGN01876 + Nivolumab 
+ Ipilimumab

Tumor necrosis factor α (TNFα), Programmed cell 
death protein 1 (PD-1) and cytotoxic T-lymphocytes’ 

CTLA-4.

Phase 1
Phase 2

NCT03126110

MK-3475 (pembrolizumab) + 
Gemcitabine and cisplatin

PD-1 Phase 2 NCT02608684

Oregovomab and Nivolumab Cancer Antigen 125 (CA-125) and PD-1 Phase 1
Phase 2

NCT03100006

Durvalumab (MEDI4736 
+ motolimod) + pegylated 
liposomal doxorubicin

Programmed cell death ligand 1(PD-L1) and Toll 
like receptor 8 (TLL8)

Phase1
Phase 2

NCT02431559
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state exhibit phagocytic ability, and when become 
functionally mature, they produce cytokines and exhibit 
immunostimulatory capacity [125]. DCs are sensitized 
after exposure to tumor antigen, migrate to regional 
lymph nodes, and stimulate the proliferation of naive T 
cells to initiate the immune response [126]. Based on 
the expression of cluster of differentiation (CD) markers, 
DCs exhibit antigen cross-presentation via MHC class I 
or class II molecules to activate CD8+ or CD4+ T cells 
[125]. Increased number of tumor-infiltrating DCs in 
tumor tissue was correlated with favorable prognosis 
[126]. In addition, substantial numbers of functional 
plasmacytoid (tolerogenic) dendritic cells (PDCs) were 
detected in malignant ascites of patients with OvCa 
and mechanistically, they significantly induced tumor 
angiogenesis [125]. The ability of DCs to process and 
present antigens and stimulate anti-tumor immune 
response promoted the development of clinical trials 
using DCs vaccines in which autologous DCs pulsed with 
either tumor cell lysates in combination with bevacizumab 
and oral metronomic cyclophosphamide for patients with 
recurrent stage III/IV OvCa in whom anti-tumor responses 
and clinical benefit for patients were observed [127, 128].

Lymphocytes

Tumor associated lymphocytes (TILs) comprise 
T-cells, and regulatory T cells (T-regs) that have left the 
intravascular compartment and localized in tumor stroma 
(stromal TILs) or inside the tumor islets (intraepithelial 
TILs). In particular, intraepithelial TILs play an extensive 
role in the control of tumor growth in almost all solid 
tumors including OvCa (summarized in [129]). CD8+ 
or CD4+T-lymphocytes can recognize cancer antigens 
or over-expressed self-antigens and inhibit cancer 
development [129]. TILs play a key role in tumor immune 
surveillance through T cell receptor (TCR)-mediated 
recognition of tumor antigens that have been processed by 
antigen presenting DCs [130]. Upon recognition of tumor 
antigens by TCR/MHC engagement, activated CD8+ 

cytotoxic T cells are able to directly kill malignant cells 
by mechanisms including perforin/granzyme secretion 
and FasL/Fas binding [131]. Studies indicated that the 
expression of the death Fas ligand (FasL/CD95L) was 
exclusively expressed in tumor vasculature and created a 
barrier that suppressed normal T cell function, allowing 
tumor cells to grow unrecognized by the immune system. 
Blocking this selective FasL expression may lead to 
effective immunotherapy targeting tumor progression 
[132–134]. Along with CD4+ helper T cells, cytotoxic 
CD8+ T-cells can secrete various cytokines/chemokines to 
direct the activities of other immune cells [135]. Several 
clinical studies in OvCa, reported a positive correlation 
between patient survival and the presence of intra-
epithelial TILs [135–137]. CD3+ TILs were reported in 
treatment-naïve OvCa specimens, but survival advantage 
was associated only with intraepithelial but not stromal 
TILs [135, 138, 139]. Meta-analysis of the majority of 
reports that investigated the prognostic value of TILs 
in OvCa [140] using the CD8+ marker to specifically 
evaluate cytotoxic T cells, found that intraepithelial CD8+ 

TILs exhibited a consistent and stronger association with 
patients’ survival than CD3+ TILs [140]. 

In the inflammatory OvCa TME, TILs’ function is 
suppressed by regulatory T cells (Tregs), MDSCs, and 
TAMs, with their secreted plethora of soluble inhibitory 
factors as IL-6, IL-10, arginase (Arg)1, and TGFβ, various 
metabolites like adenosine, and depleted tryptophan due to 
increased indoleamine 2,3-dioxygenase 1 (IDO-1) activity 
[141, 142]. Suppression of T cell functions occurs through 
downregulation of MHC molecules and co-stimulatory 
ligands, with upregulation of inhibitory receptors like 
programmed cell death protein ligand 1 (PD-L1) on tumor 
cells and cytotoxic T-lymphocyte antigen-4 (CTLA-4, 
CD152) [143]. Hamanishi and colleagues [144] reported 
that high expression of programmed death 1 (PD-1/
CD279) on OvCa cells was associated with poorer patients’ 
survival and with reduced CD8+ TILs suggesting that PD-
L1 expression promotes an immunosuppressive TME by 

Autologous Monocytes 
+ Sylatron (PegIFNα)+ 
Actimmune (IFNγ-1b)

Immunotherapy Phase 1 NCT02948426

Vigil bi-shRNA furin and 
GMCSF (FANG) Augmented 
Autologous Tumor Cell 
Immunotherapy

TGFβ1 and TGFβ2 (tumor)+ Immune stimulation Phase 2 NCT02346747

Vigil (Adjuvant FANG) TGFβ1 and TGFβ2 (tumor) + Immune stimulation Phase 2 NCT01309230
Atezolizumab and Vigil PDL1 and TGFβ1 and TGFβ2 (tumor) Phase 2 NCT03073525
NK immunotherapy Combination of Cryosurgery and NK 

Immunotherapy 
Phase 2 NCT02849353

Therapeutic autologous 
Antigen-Specific CD4+ 
lymphocytes

Immunotherapy Phase 1 NCT00101257
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inhibiting T-cell infiltration [144]. These observations 
promoted clinical trials targeting PD1 or PDL-1 as well as 
CTLA-4 in OvCa (Table 1). The efficacy of single or dual 
blockade of PD-1 and/or CTLA-4 in combination with  
standard of care therapy was demonstrated in multiple 
models of OvCa with synergistic effects [143, 145, 146]. 
However the efficacy in treatment of OvCa patients is still 
being evaluated in clinical trials.

Regulatory T-cells (Treg) cells. CD4 Tregs are 
T-cell subpopulation that suppresses the function of 
activated T-cells. They can be divided into naturally 
occurring thymus-generated T-regs with a phenotype 
of CD4+CD25+FOXP3+ and the adaptive Tr1 Treg 
and Th3 Tregs which have variable CD25 expression. 
Moreover, patients with OvCa expressed Treg subsets with 
upregulated cytotoxic T-lymphocyte-associated protein 4 
(CTLA-4) and downregulated expression of CD28 [147, 
148]. Additionally, in vitro induced CD8 Tregs block CD4 
T-cells proliferation via TGF-β1 and IFN-ɣ. Tumors are not 
only known to increase the number of Tregs in peripheral 
blood of OvCa patients, but also recruit and stimulate Treg 
tumor infiltration and localization [147, 148].

Natural killer cells (NK) are lymphocytes of the 
innate immune system and are defined by the expression 
of cell adhesion markers CD56 and CD16 and the lack 
of T-cell receptor CD3 [149]. They target cells with 
low MHC Class-I expression including tumor cells by 
using perforins to puncture the membranes of target 
cells leading to activation of the apoptotic cascade by 
granzymes. In addition to the aforementioned mechanism, 
members of the tumor necrosis factor receptor family 
such as Fas/CD59 also contribute to NK cytotoxicity 
when activated [150]. In the face of such immune-
surveillance, tumor cells have adeptly managed to go 
undetected via several mechanisms. For instance, studies 
showed that MUC16, a high molecular weight mucin 
overexpressed by OvCa has the ability to inhibit NK cell 
and downregulate CD16. NK cells lose their CD16 by 
a metalloprotease called ADAM17. Inhibition of this 
metalloprotease enhances CD16-mediated NK cell killing 
ability through antibody-mediated cellular cytotoxicity 
by maintaining the CD16 on the cell surface [151]. 
This phenomenon is not exclusive to OvCa cells; some 
leukemia cell lines inhibit NK cells by up-regulating 
MHC Class-I expression which sends an inhibitory signal 
to NK cells [150].

Endothelial cells: In the ovarian TME, two factors 
are critical to modulate the blood vessel structure: 
cellular permeability and angiogenesis [152]. In normal 
tissue, the endothelial cells are composed of a single 
layer of continuous uniform cells with few cytoplasmic 
projections, while tumor endothelial cells are of 
abnormal shape and size [152, 153]. OvCa cells secrete 
a plethora of factors to induce phenotypic changes in 
the omental microvasculature. Initially identified as 
vascular permeability factor [154], vascular endothelial 

growth factor (VEGF) has been long considered as the 
key regulator of angiogenesis that drives endothelial cell 
survival, proliferation, and migration while increasing 
vascular permeability [155]. VEGF is not only produced 
by cancer cells, but it is also produced by TAMs, 
CAAs, as well as CAFs [155, 156]. VEGF contributes 
to the development of peritoneal carcinomatosis 
associated with malignant ascites formation, the 
hallmarks of advanced OvCa [156, 157]. Preclinical 
and clinical studies showed that VEGF levels inversely 
correlates with disease prognosis and patients’ survival  
[155–157]. VEGF inhibition has been shown to 
inhibit tumor growth, invasion, metastasis, and ascites 
production. These findings promoted the clinical 
evaluation of agents targeting VEGF/VEGFRs with 
approval of anti-VEGF humanized antibody (Avastin, 
bevacizumab) in patients with OvCa [156] as single 
agents or in combination with standard of care therapy 
(https://www.cancer.gov/about-cancer/treatment/drugs/
ovarian). In addition to VEGF, deregulation of normal 
endothelium in the peritoneal TME is also induced by 
proangiogenic factors such as IL-6, IL-8, PDGF, FGF, 
CCL2, CXCR4, uPA/uPAR, angiopiotein-1, bioactive 
lipids and neuroendocrine hormones produced by OvCa 
cells and the other cellular components in the peritoneal 
TME [120, 156]. This upregulation of the proangiogenic 
factors and their interconnected signaling pathways not 
only contributes to increased vascular permeability, 
tumor growth and angiogenesis, but also contributes 
to the suboptimal response to VEGF/VEGFR targeting 
therapy [120, 156]. Therefore, clinical trials targeting 
these proangiogenic factors, their receptors including 
receptor tyrosine kinases in OvCa patients, are currently 
underway (Table 1).

Ascitic fluid. In normal physiologic conditions, 
the movement of proteins from the intravascular space 
to the peritoneal fluid is tightly regulated by 5 layer-
barrier namely, capillary endothelium, capillary basement 
membrane, interstitial stroma, mesothelial basement 
membrane and mesothelial cells of the peritoneal 
lining [158]. This barrier is maintained by intact tight 
junctions (at the mesothelial and endothelial interface) 
and intravascular anionic macromolecules which create 
a difference in oncotic pressure across the peritoneal 
membrane [158]. In patients with OvCa, this barrier 
is breached with increased vascular and mesothelial 
permeability and transudation of high protein fluid from 
intravascular compartment to peritoneal cavity. Along with 
the high protein concentration, increased inflammatory 
cytokines and chemokines and reduced lymphatic flow 
also contribute to the buildup of ascitic fluid [6, 25, 156, 
158, 159]. In addition, ascites is rich in bioactive lipids as 
lysophosphatidic acid (LPA), that has been long identified 
as OvCa promoting factor [160]. LPA is produced by 
OvCa cells and the cellular components in the peritoneal 
TME. High levels of LPA in ascitic fluid lead to aberrant 
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receptor signaling and activation of pro-inflammatory 
and pro-survival pathways as well as transactivation of 
receptor tyrosine kinases [161–164] that further OvCa 
progression and are associated with poor prognosis  
[7, 160, 165]. At the cellular level, ascitic fluid contains 
floating cancer cells, macrophages and immune cells; all 
contribute to the malignant aggressive phenotype of OvCa 
[120, 155–157].

Treatment

Standard treatment of OvCa is composed of initial 
surgical management with exploratory laparotomy followed 
by total hysterectomy, bilateral salpingo-oophrectomy, 
omentectomy, and retroperitoneal lymphadenectomy 
depending on the extent and spread of the primary tumor. 
Initial treatment options are primary surgery followed by 
chemotherapy and neoadjuvant chemotherapy followed 
by surgery. Standard chemotherapy involves carboplatin 
and paclitaxel. Various targeted therapies are being studied 
in combination with carboplatin/paclitaxel in hopes of 
improving survival (Table 1). In addition to the recently 
FDA approved targeted therapies as poly (ADP-ribose) 
polymerase PARP inhibitors and VEGF inhibitors, other 
targeted therapies currently in clinical trials include 
other angiogenesis inhibitors (VEGF/VEGFRs, FGFRs, 
PDGFRα/β), multi-target receptor tyrosine kinase 
inhibitors (RTKi), cyclooxygenase-2 (Cox-2) inhibitors, 
and inhibitors of cytokines and their receptors (IL-6/IL-6R, 
SDF1/CXCR4, M-CSF, TGFβ1/2/3). 

In recent years, immunotherapy for advanced 
stage OvCa was introduced in clinical trials using 
immune check points inhibitors targeting programmed 
cell death protein (PD1) and its ligand (PDL1) as well 
as cytotoxic T-lymphocyte-associated protein 4 (CTL4) 
with neutralizing antibodies that restore the functions 
of cytotoxic T-lymphocytes to recognize and eradicate 
tumor cells. More recently, personalized therapy with 
autologous tumor and immune cells reprogrammed ex-
vivo to stimulate the immune system and overcome 
immune evasion of OvCa cells are currently in clinical 
trials. However, emerging data suggests limited survival 
advantages. In addition, targeting tumor metabolism has 
recently gained more appreciation as evidenced by clinical 
trials of metformin in advanced HGSC either alone or in 
combination of standard of care therapy (Table 1). 

Despite the changing nature of chemotherapeutic 
regimens, OvCa resistance and recurrence still remain a 
common problem mainly due to suboptimal resection of 
microscopic and/or lesions that cannot be removed due 
to their site in the peritoneal cavity, tumor heterogeneity, 
evolution of chemo-resistant tumor cells and the unique 
site of OvCa spread in the peritoneal cavity. 

CONCLUSIONS

Advanced epithelial OvCa carries the largest burden 
of disease mortality among all gynecologic malignancies. 
Although the majority of patients show substantial initial 
response to first-line therapy (e.g., surgery and combined 
platinum plus paclitaxel based therapies), almost 70% of 
patients experience recurrence of their cancer within 18 
months. Our ability to effectively treat recurrent OvCa 
is the single greatest impediment to improve disease 
outcome. Current challenges in curing patients with OvCa 
are: 1) late-stage detection for the majority of OvCa 2) 
suboptimal debulking surgery mostly due to infiltrative 
nature of the disease, and 3) recurrence of chemo-resistant 
cancer. Indeed successful treatment of OvCa can be 
achieved by improving surgical approaches to precisely 
excise the tumor with minimal residual disease, and 
enhancing our understanding of the complex interplay 
of cancer cells within the unique peritoneal TME. The 
ultimate goals are: 1) identifying and validating diagnostic 
biomarkers for early stage disease, 2) identifying and 
validating prognostic biomarkers in the primary tumor 
that predict response to therapy and recurrence, and 3) 
targeting the determinants of cancer cell-TME interactions 
in neoadjuvant or adjuvant settings.
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