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Prostaglandins in the pathogenesis of kidney diseases
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ABSTRACT

Prostaglandins (PGs) are important lipid mediators produced from arachidonic 
acid via the sequential catalyzation of cyclooxygenases (COXs) and specific 
prostaglandin synthases. There are five subtypes of PGs, namely PGE2, PGI2, PGD2, 
PGF2α, and thromboxane A2 (TXA2). PGs exert distinct roles by combining to a 
diverse family of membrane-spanning G protein-coupled prostanoid receptors. The 
distribution of these PGs, their specific synthases and receptors vary a lot in the 
kidney. This review summarized the recent findings of PGs together with the COXs 
and their specific synthases and receptors in regulating renal function and highlighted 
the insights into their roles in the pathogenesis of various kidney diseases.

INTRODUCTION

Diminished kidney function is commonly classified 
as two distinct syndromes named chronic kidney disease 
(CKD) and acute kidney injury (AKI) [1]. CKD is a global 
public health issue, and its prevalence is estimated to be 
8–16% worldwide [2]. The prevalence and mortality of 
AKI is also increasing all over the world, especially in 
developing countries. Due to the different definitions of 
AKI, wide variation exists in the estimation of disease 
prevalence (1–25%) and mortality (15–60%) [3, 4]. 
Although massive researches have been performed in 
the past decades, the pathogenic mechanisms of CKD 
and AKI are still elusive. Moreover, to date, no specific 
therapies have emerged to lessen the incidence or assist 
the recovery of kidney diseases. Effective treatment 
approaches are urgently needed to be developed.

Inflammation is the established causative factor in 
the kidney diseases [5]. PGs are abundantly produced 
in the kidney (Table 1), and play an important role in 
triggering the inflammatory response, contributing to the 

occurrence and progression of kidney diseases [6–8]. PGs 
appear when arachidonic acid (AA) is released from the 
plasma membrane by phospholipases and metabolized 
by the peroxidase actions of COXs to PGH2 which can 
be subsequently converted into more stable biologically 
active PGs, including PGE2, PGI2, PGD2, PGF2α, and 
TXA2 by their respective synthases [7, 9] (Figure 1). PGs 
exert their functions by combining to a diverse family 
of membrane-spanning G protein-coupled prostanoid 
receptors [10, 11] (Table 2).

PGs are important lipid mediators in numerous 
physiological and pathophysiological processes in 
the kidney. Under the physiological conditions, PGs 
exert essential functions in the regulation of renal 
hemodynamics, renin release, as well as water and salt 
balance [7, 12, 13]. Likewise, PGs also respond to distinct 
pathological insults. Researches on the functions of PGs 
in CKD and AKI have been conducted and the awareness 
have been drawn. In this review, we highlighted the roles 
of PGs, PG synthases, and the specific PG receptors in 
kidney diseases, with expectation to develop effective 
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therapies targeting the PG cascades to relieve kidney 
injury.

COXS IN KIDNEY DISEASES

COXs are the rate-limiting enzymes that are 
responsible for the first two steps in the synthesis of PGs. 
The production of PGs is depended on the activity of 
COXs which are the upstream components of this process. 
The COXs have both COX and peroxidase activities and 
exist as two isoforms termed as COX-1 and COX-2 [9, 
14]. COX-1 is constitutive as its abundant expression 
in a wide range of tissues under basal conditions. In the 
kidney, COX-1 highly expresses in the collecting duct, 
while lower level of COX-1 can be detected in interstitial 
cells, glomerular mesangial cells, and endothelial cells 
of arterioles [12, 15–17]. It is commonly recognized 
that COX-1 serves a constitutive housekeeping role 
[18]. Evidence has shown that COX-1 could regulate 
nephron formation via PGE2 in the zebrafish embryonic 
kidney [19]. COX-1 is also responsible for maintaining 
basic physiological functions including cytoprotection 
of the gastric mucosa and platelet aggregation [20, 21]. 
Furthermore, COX-1 functions as the major form rather 
than COX-2 in endothelium-dependent contraction 
[22, 23] or relaxation [24]. Beyond the scope of above 
discoveries, there are also many investigations focusing 
on kidney diseases [25–27]. Different from COX-1, 
COX-2 can be induced by inflammatory mediators and 
mitogens. It mediates the induction of various PGs, which 
play critical roles in various pathophysiological processes 
such as angiogenesis, inflammation and tumorigenesis 
[20, 28]. Whereas, several studies suggested that COX-2 
also has housekeeping functions in kidney development 
[29, 30], ovulation, and parturition [31, 32]. In the kidney, 
COX-2 predominantly expresses in the macula densa, 
thick ascending limb, medullary interstitial cells, and 
glomerulus, contributing to a variety of physiological 

processes [12, 33]. Because of the specific distribution 
in the kidney, COX-2 is of vital importance in regulating 
renin release and water/salt metabolism [34]. More 
importantly, the significant role of COX-2 in kidney 
diseases, especially in CKD, has been documented by 
using COX-deficient mouse models or COX antagonists 
[35–42]. It is known that inhibition of COX-2 is associated 
with AKI incidence due to the imbalance of renal function 
in fluid excretion and intra-renal hemodynamics. Some 
investigations pointed out that suppression of COX-
2 activity in AKI accounts for a depravation of renal 
function [43]. On the contrary, there were also some 
diverse results with the treatment of COX-2 inhibitor [8, 
44, 45]. These diverse outcomes of COX-2 inhibition 
in AKI may be resulted from distinct experimental 
conditions such as various kinds of inhibitors and the 
distinction of disease models and animal species/strains. 
In addition, recent studies revealed that COX-2/PGE2 
cascade activation mediated cisplatin-induced mesangial 
cell apoptosis and chronic renal failure of C57/BL6 
mice with 5/6 nephrectomy [46, 47]. Apart from COXs, 
arachidonic acid can be metabolized via lipoxygenase 
and cytochrome P-450 (CYP) enzymes to some other 
metabolites. Early researches demonstrated the role of 20-
HETE, one metabolite of arachidonic acid converted by 
cytochrome P-450 (CYP) enzyme, in mediating the effects 
on tubuloglomerular feedback [48]. 20-HETE is also 
consistent with the known effects of NO, both of which 
are the main regulators of tubuloglomerular feedback [49]. 
NO inhibits the production of 20-HETE, which contributes 
to the vasodilator effect of NO [50–52]. Strategy targeting 
COXs could be effective because many evidence support 
a significant role of COXs in the progress of kidney 
diseases. However, severe side effects possibly due to the 
nonselective antagonism on the downstream metabolites 
of COXs greatly limited its application. Thus, selective 
inhibition of the specific PG synthetic enzymes might be 
more promising in treating kidney diseases.

Table 1: Renal distributions of catalytic enzymes of PGs
Enzymes Distribution
COX-1 Collecting duct, glomeruli, medullary interstitial cells, arterial endothelial cells
COX-2 Medullary interstitial cells, glomeruli, macula densa, thick ascending limb,

PGES

mPGES-1 Macula densa, distal convoluted tubule, collecting duct, and renal medullary interstitial cells
mPGES-2 Distal convoluted tubule, collecting duct, proximal convoluted tubule, thick limbs of the loops 

of Henle
cPGES All nephron segments

PGIS Glomeruli, medullary collecting duct.
TXAS Glomeruli
PGDS Proximal convoluted tubule, thick ascending limb, distal convoluted tubule, collecting duct
PGF2α synthase Not defined



Oncotarget26588www.oncotarget.com

PGE2 IN KIDNEY DISEASES

It has been universally recognized that PGE2 is 
the most abundant renal arachidonic acid metabolite. 
PGE2 is produced by PGE synthases, and functions by 
combining to its G protein-coupled receptors: namely 
EP1, EP2, EP3, and EP4. Three PGE2 synthases in the 
kidney have been uncovered: microsomal PGE synthase 
1 (mPGES-1), microsomal PGE synthase 2 (mPGES-2) 
and cytosolic PGE synthase (cPGES). Among these three 
PGESs, mPGES-1 is the best-characterized PGES. Its 
expression is inducible in the kidney in response to various 
stresses [53]. mPGES-1 expression can be detected in 
macula densa, distal convoluted tubule, collecting duct, 
and renal medullary interstitial cells. Studies revealed 
that mPGES-1 co-expresses with COX-1 and COX-2 in 
the kidney [7, 9]. Meanwhile, it has been indicated that 
mPGES-1 has the best PGE2 synthetic property both in 
vivo and vitro [5, 54, 55]. Additionally, recent studies 
have also shown that deletion of mPGES-2 or cPGES in 
mice did not reduce PGE2 levels [56]. The aggravation 
of AKI by downregulating mPGES-2was demonstrated 
to be associated with autophagy inhibition and 

enhanced apoptosis [57]. Multiple researches uncovered 
a remarkable role of mPGES-1 deletion on PGE2 
production in various models including endotoxemia- 
and cisplatin-induced kidney injury [58], lithium-induced 
NDI [59], Ang II- and DOCA-salt-induced hypertension 
[60], aldosterone escape [61], and unilateral ureteral 
obstruction [62]. Different from these observations, in 
the diabetic kidney disease model induced by STZ, three 
forms of PGES were unaltered in the kidney, and deletion 
of mPGES-1 did not suppress renal PGE2 production 
[63]. These diverse results on PGE2 induction suggest that 
beyond three known PGESs, additional PGE synthases 
might be existed to exert the function in producing PGE2 
under some specific pathological conditions. Due to 
the critical role of PGE2 in mediating the inflammatory 
responses, mPGES-1 is considered to contribute to 
chronic and acute kidney injuries, which has been 
confirmed in many studies from our and other groups. 
For instance, in the CKD model of 5/6 nephrectomy, 
mPGES-1 invalidation alleviated the loss of renal function 
characterized by the attenuated accumulation of uremic 
toxins in circulation and improved creatinine clearance 
[64]. In obese db/db mice with type-2 diabetes, the level 

Figure 1: Biosynthesis pathways of prostaglandins.
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of mPGES-1 expression in glomeruli was remarkably 
higher, suggesting the potential contribution of mPGES-1 
in glomerular diseases associated with type-2 diabetes 
[65]. In kidney cells, we also found that mPGES-1-derived 
PGE2 could activate Stat3 signaling to promote podocyte 
apoptosis [66], and the proliferation of mesangial cells 
triggered by uric acid and uremic toxin indoxyl sulfate 
was attenuated by silencing mPGES-1 [67, 68]. However, 
in a UUO model, mPGES-1 was shown to exert a 
protective effect against renal fibrosis and inflammation 
[62]. Moreover, in the type-1 diabetic model induced by 
STZ, both renal PGE2 production and glomerular injury 
were unaffected in mPGES-1 KO mice. All these studies 
suggested conflict roles of mPGES-1 in mediating the 
pathogenesis of CKD, which indicated that the role of 
mPGES-1 in CKD might depend on the insults. Similarly, 
diverse conclusions also exist in some AKI models. When 
mice were challenged with cisplatin, LPS and ischemia/
reperfusion, respectively, mPGES-1 deletion only played a 
role in cisplatin experimental setting [44]. Although above 
researches indicated a complexity of mPGES-1 in various 
kidney events, as a specific downstream enzyme of PGE2 
generation, mPGES-1 is suggested to be associated 
with fewer adverse effects than COX inhibitors. Thus, 
mPGES-1 is still a promising target for the treatment 
of kidney diseases [69]. However, more extensive 
investigations on the efficacy and safety of mPGES-1 
inhibition in treating various kinds of kidney diseases are 
required.

The role of PGE2 in the kidney has been 
comprehensively studied. PGE2 functions via activating 
four subtypes of receptors (EP1, EP2, EP3, EP4). EP1 is 
mostly detected in the collecting duct, and exerts its main 
role in natriuresis and diuresis under physiological status 
[70–73]. Recently, one research suggested that PGE2 
regulated arginine vasopressin synthesis by hypothalamic 
EP1 [74]. Meanwhile, EP1 receptor, instead of EP2, was 
reported to increase renin expression in M-1 CD cells 
[73, 75]. Apart from the collecting duct, EP1 can be also 
detected in glomerular mesangial cells [76, 77], podocytes 
[78], and proximal tubule cells [79, 80], suggesting the 
additional functions of EP1 besides the diuretic action. 
In mesangial cells, PGE2-induced hypertrophy and cell 
cycle arrest was reproduced by EP1 agonist sulprostone 
[76]. It was also proved that EP1 receptor could suppress 
the proliferation of mouse mesangial cells to alleviate the 
progression of proteinuria, glomerular hypertrophy, and 
mesangial expansion through a selective EP1 antagonist, 
ONO-8713 [77, 81]. In diabetic EP1 KO mice, diabetic 
hyperfiltration, albuminuria, and injury markers were all 
suppressed possibly through modulating renin-angiotensin 
system. in vitro experiments with ONO-8711, an EP1 
antagonist, further suggested a fundamental role of EP1 in 
podocyte impairment [78]. In renal tubules, EP1 deletion 
reduced the expressions of fibrotic markers and preserved 
megalin expression in diabetic mice [79, 80]. However, 
the controversy still exists about the role of EP1 receptor 
in kidney diseases. There was evidence showing that 

Table 2: Renal functions, possible signaling pathways, pharmacological modulators, and renal distributions of PG 
receptors

PG receptors Renal function Signaling pathways Agonist/Antagonist Expressionsites

EP

EP1 Haemodynamics, transport, 
proliferation, fibrosis, Renin 

release

Gq-Ca2+ A: Sulprostone;17-phenyl trinor 
prostaglandin E2ethyl amid

CD/MG/P/PT/V

Ant: ONO-8711, ONO-8713

EP2 Haemodynamics, transport, 
anti-apoptosis, Renin release

Gs-cAMP, adenylatecyclase, β-arrestin mediated 
signalosome

A: CP-536, 745-01; butaprost IC/MD/P/V

EP3 Transport, vasoconstriction Gi-cAMP, adenylate cyclase, G12/13-RhoA A: L-798106; sulprostone DT/CD/MD/V

EP4 Haemodynamics, transport, 
renin release, vasodilation, 
proliferation, anti-apoptosis

Gs-cAMP, Gi-cAMP, adenylate cyclase, β-arrestin 
mediated signalosome

A: CP-044, 519-02; 11-deoxy-
PGE1; cay10580,

P/CD/MG/MD/DT/PT/V

Ant: ONO-AE3-208; L-161982

IP Haemodynamics, 
vasodilation, transport, renin 

release, matrix synthesis, 
proliferation, anti-apoptosis

Gs-cAMP A: ONO-1301; MRE-269 MG/MD/DT/CD/PT/P/V

TP Vasoconstriction, 
haemodynamics, fibrosis, 

proliferation, differentiation, 
inflammation

Gq-Ca2+, G12/13-RhoA A: U-46619 MG/P/V/DT/CD/PT

Ant: S18886

DP Fibrosis, inflammation, 
haemodynamics, transport

Gs-cAMP Ant: CAY10471 --

FP Transport and cell 
transformation, 

haemodynamics, growth

Gq-Ca2+, Gi-cAMP, G12/13-RhoA A: Latanoprost CD/DT/P/F

Abbreviations: CD: collecting duct; MG: mesangial cells; P: podocytes; PT: proximal tubule; DT: distal tubule; V: vasculature; F: fibroblasts; IC: interstitial cells; MD: macula 
densa; A: agonist; Ant: antagonist.
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nephritic mice lacking the EP1 had increased severity of 
renal impairment [82].

Although PGE2 receptors have been intensively 
studied in the kidney, not much is known about EP2 
receptor. EP2 is mainly found in vascular and interstitial 
compartments of the kidney [83]. Researchers once used 
two models including mercury chloride model of acute 
renal failure and 5/6 nephrectomy model of chronic renal 
failure to identify the effect of EP2 [84]. By use of the 
EP2 agonist, CP-536,745-01, reduction of glomerular 
sclerosis, amelioration of tubulointerstitial injury and 
better tubular structure were observed in the nephrotoxic 
mercury chloride (HgCl (2)) rat model of acute kidney 
failure. [85]. In a different model, EP2 receptor mediated 
the cystogenesis by inhibiting the apoptosis of cystic 
epithelial cells [86]. Another study identified that EP2 and 
EP4 receptors contributed to the pro-inflammatory effects 
of PGE2 [87]. In podocytes, COX-2/ PGE2/EP2 axis has 
been revealed to play a pathogenic role in hyperfiltration-
mediated albuminuria, as well as the progression of CKD 
[88]. Meanwhile, EP2 and EP4 receptors are important 
in promoting the progression of chronic kidney disease 
induced by TGF-β, while EP1 and EP3 play the opposite 
role [89].

Renal EP3 expresses in thick ascending limbs and 
collecting duct existing as different splice variants which 
determine the preference for G-protein coupling. EP3 
splice variants inhibit adenylate cyclase via Gi protein 
and increase intracellular calcium and activate the G12/
G13 pathway, which later leads to the activation of Rho 
kinase, accounting for the action of EP3 receptor in 
urinary concentration. EP3 receptor may exert its role 
by modulating vasopressin signaling in lithium-induced 
and post-obstructive polyuria [16]. Similarly, EP3 could 
also cause vasoconstriction in rat proximal interlobular 
arteries, which was proved by using Misoprostol, and 
was suggested to protect the kidney during diabetic 
hyperfiltration regardless of RAAS activation [90, 91]. 
Beneficial effects of EP3 were also identified by EP3 
antagonist, L-798106, evidenced by the retardation of 
normalized blood urea nitrogen, normalized glomerular 
cell numbers, restored synaptopodin distribution and 
F-actin filament arrangement in glomeruli which is 
mediated by PGE2 [92]. However, in a diabetic mouse 
model induced by streptozotocin, EP3 was shown to inhibit 
the water reabsorption, and contributed to polyuria [93].

EP4 receptor is the best identified subtype of the 
EP receptors, and is abundant in almost all types of renal 
cells. In addition, EP4 signaling plays a variety of roles 
through cAMP effectors, and is able to activate the PI3k-
dependent pathway, leading to the activation of MAPK 
signal pathway [94]. Emerging evidence showed that 
it could couple to G(i)α, phosphatidylinositol 3-kinase, 
β-arrestin, and β-catenin [95–97]. The renal distribution 
of EP4 receptor involves the glomeruli, renin-secreting 
juxta-glomerular granular cells, glomerular epithelial 

cells, distal convoluted tubules, and cortical collecting 
ducts [98]. Lots of evidence indicates the function of 
EP4 in podocytes [99–102]. EP4 deletion from podocytes 
ameliorated kidney injury in both 5/6 nephrectomy 
and diabetic CKD models [99, 100]. However, diverse 
outcomes were seen in another kidney injury model 
induced by Adriamycin, showing that EP4 deletion 
and EP4 antagonist (L-161982) did not attenuate 
podocyte injury [101]. In addition, a selective EP4 
agonist (11-deoxy-PGE1) promoted glomerulosclerosis 
and tubulointerstitial fibrosis in STZ-induced diabetic 
mice, possibly through IL-6 [103]. Recent evidence 
also showed that EP4 inhibition (ONO-AE3-208) 
ameliorated proteinuria and glomerular scarring in rats 
subjected to renal mass resection [104]. In LPS-induced 
renal proximal tubule cell injury, EP4 inhibition also 
played critical roles in anti-inflammatory and anti-
apoptosis processes [105]. However, there were still 
lots of conflicts over EP4 receptor in kidney diseases. 
Several researches showed the protective role of EP4 
in decreasing epithelial cells apoptosis, preventing 
mesangial cell injury, and preventing tubulointerstitial 
fibrosis [87, 102, 106]. Apart from these, EP4 is also an 
important component in the maintenance of body water 
homeostasis. EP4 expressed in the distal convoluted 
tubule and the cortical collecting duct and could increase 
AQP2 membrane trafficking and phosphorylation to 
enhance water reabsorption possibly via both cAMP/
PKA and extracellular signal-regulated kinase (ERK) 
pathways [107]. Furthermore, a recent research 
emphasized the capability of EP4 in urine concentrating 
and provided a new pathway of AVP/PGE2/EP4/PRR 
for the regulation of AQP2 expression [108]. Overall, 
PGE2 couples with four EP subtypes to exert multiple 
functions in the pathology and physiology of kidney. 
With the development of novel agonists/antagonists and 
the researches on their application in various kidney 
diseases, the clinical therapies on kidney diseases by 
targeting EPs are becoming more feasible.

PGI2 IN KIDNEY DISEASES

Prostacyclin (PGI2) is one of the major products of 
COXs pathway, and is well known for its regulation on 
renal hemodynamics, tubular transport and renin release. 
Prostacyclin synthase (PGIS) is an atypical cytochrome 
p450 enzyme that generates prostacyclin (PGI) from 
prostaglandin H (PGH) derived from arachidonic acid by 
COXs [109]. It is a disappointment that the exact cellular 
localization of PGIS protein could not be identified yet, 
while the significant expression of PGIS mRNA was 
detected in the inner medullary tubules and medullary 
interstitial cells [110]. Similar to PGES, investigations of 
PGIS were carried out by use of kidney disease models 
and PGIS gene knockout mice. Previous reports showed 
that PGIS deficiency induced renal fibrosis along with 
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the notable irregulation of renal hemodynamics, tubular 
atrophy, surface irregularities and cysts [111, 112]. 
Furthermore, overexpression of PGIS contributed to the 
renal protection against endotoxemia-related AKI [113]. In 
uremic mice, the reduction of PGI2 synthase activity could 
be prevented by MnTBAP, a synthetic ROS-scavenging 
enzyme superoxide dismutase (SOD). It was suggested 
that the defect of PGI2-generating pathway could be 
mediated by oxidative stress which was attributable to 
the progression of end-stage renal disease (ESRD) [114]. 
Besides kidney cases, PGI2 is also known for its beneficial 
effects during the stroke, thrombosis, atherosclerosis, and 
myocardial infarction [115, 116], which may indirectly 
affect the progression of kidney diseases. A previous 
review had shown the connections between PGI2 and 
renal growth, fibrotic response, and cell fate [112]. 
Recently, a lot of studies focused on Beraprost Sodium 
(BPS) to reveal the role of PGI2 in kidney diseases. As 
a prostacyclin analogue, BPS is a vasoactive substance 
that can expand renal vessels to increase renal blood flow, 
inhibit TXA2 synthesis, and prevent platelet aggregation 
and immune complex formation. It was also reported 
that BPS could prevent glomerular thrombosis to reduce 
proteinuria [117]. Similar results were also shown in some 
clinical researches [118–120]. In addition, in a diabetic 
kidney disease induced by STZ, BPS improved renal 
function possibly through the inhibition of oxidative stress 
and inflammation [121, 122].

Major renal functions of PGI2 are mediated by the 
cell-surface receptor termed IP. The localization of IP 
receptor in renal cells is considered to be controversial 
over species. IP was reported to be detected in mesangial 
cells, interstitial cells, the vasculature and the tubular 
epithelial cells (proximal tubule, mTAL and collecting 
duct) in rodent kidney [70, 123, 124]. In human kidney, 
the IP receptor was also detected in podocytes [125]. 
This potentially indicated differences in function of IP 
receptor in the specific parts of nephron [124]. IP receptor 
is found to play a significant role in maintaining renal 
hemodynamics, tubule transport, renin secretion, and 
reducing renal fibrosis and inflammation [125]. One recent 
research showed that prostaglandin I2 receptor agonism 
preserved beta-cell function and attenuated albuminuria 
through nephrin-dependent mechanisms [126]. ONO-
1301, a novel nonprostanoid IP agonist, was used in models 
of type 1 diabetic nephropathy and UUO, and showed a 
therapeutic effect on treating diabetic nephropathy via 
inducing hepatocyte growth factor (HGF) to counteract 
TGF-β [127, 128]. ONO-1301 also ameliorated the renal 
lesions in type 2 diabetes by attenuating mesangial matrix 
accumulation, inflammation and oxidative stress through 
an IP receptor-mediated mechanism [129]. Interestingly, 
comparing with IP-knockout mice, PGIS knockout mice 
displayed additional glomerular, vascular and interstitial 
abnormalities, suggesting the contribution of other 
receptors in addition to IP [113]. Till now, lots of evidence 

indicated that PGI2 could activate peroxisome proliferator-
activated receptor α (PPARα) or peroxisome proliferator-
activated receptor δ (PPARδ) to protect tubular cells from 
apoptosis in AKI [130, 131]. In addition, recent studies 
lay special stress on a cyclic vasoactive peptide termed 
urotensin II which could induce the production of PGI2 in 
gentamicin-treated NRK-52E cells and protect renal cells 
through a PPARα-dependent mechanism [132]. Moreover, 
researchers figured out that L-carnitine could protect renal 
tubular epithelial cells in the experimental animal model 
induced by carboplatin by activating PGI2/ PPARα signal 
pathway [133]. Taken together, PGI2, as an important 
product of COXs, plays an important role by coupling 
with its receptors and the downstream signals in various 
types of renal diseases consisting of CKD and AKI. 
However, extensive studies are still required to clarify 
the mechanisms and additional actions of prostacyclin in 
various kidney disease models.

TXA2 IN KIDNEY DISEASES

TXA2 is a powerful platelet activator, and is also 
considered as potent smooth muscle constrictor. In 
addition, it also serves as a vascular smooth muscle cell 
mitogen. TXA2 is generated by a sequential catalyzation 
of phospholipase A2, COXs and TXA2 synthase (TXAS). 
Under physiological conditions, TXA2 derived from 
platelets mainly depends on the activity of COX-1. 
COX-1 inhibitor could inhibit the production of TXA2 
and attenuate the early decrease in GFR in endotoxemia-
induced acute kidney injury [134]. However, the 
responsible isoform of COXs for the formation of TXA2 
during pathological conditions is still unknown [9]. TXAS 
is an endoplasmic reticulum membrane protein which is 
presented in different cells including smooth muscle cells, 
macrophages, platelets, endothelial cells, and kidney 
cells. TXAS expression can be regulated by a variety of 
factors. ONO-1301, a novel sustained-release prostacyclin 
analogue, was identified to inhibit TXAS expression 
[129].

Two subtypes of TP receptors, TPα and TPβ, have 
been proved to exist in various localizations of kidney and 
many other organs along with TXAS. In the kidney, TP 
receptors express in mesangial cells, podocytes, arterial 
vessel walls, luminal membranes of thick ascending 
limb of the Henle’s loop, and basolateral membranes of 
distal convoluted tubules and connecting tubules [135]. 
Generally speaking, TXA2 commonly couples with TP 
receptors and communicates mainly with Gq and G12/13, 
resulting in phospholipase C activation and Rho-GEF 
activation, respectively. To better understand the TXA2 
on cellular signaling transduction, there is a nice review 
in the literature [136]. Although TPα and TPβ differ 
only in their C-terminal regions, several literatures had 
shown the differences of functions between TPα and TPβ, 
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suggesting that the downstream signaling pathways may 
differ between both TP isoforms [137, 138]. TPα acts as 
the major TP receptor regulated by prostacyclin and NO. 
Moreover, RhoA signaling mediated by TPα could be 
directly blunted by prostacyclin and NO through protein 
kinase (PKA/PKG-dependent phosphorylation), while 
signaling of TPβ was not directly affected by prostacyclin 
or NO [139].

TXA2, which has been well established as 
efficacious activator of RhoA, was proved in detail to 
induce cell proliferation, differentiation, and inflammation, 
possibly through the mechanisms associated with AP-1, 
NF-KB, MRTF-A, and YAP [140]. TXA2 also played 
a critical role in the regulation of renal hemodynamics, 
which was determined by use of the TP agonist (U-
46,619) [141, 142]. Patients with atrial fibrillation (AF) 
had a less decline in eGFR with the use of aspirin which 
inhibited TXA2 production [143]. One previous study 
reported that increased level of vascular ceramide induced 
by AngII contributed to the pathogenesis of renal injury 
possibly through TXA2-mediated vasoconstriction [144, 
145]. Another study was also in line with this conclusion, 
showing that AngII/AT1 receptor/nSMase/ceramide-
PLA2/TXA2 pathway contributed to the regulation 
of renal vasoconstriction [146]. In a model of type 2 
diabetes, a TXA2 synthase inhibitor was beneficial in 
reducing glomerular lesion and proteinuria [147]. In 
addition to these findings, former study showed that 
inhibition of TXA2 synthase, pharmacological blockade 
of TP receptors, or genetic disruption of TP receptor could 
ameliorate the LPS-induced GFR decrease [148]. The 
reduction in GFR in response to endotoxemia was found 
to be resulted from the increased generation of TXA2 via 
COX-1 [134]. Additionally, evidence was also provided 
that COX-2 expressed in the macula densa regulated 
tubuloglomerular feedback through the generation of 
TXA2 and nNOS-dependent NO [149].

Beyond the role in renal vasculature, inhibition 
of TP receptors could rescue the kidney impairment to 
some degree [141]. Functions of TXA2 in mesangial cells 
in the regulation of growth response, matrix synthesis, 
glomerular thrombosis and fibrosis have been studied 
[147, 150]. Furthermore, in the kidney of diabetic 
apolipoprotein E KO mice, an antagonist of TP receptors 
(S18886) attenuated albuminuria, suppressed oxidative 
stress and inflammation, and blocked extracellular matrix 
deposition by activating MnSOD [151]. In accordance 
with this, in a CKD model of renal mass reduction, 
reduced renal mass led to microvascular remodeling and 
enhanced ET-1-induced mitochondrial ROS production 
and vascular contraction. All these abnormalities were 
related to the activation TP receptors [152]. With the 
treatment of puromycin amino nucleoside (PAN) or 
adriamycin, TXA2 was also increased in accordance with 
the podocyte damage. It was shown in this study that 
the podocyte injury was ameliorated by the TP receptor 

antagonist (SQ29548) or TP gene deletion [101]. In 
addition to this, some other studies also demonstrated 
the pathogenic roles of TXA2 and TP receptors in lupus 
nephritis [153], cyclosporine nephrotoxicity [154], and 
renal allograft rejection [155]. Overall, activation of 
TXA2/TP receptors can lead to the renal vasoconstriction, 
oxidative stress, and inflammation, which were involved 
in the onset and progression of kidney diseases.

PGD2 IN KIDNEY DISEASES

Prostaglandin D2 is known for its involvement in a 
variety of neurophysiological functions including the body 
temperature control, hormone release and the sleep-wake 
cycle. In the kidney, with intrarenal infusion of PGD2, 
renal artery flow, urine output, creatinine clearance, 
and sodium and potassium excretion all increased dose-
dependently [156]. Similar to other types of PGs, PGD2 
is converted by prostaglandin D synthase (PGDS) through 
the common route of the PGs synthesis. Lipocalin type 
prostaglandin synthase (L-PGDS), also named beta 
trace protein (BTP), and Hematopoietic prostaglandin 
D synthase (H-PGDS) are two types of PGDS. They are 
different from each other in terms of cellular or tissue 
distribution and functional relevance [157]. H-PGDS 
is localized mostly in inflammatory cells, especially 
antigen-presenting cells and mast cells. H-PGDS has 
both pro-inflammatory and anti-inflammatory actions 
under different conditions [158, 159]. Fundamentally 
different from H-PGDS, L-PGDS can be detected in lots 
of tissues including the brain, heart, kidney, and lung 
[160]. During the recent years, as the biomarker in large 
population-based study cohorts, L-PGDS has aroused wide 
concern [161, 162]. To date, numerous investigations have 
shown that L-PGDS has emerged as a novel intracellular 
marker of GFR better than serum creatinine level [163–
167]. Besides indicating the glomerular filtration rate, 
L-PGDS has also been identified as a proximal tubule 
damage marker during kidney injures [168]. Since its 
sensitivity in measuring GFR reduction, L-PGDS is 
becoming an important indicator of the outcome in kidney 
diseases. It captures the risks associated with decreased 
kidney function or pathophysiologic processes. Thus, it 
may provide an opportunity for the early diagnosis and 
early therapy in patients with kidney diseases [169].

L-PGDS is commonly regarded as a multiple 
function protein, acting as the PGD2 synthase and 
functioning as a lipophilic ligand-binding protein after its 
secretion. The protective role of L-PGDS has been studied 
in various experiment models, especially in cardiovascular 
and renal systems [170–172]. Details of L-PGDS in the 
cardiovascular system are beyond the scope of this review. 
In this review, we focused on the functions of L-PGDS 
in the kidney. It was clearly demonstrated that L-PGDS 
expression in the tubular epithelium remarkably increased 
in obstructed kidneys. The tubulointerstitial fibrosis 
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caused by UUO was significantly suppressed in L-PGDS-
KO mice, which stressed a critical role of L-PGDS 
in renal fibrosis [170]. However, other investigators 
showed that L-PGDS KO mice developed glomerular 
hypertrophy, fibrosis, basement membrane thickening, 
and high TGF-β deposition [172]. Function of L-PGDS in 
early stage diabetic nephropathy in rats and adriamycin-
induced nephropathy in mice further suggested a possible 
contribution of PGD2 in chronic kidney diseases [173, 
174]. The diversity of renal consequences suggested 
complex roles of L-PGDS in the kidneys challenged with 
different insults.

PGD2 interacts with two receptors, the DP1 
receptor and DP2 receptor (also termed as CRTH2). 
PGD2 activates the DPs which then increase the level of 
cAMP. DP1 receptor appears to have various functions 
and is more widely expressed. In contrast, DP2 receptor 
mostly located in the inflammatory cell types such 
as Th2 cells, acting as a chemo-attractant receptor-
homologous molecule. Roles of DP1 have been studied 
in cutaneous and pulmonary venous vasodilatation [175, 
176], platelet aggregation [177], and mucin secretion 
[178]. DP2 receptor is not structurally the same as the 
DP1 and belongs to the family of chemokine receptors, 
contributing to the production of Th2 cytokines, such as 
IL-4, IL-5 and IL-13 [170, 179]. PGD2 receptors have 
not been studied that much in the kidney as in respiratory 
system [175, 180, 181]. However, studies have 
indicated that CRTH2 may involve in the progression 
of tubulointerstitial fibrosis and inflammation [182]. 
Researchers blocked CRTH2 by generating CRTH2-KO 
mice or using CRTH2 antagonist (CAY10471) in UUO 
model, and found that interstitial collagen deposition, 
collagen I gene expression and soluble collagen content 
were significantly suppressed in CRTH2-KO UUO mice. 
Furthermore, they revealed that PGD2 mediated the 
activation of Th2 lymphocytes through combining with 
CRTH2, which promoted the fibrosis via the production 
of IL-4 and IL-13 [170]. A previous study also suggested 
a DP receptor-independent function of PGD2 in kidney 
diseases [183]. PGD2 can be metabolized to biologically 
active J-series cyclopentone PGs, especially the 
15d-PGJ2 which is considered as a natural endogenous 
ligand of PPARγ. Activation of PPARγ could effectively 
inhibit TGF-β-induced profibrotic effects in many 
organs. Thus, PGD2 may inhibit fibrosis by its end 
product of 15d-PGJ2 to activate PPARγ, restrain AP-1 
and NF-κβ transcription factors. In addition, 15d-PGJ2 
could also inhibit the expressions of CXCL9, CXCL10, 
and CXCL11 in HK-2 cells treated with combined 
IFN-γ and TNF-α [184]. Together, although the roles of 
PGD2 in renal system has not been fully understood, 
above findings still implied the importance of PGD2-
generating cascade in the pathophysiology of kidney 
diseases.

PGF2α IN KIDNEY DISEASES

PGF2α is also one of the major colooxygenase-
mediated arachidonate metabolite in the kidney. PGF2α 
can be derived from either PGH2 via the PGF synthase 
or enzymatic conversion of PGE2 to PGF2α by PGE9 
ketoreductase [185]. The cellular effects of PGF2α are 
mediated by G protein-coupled transmembrane receptors, 
namely FPA and FPB. FP receptors are found to be linked 
to the increase of intracellular Ca2+ in response to PGF2α 
in renal cells, participating in the transformation of 
kidney fibroblasts [186]. Commonly, the FP receptors can 
be detected in the kidney. FPs were found to have high 
expression in the principal cells of the collecting duct, 
distal convoluted tubule, and podocytes of the glomeruli 
with less level in the thick ascending limb [187, 188]. 
Unlike other PGs, little is known about PGF2α in the 
renal diseases. Previous studies have shown that PGF2α 
is associated with natriuresis and diuresis through the 
activation of FP receptors in the cortical collecting duct 
[189, 190]. PGF2α inhibited the basolateral 40 pS K 
channels at high concentrations and stimulated these 
channels at low concentrations because of the different 
activation of FPA and FPB in PKC and Rho pathway, 
respectively [191]. FP activation could also inhibit 
arginine vasopressin-stimulated water permeability 
without increasing intracellular Ca2+ in cortical collecting 
ducts [189]. In animals, it was shown that FP KO mice 
exhibited modest polyuria and polydipsia with a mild 
defect in regulating renal medullary osmolality during 
water deprivation. This research also indicated that FP 
deletion reduced blood pressure through the inactivation 
of RAS, despite a compensatory enhancement of AT1 
receptors and an augmented hypertensive response to 
AngII infusion [190]. In a renovascular hypertensive 
rat (RHR) model, ROS was considered as an initiator 
that activates endothelial COX-2 to form PGF2α to 
participate in endothelial dysfunction in the rabbit 
arteries. Treatment with celecoxib or tempol reduced 
blood pressure, increased renal blood flow, and restored 
endothelial function in renovascular hypertension rats, 
providing a new insight into understanding renal-related 
hypertension [192]. With respect to the role of PGF2α in 
oxidative stress, the production level of PGF2α has been 
shown to be changed dramatically during inflammatory 
response [193]. In a study carried out in autosomal 
dominant polycystic kidney disease (ADPKD) patients, 
increased serum concentrations of the oxidative stress 
markers of 8-isoprostane and PGF2α were associated with 
the GFR and kidney volume, suggesting a relationship 
between PGF2α and renal function during the growth of 
cystic kidney. Meanwhile, PGF2α was also confirmed to 
increase serum levels of MMP-1 and MMP-9 in this study 
[194]. Due to the abundance of PGF2α and its receptors 
in the kidney, there must be more functions in the renal 
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incidences that have not been figured out. Thus, further 
investigation has to be conducted to fill the vacancy.

CONCLUSIONS

In summary, PGs exert various functions in the 
pathology and physiology of kidney. The levels of PGs can 
be regulated at multiple steps. Among these steps, COXs 
and prostanoid synthases are of importance in the control 
of PGs’ production. PGs act by combining to their specific 
receptors or crosstalk with other receptors. Studies have 
shown that PGs exert multiple physiological functions 
in the kidney, such as maintaining glomerular filtration, 
modulating water and sodium excretion. Moreover, PGs 
are also involved in the pathology of various renal diseases 
including CKD and AKI. Strategies targeting any step of 
the COXs/PG synthases/PGs/receptors cascade might be 
potentially effective for the treatment of kidney diseases. 
Although there are still many problems and controversies 
in understanding the PGs system in kidney pathology, 
a number of current studies already provided valuable 
insights into the in-depth investigation of this field in the 
future.
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