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AbstrAct:
miRNAs have been recently implicated as drivers in several carcinogenic processes, 
where they can act either as oncogenes or as tumor suppressors. Schwannomas 
arise from Schwann cells, the myelinating cells of the peripheral nervous system. 
These benign tumors typically result from loss of the neurofibromatosis type 2 
(NF2) tumor suppressor gene. We have recently carried out high-throughput miRNA 
expression profiling of human vestibular schwannomas using an array representing 
407 known miRNAs in order to explore the role of miRNAs in the tumorigenesis of 
schwannomas. We found that miR-7 functions as a “tumor suppressor” by targeting 
proteins in three major oncogenic pathways - EGFR, Pak1, and Ack1. Interestingly, 
in this study, we also observed that several previously described potential tumor 
suppressor miRNAs that are down-regulated in malignant tumors were up-regulated 
in schwannomas. Here we discuss the possibility that “tumor suppressor” miRNAs 
may play a role in the transition stage(s) of cancer from benign to malignant forms.

mirNA biogeNesis

It has been almost two decades since the discovery of 
a new class of non-coding RNA molecules by Ambros and 
colleagues [1]. The term microRNA (miRNA) was coined 
to describe these short (~21-23 nucleotides long), single-
stranded RNA molecules which were later shown to be a 
key part of post-transcriptional regulatory mechanisms of 
gene expression in diverse organisms [2,3]. Up to now, 
>15000 miRNAs have been identified in >100 species 
(miRbase, Release 16, Sept 2010; http://www.mirbase.
org/). Computational predictions suggest that mammalian 
miRNAs control the activity of up to one-third of known 
protein-coding genes [4]. miRNA functions are evident 
from birth to death, encompassing diverse cellular 
processes, such as cell proliferation, differentiation, 
development and cell death [5]. Alterations in miRNA 
biogenesis and/or levels are associated with several 
disease states, including cancer, autoimmune disorders 
and neurodegenerative diseases.

Owing to the extensive research on miRNA 
biogenesis in the past decade, we now understand the 

precise details of how miRNAs are produced within 
the cell. miRNA biogenesis is spatially organized in 
two compartments: nuclear and cytoplasmic (Fig. 1). 
Within the nucleus, RNA polymerase II or III dictates 
the transcription of miRNA-coding genes to produce 
“pri-microRNAs”. These pri-microRNA molecules are 
then cleaved by the action of a microprocessor complex 
consisting of Drosha, a RNase III class enzyme, and a 
double stranded RNA-binding protein, DGCR8 (DiGeorge 
critical region 8), generating so-called pre-microRNAs 
(~70 nucleotide) [6,7]. Alternatively, transcription of 
very short intronic sequences (referred to as mirtrons) by 
RNA polymerase II and further splicing & debranching 
processes can also produce pre-microRNAs, thereby 
by-passing the initial cleavage by the microprocessor 
complex [8]. In either case, resulting pre-microRNA 
molecules are transferred to cytoplasm through Exportin 
5 – Ran-GTP. Within the cytoplasm, another RNase III 
class enzyme, Dicer, interacts with other double stranded 
RNA-binding proteins, including Argonaute 2 (Ago2), 
to form RISC (RNA-induced silencing complex), which 
binds to pre-microRNA molecules to cleave them 
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Figure 1: Simplified representative scheme of miRNA biogenesis. miRNA biogenesis starts in nucleus, 
where miRNA genes are transcribed by either RNA polymerase II or III, producing “pri-microRNAs”. Pri-
microRNAs are then cleaved by the action of a microprocessor complex, consisting of Drosha-DGCR8, and 
giving rise to pre-microRNAs. When the length and secondary structure of an intron (mirtron) resembles 
that of a microRNA, cellular splicing machinery can single-handedly take the place of Drosha processing 
to produce a pre-microRNA. Exportin-5 mediates the transport of these pre-microRNA molecules into the 
cytoplasm, where they interact with a number of different proteins to form RNA-induced silencing complex 
(RISC). Dicer cleaves pre-microRNAs into duplex miRNAs, whereas Argonoute proteins mediate strand 
selection to produce mature miRNA molecules. The nature of the complementarity between the miRNA 
and its target determine the ultimate fate of the transcript. If the complementarity is perfect, the target 
will be cleaved. On the other hand, in case of imperfect complementarity, the result will be repression of 
translation. Alternatively, miRNAs can also destabilize target RNAs through deadenylation
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into miRNA-duplexes. Following strand selection and 
separation by Ago2, activated RISC binds to its mRNA 
target(s) to exert its effect on translation. The ultimate 
result of miRNA-mediated regulation of gene expression 
depends on the extent of complementarity between the 
miRNA and its target sequence (Fig. 1). In case of perfect 
complementarity, miRNAs will mediate target cleavage. 
If the complementarity is imperfect, the result will be 
translational repression [9]. 

oNcomir ANd tumor suppressor 
mirNAs iN cANcer

Considering their roles in cell proliferation 
and death, it has been suggested that miRNAs could 
contribute to oncogenesis. Indeed, miRNA profiling 
studies revealed that dysregulation in miRNA levels are 
associated with various cancers [reviewed in 11,12]. The 
term “oncomir” has been coined to describe these cancer-
associated miRNAs, although some use this term only 
to describe miRNAs showing oncogenic characteristics. 
Recent studies have also shown that defects in miRNA 
processing are also related to cellular transformation and 
tumor formation [10]. Further support for miRNA-cancer 
association comes from genome-wide analysis of cancer-
associated microRNAs. It has been estimated that almost 
~50% of miRNA-coding genes are present in fragile 
sites and/or cancer-associated regions within the genome 
[13,14]. 

Characterization of the chromosome 13q14 
deletion in human chronic lymphocytic leukemia (CLL) 
represented the first indication of involvement of a 
miRNA in cancer, showing that miR-15 and miR-16, 
encoded in this chromosomal region, were either lost or 
downregulated in a majority of CLL patients [15]. Further 
research on miRNA-cancer association predominantly 
focused on elucidating differential miRNA expression 
profiles in different cancers. As a result, we now know that 
hundreds of miRNA levels are dysregulated in malignant 
tumors of lung, breast, colon, liver and brain . 

Depending on the disease state, expression of specific 
microRNAs can either be increased or decreased. miRNAs 
with upregulated expression levels in cancer, often known 
as “oncomirs”, aid tumor formation. Examples of such 
oncomirs include: miR-17-92, associated with lung 
cancer and lymphoma [16,17]; and miR-372 and miR 
373, associated with testicular germ cell tumors [18]. On 
the other hand, miRNAs with downregulated expression 
levels are regarded as “tumor suppressors”. These 
molecules have negative effect on tumor formation and 
development. The let-7 family represents one of the best 
examples of a tumor suppressor miRNA [19]. 

There is still a long way to go before deciphering 
miRNA involvement in cancers will be fully elucidated. 
Hundreds of candidate miRNAs remain to be characterized 
as oncomirs or tumor suppressors for different types of 

tumors. The precise details of miRNAs function in cancer 
pathogenesis, as well as the diagnostic and therapeutic 
potential of miRNAs are an active area of research. 

the mirNA regulAtioN of 
schwANNomAs 

In a recent study, we defined the miRNA signature 
of schwannomas by miRNA microarray expression 

profiling of human vestibular schwannomas as compared 
to control nerve sheaths [20]. This signature includes 12 
miRNAs that are deregulated in most schwannoma tumor 
samples. Out of these 12 miRNAs, 8 were confirmed to 
be significantly upregulated in schwannomas (5-20-fold); 
and 4 miRNAs to be downregulated (5-12-fold). Based 
on the relative fold increase, as assessed by qRT-PCR 
assays, the most upregulated miRNAs in schwannomas 
were let-7d (about 22-fold), miR-451 (about 17-fold), and 
miR-23b (about 15-fold). The let-7 family has been the 
most studied of the potential “tumor suppressor” miRNAs 
and contains 11 family members (http://microrna.sanger.
ac.uk/cgi-bin/sequences/query.pl?terms=let-7; reviewed 
in 21). This family acts as tumor suppressors to control 
several oncogenic pathways, including the Ras pathway 
[22], as well as oncogenes, HMGA2 [23] and c-Myc [24]. 
Two recent studies support the possible tumor suppressor 
function of this miRNA family in mouse models of breast 
and lung cancer, with elevated levels of let-7 inhibiting 
growth of these tumors [25,26]. In our study, we found 
that one of the members of the let-7 family, let-7d, was 
upregulated in schwannomas. Interestingly, we have 
recently shown in another NF2-related benign tumor, 
meningiomas, that let-7d, let-7b, and let-7g are also 
upregulated as compared to the arachnoidal tissue of 
origin [27]. Interestingly, the second most upregulated 
miRNA in schwanommas, miR-451 has also recently 
been shown to function as a potential tumor suppressor 
miRNA in human gastric and colon cancer cells, with its 
overexpression decreasing proliferation and increasing 
response to ionizing radiation in culture [28]. 

However, in some cases, there appears to be reverse 
regulation of miRNA levels in malignant versus benign 
tumors. In human malignant prostate cancers, miR-
23a and miR-23b were shown to be downregulated 
compared to normal prostate tissues [29]. In contrast, 
in our study miR-23b was found to be upregulated 
in benign schwannomas. Interestingly, a recent study 
showed that miR-23b downregulation resulted in 
increased expression of the protein encoded in one of its 
target mRNAs, mitochondrial glutaminase [30]. This, in 
turn, appears to be responsible for increased glutamine 
catabolism in prostate cancers. This study indicates a 
novel link between miRNAs, oncogenes and glutamine 
metabolism, presumably to provide alternative and quick 
ATP sources of glucose metabolism in cancers [30]. Thus, 
in schwannomas, elevated miR-23b might also block 
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alternate ATP sources, but in this case serving to reduce the 
rate of proliferation of these benign tumor cells. Another 
interesting potential tumor suppressor miRNA in cancer, 
miR-29 was also found to be upregulated in schwannomas. 
The downregulation of miR-29 and upregulation of its 
oncogenic targets, Tcl1 (T-cell leukemia/lymphoma 1), 
Mcl1 (an anti-apoptotic Bcl-2 family member) and DNA 
methyltransferase (DNMT3), have been implicated in 
chronic lymphocytic leukemia, cholangio-carcinoma and 
lung cancer as a means of blocking tumor cell apoptosis 
and silencing tumor suppressor genes [31,32]. Again 
upregulation of this miR29 may serve to attenuate the 
growth of benign schwannomas. In summary, several 
previously known downregulated “tumor suppressor 
miRNAs” in malignant tumors, such as let-7d, miR-451, 
miR-23a, and miR-29 were found to be upregulated in 
schwannomas. Based on these observations and given 
the fact that let-7d, let-7b, and let-7g tumor suppressor 
miRNAs are also upregulated in benign meningiomas 
[27], it seems likely that these miRNAs may function at 
transition stages in cancer, at least for schwannoma and 
meningioma tumors, between benign and malignant states 
by differential regulation of certain oncogenic pathways. 
So far, there has been no any mouse knockout studies for 
those miRNAs. It will be interesting to see whether loss 
of any of these malignant tumor suppressor miRNA can 
initiate tumor formation or promote malignant tumors in 
mice. Our miRNA profile comparison studies between 
benign (WHO grade I), atypical (WHO grade II) and 
malignant (WHO grade III) in meningiomas showed that 
several tumor suppressor miRNAs such as let-7 family 
members become downregulated in the transition between 
a benign state and a malignant state, while potential 
oncogenic miRNAs such as miR-21 are upregulated 
in this transition (O. Saydam, unpublished data). It 
remains to be explored whether these miRNAs are also 
upregulated in other types of benign tumors during this 
transition. The status of potential and confirmed targets 
of these upregulated miRNAs in schwannomas and 
meningioma, such as members of the Ras family, p53 or 
other oncogenic pathways also remains to be investigated.

mir-7 tAke oN three oNcogeNic 
sigNAliNg pAthwAys

In our study [20], we found that miR-7 was 
one of the most downregulated miRNAs (~9-fold) in 
schwannomas compared to control nerves. To investigate 
the possible contribution of miR-7 to schwannoma 
growth, we performed gain-of-function studies and found 
that upregulation of miR-7 inhibited schwannoma cell 
growth both in culture and in a xenograft tumor model in 
vivo. Moreover, overexpression of miR-7 directly targeted 
and inhibited expression of Ack1, Pak1, and EGFR in 
schwannoma cells. A significant inverse correlation was 
also found between miR-7 downregulation and Ack1 

and Pak1 upregulation in schwannoma tumor samples 
compared to control nerve tissue.

Previously known targets for miR-7 include messages 
for signaling proteins, Pak1 [33] and epidermal growth 
factor receptor (EGFR) [34], known to be activated in 
many forms of cancer. Epidermal growth factor receptor 
is overexpressed, amplified or mutationally activated 
in glioma, breast, lung, esophageal, and head and neck 
cancers [35]. Paks play an essential role in a variety 
of cellular functions including cell division, survival, 
angiogenesis, growth factor signaling and cell migration 
[36]. Overexpression of Paks has been detected in many 
cancers, such as glioma and breast cancer and linked to 
increased invasion and metastasis [37,38]. 

A new target for miR-7, found in our study, 
associated cdc42 kinase 1 (Ack1) is a non-receptor 
protein tyrosine kinase [39], and the gene encoding 
Ack1 has been recently shown to be amplified in breast, 
esophageal, lung, ovarian, pancreatic, and prostate cancer 
[40]. In a recent study, the role of Ack1 in migration and 
invasion of breast cancer cells was found to correlate with 
preservation of EGFR expression in vitro [41]. In prostate 
cancer, Ack1 stimulates prostate tumorigenesis in part by 
negatively regulating the proapoptotic tumor suppressor, 
the WW domain containing oxidoreductase (Wwox) [42]. 
Ack1 interacts with Wwox and triggers its ubiquitination 
and degradation. The same study also provided evidence 
supporting an oncogenic role of Ack1 in vivo - Ack1 
overexpression promoted anchorage-independent growth 
in culture and tumor growth in vivo [42]. It remains to be 
investigated how upregulation of Ack1 by decreased miR-
7 contributes to schwannoma tumorigenesis.

A recent study showed that miR-7 inhibited EGFR 
and Akt signaling by directly targeting the EGFR mRNA 
and the 3’UTR of IRS-1 and IRS-2, which function as 
upstream regulators of the Akt pathway [34,43]. Another 
study demonstrated that Pak1 mRNA is also a target 
for miR-7, with upregulation of this miRNA leading to 
degradation of Pak1 mRNA in transformed HeLa, ZR-75, 
and HEK 293 cells [33]. Taken together, our results and 
other reports [33,34] support the function of miR-7 as a 
potential tumor suppressor in tumors, including malignant 
gliomas and benign schwannomas. Overexpression and 
activation of Pak1 has been detected in many cancers 
[44], including schwannomas [45,46; see review 36]. 
Since the NF2 tumor suppressor gene is deleted in most 
schwannomas and its gene product, merlin inhibits 
Pak1 activation in several cell lines, including a mouse 
fibroblastic line, NIH 3T3 and a rat schwannoma cell 
line, RT4-DP6 [45,46], it seems very probable that 
Pak1 activation is critical in schwannoma formation. 
Additional mechanisms to activate Pak1, for example, 
via downregulation of miR-7 may also contribute to 
tumorigenesis.

Studies supporting a role for Pak1 [45,46], EGFR 
[47], and Ack1 [20] activation/overexpression in 
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schwannoma growth, suggests alternative strategies 
and rationale for the development of new therapies 
for these tumors based on overexpression of miR-7 or 
inhibition of Ack1, Pak1, and EGFR pathways. Given 
the fact that schwannomas, as many other cancers, are 
not always responsive to anti-EGFR treatment [48], our 
study suggests that Pak1 and/or Ack1 may prove critical 
therapeutic targets for schwannomas.

AckNowledgemeNts

This study was supported by the Children’s Tumor 
Foundation “Young Investigator Award” 2007-01-043 
(O.S.), NINDS NS24279 (X.O.B., O.S.), NCI CA69246 
(X.O.B.), CA86355 (X.O.B.) and Forschungsgesellschaft 
for Brain Tumors (O. S.).

refereNces

1. Lee RC, Feinbaum RL, Ambros V. The C. elegans 
heterochronic gene lin-4 encodes small RNAs with 
antisense complementarity to lin-14. Cell. 1993; 75: 843–
54.

2. Lai EC. MicroRNAs are complementary to 3’ UTR 
sequence motifs that mediate negative post-transcriptional 
regulation. Nat Genet. 2002; 30(4): 363-4.

3. Hawkins P, Morris KV.RNA and transcriptional modulation 
of gene expression. Cell Cycle. 2008; 7(5): 602-7.

4. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, 
often flanked by adenosines, indicates that thousands of 
human genes are microRNA targets. Cell. 2005; 120:15-20.

5. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism 
and function. Cell. 2004; 116(2): 281-97.

6. Denli AM, Tops BB, Plasterk RH, Ketting RF, Hannon GJ. 
Processing of primary microRNAs by the microprocessor 
complex. Nature. 2004;  432(7014): 231-5.

7. Gregory RI, Yan KP, Amuthan G, Chendrimada T, 
Doratotaj B, Cooch N, Shiekhattar R.The microprocessor 
complex mediates the genesis of microRNAs. Nature. 
2004; 432(7014): 235-40. 

8. Ruby JG, Jan CH, Bartel DP. Intronic microRNA precursors 
that bypass Drosha processing. Nature. 2007; 448(7149): 
83-6.

9. Winter J, Jung S, Keller S, Gregory RI, Diederichs S. Many 
roads to maturity: microRNA biogenesis pathways and 
their regulation. Nat Cell Biol. 2009; 11(3): 228-34.

10. Esquela-Kerscher A and Slack FJ. Oncomirs – microRNAs 
with a role in cancer. Nat Rev Cancer. 2006; 6(4): 259-69.

11. Mocellin S, Pasquali S, Pilati P. Oncomirs: from tumor 
biology to molecularly targeted anticancer strategies. Mini 
Rev Med Chem. 2009; 9(1): 70-80.

12. Kumar MS, Lu J, Mercel KL, Golub TR, Jacks T. Impaired 
microRNA processing enhances cellular transformation 
and tumorigenesis. Nat Genet. 2007; 39(5): 673-7.

13. Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, 
Yendamuri S, Shimizu M, Rattan S, Bullrich F, Negrini M, 
Croce CM. Human microRNA genes are frequently located 
at fragile sites and genomic regions involved in cancers. 
Proc Natl Acad Sci U S A. 2004; 101(9): 2999-3004.

14. Rossi S, Sevignani C, Nnadi SC, Siracusa LD, Calin 
GA. Cancer-associated genomic regions (CAGRs) 
and noncoding RNAs: bioinformatics and therapeutic 
implications. Mamm Genome. 2008; 19(7-8): 526-40.

15. Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, 
Noch E, Aldler H, Rattan S, Keating M, Rai K, Rassenti 
L, Kipps T, Negrini M, Bullrich F, Croce CM. Frequent 
deletions and down-regulation of micro-RNA genes miR15 
and miR16 at 13q14 in chronic lymphocytic leukemia. Proc 
Natl Acad Sci U S A. 2002; 99(24): 15524-9.

16. O’Donnell KA, Wentzel EA, Zeller KI, Dang CV, 
Mendell JT. c-Myc regulated microRNAs modulate E2F1 
expression. Nature. 2005; 435: 839-43.

17. He HL, Thomson JM, Hemann MT, Hernando-Monge E, 
Mu D, Goodson S, Powers S, Cordon-Cardo C, Lowe SW, 
Hannon GJ, Hammond SM. A microRNA polycistron as a 
potential human oncogene. Nature. 2005; 435: 828-33.

18. Voorhove PM, le Sage C, Schrier M, Gillis AJM, Stoop H, 
Nagel R, Liu Y-P, van Duijse J, Drost J, Griekspoor A. A 
genetic screen implicates miRNA-372 and miRNA-373 as 
oncogenes in testicular germ cell tumors. Cell. 2006; 124: 
1169-81.

19. Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada 
H, Endoh H, Harano T, Yatabe Y, Nagino M, Nimura Y, 
Mitsudomi T, Takahashi T. Reduced expression of the let-
7 microRNAs in human lung cancers in association with 
shortened postoperative survival. Cancer Res. 2004; 64: 
3753-6.

20. Saydam O, Senol O, Würdinger T, Mizrak A, Ozdener 
GB, Stemmer-Rachamimov AO, Yi M, Stephens RM, 
Krichevsky AM, Saydam N, Brenner GJ, Breakefield XO. 
miRNA-7 attenuation in Schwannoma tumors stimulates 
growth by upregulating three oncogenic signaling 
pathways. Cancer Res. 2011; 71(3): 852-61.

21. Roush S, Slack FJ. The let-7 family of microRNAs. Trends 
Cell Biol. 2008; 18: 505-6.

22. Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada 
H, Endoh H, Harano T, Yatabe Y, Nagino M, Nimura Y, 
Mitsudomi T, Takahashi T. Reduced expression of the let-
7 microRNAs in human lung cancers in association with 
shortened postoperative survival. Cancer Res. 2004; 64: 
3753-6.

23. Lee YS, Dutta A. The tumor suppressor microRNA let-7 
represses the HMGA2 oncogene. Genes Dev. 2007; 21: 
1025-30.

24. Sampson VB, Rong NH, Han J, Yang Q, Aris V, 
Soteropoulos P, Petrelli NJ, Dunn SP, Krueger LJ. 
MicroRNA let-7a down-regulates MYC and reverts MYC-
induced growth in Burkitt lymphoma cells. Cancer Res. 



Oncotarget 2011; 2:  265 - 270270www.impactjournals.com/oncotarget

2007; 15: 9762-70.
25. Kumar MS, Erkeland SJ, Pester RE, Chen CY, Ebert MS, 

Sharp PA, Jacks T. Suppression of non-small cell lung 
tumor development by the let-7 microRNA family. Proc 
Natl Acad Sci U S A. 2008; 105: 3903-8.

26. Yu F, Yao H, Zhu P, Zhang X, Pan Q, Gong C, Huang 
Y, Hu X, Su F, Lieberman J, Song E. let-7 regulates self 
renewal and tumorigenicity of breast cancer cells. Cell. 
2007; 131: 1109-23.

27. Saydam O, Shen Y, Wurdinger T, Senol O, Boke E, 
James MF, Tannous BA, Stemmer-Rachamimov AO, 
Yi M, Stephens RM, Fraefel C, Gusella JF, Krichevsky 
AM, Breakefield XO. Downregulated microRNA-200a 
in meningiomas promotes tumor growth by reducing 
E-cadherin and activating the Wnt/{beta}-catenin signaling 
pathway. Mol Cell Biol. 2009; 29: 5923-40.

28. Bandres E, Bitarte N, Arias F, Agorreta J, Fortes P, Agirre X, 
Zarate R, Diaz-Gonzalez JA, Ramirez N, Sola JJ, Jimenez P, 
Rodriguez J, Garcia-Foncillas J. microRNA-451 regulates 
macrophage migration inhibitory factor production and 
proliferation of gastrointestinal cancer cells. Clin Cancer 
Res. 2009; 15: 2281-90.

29. Porkka KP, Pfeiffer MJ, Waltering KK, Vessella RL, 
Tammela TL, Visakorpi T. MicroRNA expression profiling 
in prostate cancer. Cancer Res. 2007; 67: 6130-35.

30. Gao P, Tchernyshyov I, Chang TC, Lee YS, Kita K, 
Ochi T, Zeller KI, De Marzo AM, Van Eyk JE, Mendell 
JT, Dang CV. c-Myc suppression of miR-23a/b enhances 
mitochondrial glutaminase expression and glutamine 
metabolism. Nature. 2009; 458: 762-5.

31. Pekarsky Y, Santanam U, Cimmino A, Palamarchuk 
A, Efanov A, Maximov V, Volinia S, Alder H, Liu CG, 
Rassenti L, Calin GA, Hagan JP, Kipps T, Croce CM. Tcl1 
expression in chronic lymphocytic leukemia is regulated by 
miR-29 and miR-181. Cancer Res. 2006; 66: 11590-3.

32. Fabbri M, Garzon R, Cimmino A, Liu Z, Zanesi N, Callegari 
E, Liu S, Alder H, Costinean S, Fernandez-Cymering C, 
Volinia S, Guler G, Morrison CD, Chan KK, Marcucci G, 
Calin GA, Huebner K, Croce CM. MicroRNA-29 family 
reverts aberrant methylation in lung cancer by targeting 
DNA methyltransferases 3A and 3B. Proc Natl Acad Sci U 
S A. 2007; 104: 15805-10.

33. Reddy SD, Ohshiro K, Rayala SK, Kumar R. MicroRNA-7, 
a homeobox D10 target, inhibits p21-activated kinase 1 and 
regulates its functions. Cancer Res. 2008; 68: 8195-200.

34. Kefas B, Godlewski J, Comeau L, Li Y, Abounader R, 
Hawkinson M, Lee J, Fine H, Chiocca EA, Lawler S, 
Purow B. microRNA-7 inhibits the epidermal growth 
factor receptor and the Akt pathway and is down-regulated 
in glioblastoma. Cancer Res. 2008; 68: 3566-72.

35. Hynes NE, MacDonald G. ErbB receptors and signaling 
pathways in cancer. Curr. Opin Cell Biol. 2009; 21:177-84.

36. Dummler B, Ohshiro K, Kumar R, Field J. Pak protein 
kinases and their role in cancer. Cancer Metastasis Rev. 

2009; 28: 51-63.
37. Bokoch GM. Biology of the p21-activated kinases. Annu 

Rev Biochem.  2003; 72: 743-81.
38. Vadlamudi RK, Kumar R. P21-activated kinases in human 

cancer. Cancer Metastasis Rev. 2003; 22: 385-93.
39. Mott HR, Owen D, Nietlispach D, Lowe PN, Manser E, 

Lim L, Laue ED. Structure of the small G protein Cdc42 
bound to the GTPase-binding domain of ACK. Nature. 
1999; 399: 384-8.

40. van der Horst EH, Degenhardt YY, Strelow A, Slavin A, 
Chinn L, Orf J, Rong M, Li S, See LH, Nguyen KQ, Hoey 
T, Wesche H, Powers S. Metastatic properties and genomic 
amplification of the tyrosine kinase gene ACK1. Proc Natl 
Acad Sci U S A. 2005; 102: 15901-6.

41. Howlin J, Rosenkvist J, Andersson T. TNK2 preserves 
epidermal growth factor receptor expression on the cell 
surface and enhances migration and invasion of human 
breast cancer cells. Breast Cancer Res. 2008; 10: R36.

42. Mahajan NP, Whang YE, Mohler JL, Earp HS. Activated 
tyrosine kinase Ack1 promotes prostate tumorigenesis: role 
of Ack1 in polyubiquitination of tumor suppressor Wwox. 
Cancer Res. 2005; 65: 10514-23.

43. Webster RJ, Giles KM, Price KJ, Zhang PM, Mattick 
JS, Leedman PJ. Regulation of epidermal growth factor 
receptor signaling in human cancer cells by microRNA-7. J 
Biol Chem. 2009; 284: 5731-41.

44. Eswaran J, Soundararajan M, Knapp S. Targeting group 
II PAKs in cancer and metastasis. Cancer Metastasis Rev. 
2009; 28: 209-17.

45. Yi C, Wilker EW, Yaffe MB, Stemmer-Rachamimov A, 
Kissil JL. Validation of the p21-activated kinases as targets 
for inhibition in neurofibromatosis type 2. Cancer Res. 
2008; 68: 7932-7.

46. Kissil JL, Wilker EW, Johnson KC, Eckman MS, Yaffe 
MB, Jacks T. Merlin, the product of the Nf2 tumor 
suppressor gene, is an inhibitor of the p21-activated kinase, 
Pak1. Mol Cell. 2003; 12: 841-9.

47. Clark JJ, Provenzano M, Diggelmann HR, Xu N, Hansen SS, 
Hansen MR. The ErbB inhibitors trastuzumab and erlotinib 
inhibit growth of vestibular schwannoma xenografts in 
nude mice: a preliminary study. Otol Neurotol. 2008; 29: 
846-53.

48. Plotkin SR, Stemmer-Rachamimov AO, Barker FG 2nd, 
Halpin C, Padera TP, Tyrell A, Sorensen AG, Jain RK, 
di Tomaso E. Hearing improvement after bevacizumab 
in patients with neurofibromatosis type 2. N Engl J Med. 
2009; 361: 358-67.


