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ABSTRACT

Identification of molecular targets and mechanism of action is always a challenge, 
in particular – for natural compounds due to inherent chemical complexity. BP-Cx-1 is 
a water-soluble modification of hydrolyzed lignin used as the platform for a portfolio 
of innovative pharmacological products aimed for therapy and supportive care of 
oncological patients. The present study describes a new approach, which combines 
in vitro screening of potential molecular targets for BP-Cx-1 using Diversity Profile 
- P9 panel by Eurofins Cerep (France) with a search of possible active components  
in silico in ChEMBL - manually curated chemical database of bioactive molecules 
with drug-like properties. The results of diversity assay demonstrate that BP-Cx-1 
has multiple biological effects on neurotransmitters receptors, ligand-gated ion 
channels and transporters. Of particular importance is that the major part of identified 
molecular targets are involved in modulation of inflammation and immune response 
and might be related to tumorigenesis. Characterization of molecular composition 
of BP-Cx-1 with Fourier Transform Ion Cyclotron Resonance Mass Spectrometry and 
subsequent identification of possible active components by searching for molecular 
matches in silico in ChEMBL indicated polyphenolic components, nominally, flavonoids, 
sapogenins, phenanthrenes, as the major carriers of biological activity of BP-Cx-1. 
In vitro and in silico target screening yielded overlapping lists of proteins: adenosine 
receptors, dopamine receptor DRD4, glucocorticoid receptor, serotonin receptor 
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5-HT1, prostaglandin receptors, muscarinic cholinergic receptor, GABAA receptor. The 
pleiotropic molecular activities of polyphenolic components are beneficial in treatment 
of multifactorial disorders such as diseases associated with chronic inflammation and 
cancer.

INTRODUCTION

Lignin and its derivatives are considered as good 
candidates for development of novel medicinal products 
thanks to their low toxicity and broad range of biological 
activity. Lignin derivatives are known to exhibit antiviral 
[1, 2], anti-inflammatory [3], antidiabetic [4, 5] and 
antitumor [6, 7] effects. In addition, hydrolyzed lignin 
is used as enterosorbent [8], as well as for production of 
biodegradable and safe drug-delivery nanoparticles, e.g., 
antibacterial silver-compositions [9, 10]. Antioxidant 
activity, which is inherent to polyphenolic compounds, is 
believed to be the leading mode of action of lignin-like 
compounds [11, 12, 13].

Due to poor solubility in water, lignin and its 
derivatives demonstrate low bioavailability in animals. 
Hence, preparation of water-soluble modifications of 
lignin, which are most suitable for development of 
pharmacologically active substances, is of particular 
interest. Liquid-phase hydrolysis is the method of choice 
for preparing water-soluble lignin derivatives. In our 
previous studies, we used a lignin-based enterosorbent - 
Polyphepan® as the starting material and treated it in the 
alkaline medium at the elevated pressure and temperature 
with continuous supply of oxygen, to form the target 
water-soluble modification of lignin – BP-Cx-1 [14]. 
In line with the protocol of its production, BP-Cx-1 is a 
multicomponent composition of polyphenolic compounds. 
It was further used as a ligand for preparation of novel 
pharmaceutical products BP-C1, BP-C2, and BP-C3.

Platinum containing antineoplastic investigational 
medicinal product (IMP) BP-C1 is at the moment on the 
stage of clinical trials in patients with metastatic breast 
cancer [15]. Investigational medicinal product BP-C2 is 
a composition of BP-Cx-1 with ammonium molybdate. 
It exposes radioprotective effects through protection and 
reconstruction of hematopoiesis in irradiated rats [16], 
inhibits radiation-induced skin damage in mice [17], and 
improves quality of life of cancer patients undergoing 
chemotherapy [18]. BP-C3 is a composition of BP-Cx-1 
with iron complex, selenium, ascorbic acid, and retinol. 
It exhibits geroprotective activity [19] and reduces 
5-fluorouracil toxicity in mice by accelerating recovery of 
leukopoiesis and protecting small intestine epithelium [20].

Despite multiple studies published on biological 
effects of lignin derivatives, molecular mechanism of 
their action remains unknown. This is because application 
of existing characterization methods to multicomponent 
compositions of lignin and its derivatives is very 
challenging. Fourier transform ion cyclotron resonance 
mass-spectrometry (FTICR MS) with mild ionization 

techniques is the only method, which is capable to resolve 
this issue. Due to its high resolution and mass accuracy, 
this method detects thousands of molecular peaks in 
complex mixtures without preliminary fractionation [21]. 
The power of this method enables exact assignment of 
thousands formulae, which could be used to evaluate 
the pathways of product formation as well as to suggest 
individual components responsible for bioactivity. 
Recently, FTICR MS was applied to explore homologues 
series in lignin derivatives [22]. Despite clear advantage of 
FTICR MS over other analytical techniques, the limitation 
of this method is a tolerance to isomers. The possible way 
to overcome this limitation is the application of selective 
chemical modification with enumeration of reactive 
centers [23]. Searching for well-known molecules with 
matching molecular masses and the described biological 
activity profiles is another feasible approach. 

The identification of the molecular targets for 
bioactive compounds is an essential step in every drug 
discovery project [24]. In order to complement in vitro 
experiments numerous in silico approaches based on either 
information about the structures of biotargets or ligands 
were developed [25, 26]. These techniques were broadly 
applied in natural compound drug research [27, 28]. 
However, in case of compound mixtures, when structural 
information is limited and the individual compounds are 
hard to elucidate, a range of strategies, united under a 
term ‘dereplication’, were suggested [29]. Dereplication, 
in a broad sense, can be defined as a process of quickly 
identifying known chemotypes [29]. Different variants 
of dereplication strategies were successfully applied 
for chemical profiling of natural products by means of 
combining NMR, MS data and search in compound and 
bioactivity databases [29].

The present study describes a dereplication strategy, 
combining FTICR MS data, in vitro screening of potential 
molecular targets for water-soluble lignin-based ligand 
BP-Cx-1 using Diversity Profile - P9 panel by Eurofins 
Cerep (France), with identification of possible active 
components of BP-Cx-1 by means of searching for their 
molecular formulas in silico in ChEMBL, which is large 
scale bioactive compounds database.

RESULTS AND DISCUSSION

BP-Cx-1 characterization

The BP-Cx-1 was characterized using a number of 
methods. Elemental composition was determined using 
automatic elemental analysis. The content of carbon was 
66.7%, hydrogen–4.82%, and oxygen–28.48%, which 
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corresponded to H/C ratio of 0.87 and O/C ratio of 0.32. The 
obtained data demonstrate low oxidation degree and high 
contribution of aromatic fragments into molecular structures 
of the water-soluble modification of lignin – BP-Cx-1. 

The structural group composition was determined 
using the most powerful method of structural analysis - 
NMR spectroscopy. 13C and 1H NMR spectra are shown 
in Supplementary Figures 1 and 2. The peaks at 55–58 
ppm in 13C NMR spectrum and at 3.3–4.3 ppm in 1H 
NMR spectrum are related to methoxy groups which are 
constitutive parts of lignin (Supplementary Figure 3). 
High values of spectral density in the range from 108 to  
165 ppm of 13C NMR and in the range from 6.2 to 7.9 ppm 
of 1H NMR are consistent with predominantly aromatic 
nature of the product used in this study. Quantitative data 
of 13C and 1H NMR spectroscopy are given in Table 1. 
They indicate that aromatic compounds represent main 
part of BP-Cx-1. It also contains carboxyl and carbonyl 
groups, which are formed during oxidation of the starting 
lignin material.

In general, the structural group composition of the 
product under study agrees well with the data for the 
lignin starting material - a cross-linked polymer composed 
of phenylpropanoid units [30].

High-resolution mass-spectrometry

FTICR mass-spectrum is presented in Figure 1. The 
most intensive peaks in the mass-spectrum correspond 
to singly charged ions within 200-900 m/z window. In 
addition, low-intensity peaks of doubly charged ions could 
be detected (shown in the inset in Figure 1), which extend 
mass window up to 1600 Da. High mass accuracy of the 
FTICR MS enabled identification of exact CHO molecular 
formulas for 2146 singly- and 1602 doubly-charged ions.

The FTICR MS data were used to calculate number-
averaged elemental composition of the sample used in this 
study, which accounted for 65.7% (C), 5.52 (H), and 28.77 
(O). The obtained content of elements yielded H/C ratio of 
1.01 and O/C ratio of 0.33. The MS-derived values of H 
content and the H/C ratio are somewhat higher as compared 
to those measured by the elemental analysis, which might 
be indicative of preferential ionization of hydrogen enriched 
aliphatic acids as compared to phenolic compartments of 
the BP-Cx-1 sample [31]. Still, the data on elemental 
composition of the BP-Cx1 sample obtained by the two 
methods – ESI FTICR MS and elemental analysis – are 
rather consistent and indicative of polyphenolic nature of 
the sample under study.

The molecular formulae assigned to FTICR MS data 
were plotted in Van Krevelen diagram, which is widely 
used for visualization of molecular composition of the 
complex matrices [32]. It represents a 2D plot of H/C 
versus O/C ratios constructed from all the determined 
molecular formulae (Figure 2A). The advantage of 
this diagram is that it demonstrates the full elemental 

composition space occupied by the sample rather than the 
average bulk values. The obtained Van Krevelen diagram 
shows that the singly-charged ions (highlighted in blue 
color) contribute the most into molecular heterogeneity 
of the BP-Cx-1 sample–the corresponding dots are 
scattered all over the diagram field, whereas the molecular 
compositions of doubly-charged ions are much more 
concentrated (highlighted in red color) and located mostly 
within a narrow region of H/C values from 0.5 to 1 and 
O/C values from 0.3 to 0.5. 

The convenient approach to describing MS-
derived data in Van Krevelen diagram is an assignment 
of identified compounds to different molecular classes: 
lignin, tannins, lipids, etc, as it is reported in [33]. This 
enabled us for assigning the majority of doubly-charged 
ions to lignin-like components because they are located in 
the region, which is typical for phenylrpopanoic structures 
(Figure 2A), whereas the molecular formulae assigned 
to singly-charged ions occupy the regions, which are 
typical for lipids, lignins and condensed aromatics. The 
significant differences between elemental compositions 
of singly and doubly-charged ions are also revealed by 
closer consideration of molecular mass distribution of the 
identified ions, which is shown in Figure 2B. 

So, H/C versus molecular mass plot shows that all 
medium-molecular weight compounds, which exceed 
600 Da, correspond to lignin-like molecules. At the 
same time, saturated (aliphatic) and condensed species 
are characterized by lower molecular weight. This might 
be indicative of depolymerization of the starting lignin 
material, which gives rise to formation of heterogenic 
products. Aromatic ring cleavage and condensation of 
phenols are among the most probable reactions: the former 
might result in formation of aliphatic molecules with  
H/C>1.2, whereas the latter might lead to formation of 
condensed products with H/C<0.5 (Figure 2B). In the case 
of BP-Cx-1, both reactions might be induced by an attack 
of hydroxyl radicals present in alkaline conditions onto the 
polyphenolic structures of the starting lignin material, as 
it was described, e.g., in [34]. We also cannot exclude the 
presence of extractives (terpenoids) in the starting lignin 
material, which could contribute to the saturated low 
molecular weight components.

The conducted studies allowed us to conclude 
that the BP-Cx-1, lignin derivative used in this study, is 
characterized by dominating contribution of polyphenolic 
compounds with molecular weights ranging from 300 to 
1200 Da along with the presence of low molecular weight 
compartments of aliphatic character (e.g., terpenoids, 
fatty acids), and condensed aromatic compounds (e.g., 
flavonoids). 

In vitro studies

Given the results of structural characterization of the 
lignin derivative under study, which revealed its molecular 
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diversity, we have started exploration of its potential action 
targets, using the Diversity profile panel of Eurofins, 
which is composed of 71 binding and 27 enzyme assays 
(see Supplementary File 1). The binding assay panel 
has roughly an equal number of selective, central and 
peripheral therapeutically relevant targets. The enzyme 
assay panel is particularly focused on phosphatases and 
specific enzymes involved in cell cycle regulation. This 
profile is designed for the assessment of the biological 
diversity and potential adverse activity of Lead discovery 
candidates. Only the results of the binding assays were 
used in the present work.

The corresponding assay of BP-Cx-1 biological 
activity was conducted at the highest achievable 
concentration of 0.0042% (V/V). The thirteen cases of 
nonspecific interference of BP-Cx-1 with the assay and 
the pronounced BP-Cx-1 binding (over 50%) to 22 targets 
(Table 2) were identified.

The results show that interaction of BP-Cx-1 
with multiple targets was detected. The majority of the 
identified targets belong to neurotransmitters receptors, 
ligand-gated ion channels and transporters, which are 
expressed in central and peripheral nervous systems. 
Given that drugs, which contain BP-Cx-1 ligand, are 
developed for antitumor therapy or as supportive care for 
cancer patients [35], of particular interest was to identify 
molecular targets, which are involved in modulation of 
inflammation and immune response.

Adenosine, adrenergic, bradykinin receptors, 
glucocorticoid receptor, histamine receptors, 
acetylcholine muscarinic receptors, purinergic receptors 
and prostanoid receptors are known to be involved in 
regulation of inflammation response [36]. Inhibition of 
bradykinin receptor B1 [37, 38], muscarinic receptors 
M1 and M2 [39], histamine receptor H1 [40] and 
prostanoid receptors EP2 [41], as well as activation 

Table 1: Structural group composition of BP-Cx-1 as measured by 13C and 1H NMR spectroscopy

Carbon content in the structural fragments,%
O = CRR’ COO CAr-O(H,R) CAr CAlk-O OCH3 CAlk

4 6 8 45 15 7 15
Hydrogen content in the structural fragments,%

COOH+ArOH ArH CH3O AlkH
6.8 36 34.5 19.7

Figure 1: ESI FTICR mass-spectrum of the lignin derivative used in this study - BP-Cx-1. Insert shows the presence of 
singly and doubly charged ions within 0.25 Da of mass-spectrum fragment.
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of glucocorticoid receptor GR [42] and adenosine 
receptors A(1), A(2A) [43, 44], is beneficial for reducing 
inflammation and pain.

There is reported evidence suggesting that chronic 
inflammations are tightly associated with cancer  
[45, 36]. This might indicate specific role of inflammation 
promoting receptors in tumorigenesis. The tumors recruit 
multiple paracrine, autocrine and systemic signaling 
factors for maintenance of high proliferative and 
metabolic level and for avoiding host immune response. 
As a result, simultaneous targeting of several proteins may 
be beneficial for treatment of the cancer patients.

Inhibitors and agonists of many receptors are currently 
considered as antitumor drug candidates. Thus, glutamate 
bradykinin and AMPA receptors have been implicated in 
cancer migration, invasion and metastasis [46, 47, 48]. 
Some data on prostaglandin receptor EP2 indicate that it is 
highly expressed in a variety of cancer cells and exacerbates 
disease pathology [49, 50, 41, 51]. Adenosine A(1) and 
A(2A) receptors agonists exhibit immunosuppressive effect 
in tumor stroma [52, 53]; this effect can be amplified by co-
administration of selective inhibitors of purinergic receptors 
[54]. Dopamine D4 receptor inhibitors, which affect 
autophagy in glioblastoma stem cells and induce apoptosis 
were also demonstrated to have antitumor activity [55]. This 
leads to suggestions that β-adrenoceptors might be valuable 
drug targets to control the deleterious effects of β-adrenergic 
system in tumor development along with psychological stress 
in cancer patients [56, 57].

The direct experimental evidence with regard to 
possible effect of BP-Cx-1 onto various receptors, taking 
part in inflammatory reactions and tumor development, 
as well as with regard to its pharmacologically active 
concentrations is missing. However, the data from 
clinical trials of BP-Cx-1 containing products, as well as 
laboratory animal testing allows us a suggestion that its 
numerously documented cumulative anti-inflammatory 

and antitumor effect in cancer patients may in part be 
attributed to the direct ligand-receptor interaction.

ChEMBL data mining

For suggesting structures, which might be related to 
the BP-Cx-1 bioactivity profile, we used the FTICRMS 
data on molecular formulae, which were identified in 
this sample (3748 formulas). We used these formulas 
for manual search in ChEMBL database. The related 
structures were extracted along with their bioactivity data. 
The text search was conducted in the target_dictionary.
pref_name and assays.description fields, which contain 
information about protein target and biological assay 
conditions. This enabled extraction of 1474 relevant 
assays corresponding to 1316 ChEMBL compounds with 
interpretable activity values. Due to diversity of ChEMBL 
assays and activity types, the activity values were hashed 
to boolean flags, where ‘1’ and ‘0’ denoted the presence 
or absence of the compound activity against the target. 
Individual flags were summarized in boolean fingerprints 
(Supplementary File 2, Figure 3), which represent 
compound bioactivity profiles against all the targets 
screened. The obtained bioactivity profiles were compared 
with the experimental data by constructing the so-called 
“fingerprints”. We proposed a parameter of the fitness of 
a ChEMBL compound to the BP-Cx-1 bioactivity profile: 
values of ‘1’ and ‘–1’ corresponded to the match or 
mismatch of activity of the ChEMBL compound and BP-
Cx-1 against the target, respectively, and ‘0’ was assigned 
in the absence of data (Supplementary File 3, Figure 3). 
All values were summed up giving fit_score - the final 
value, which characterized the fitness of a compound 
to the BP-Cx-1 bioactivity profile. Thus, 56 would 
represent the fit_score for an ideally fitted compound, 
that was tested and demonstrated matching activity in 
all 56 receptors. The maximum fit_score found for the 

Figure 2: Visualization of FTICR MS data obtained for the BP-Cx-1 lignin derivative: (A) Van Krevelen diagram, (B) H/C versus 
molecular weight diagram. The molecular compositions of singly and doubly charged ions are highlighted in blue and red colors, 
respectively.
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ChEMBL compounds was 4. The fit_score ≥1 (well-fitted 
compounds) was obtained for 354 ChEMBL compounds.

Of the 1316 ChEMBL compounds, 1005 had the 
activity against various targets matching that of BP-Cx-1, 
and 1968 did not match activity of BP-Cx-1. For the 354 
well-fitted ChEMBL compounds these values were 396 
and 6, correspondingly (Supplementary File 3). Data on 
activity of the ChEMBL compounds and BP-Cx-1 against 
the Diversity Profile targets (receptors and transporters) 
are graphically presented as a STRING protein association 
network in Figure 4. Network approach was used to 
analyze functional clusters of BP-Cx1 targets established 
in vitro and additional probable targets identified in silico.

As intracellular signaling resembles network rather 
than straightforward pathways, targeting several connected 
proteins would influence the pathway more efficiently 
than interaction with a single target. Network analysis in 
STRING revealed that the targets form a network which 
is enriched in interactions, i.e. it has more interactions 
among proteins than a random set of proteins (enrichment 

p-value: < 1.0e–16). Interaction enrichment implies that 
proteins are at least partly connected and regulate the 
same function. In our network (Figure 4), some biological 
processes according to GO (gene ontology database) were 
enriched, including G-protein coupled receptor signaling, 
blood circulation, cellular calcium ion homeostasis, 
regulation of cell proliferation, inflammatory response. 

As can be seen from Figure 4, established activity of 
ChEMBL compounds was matching that of BP-Cx-1 for 
14 out of the 22 targets listed in Table 2, at that, well-fitted 
ChEMBL compounds had the activity against 9 targets 
(Supplementary File 3). The highest number of ChEMBL 
compounds with activities matching those of BP-Cx-1 were 
found for the following BP-Cx-1 targets: adenosine receptors 
A1 (ADORA1) – 71 records of matching activity among 
91 tested compounds and 20 out of 20 records for the well-
fitted ChEMBL compounds, A2 (ADORA2A) – 52 active 
out of the 63 tested (7 out of 7 for the well-fitted ChEMBL 
compounds), dopamine receptor D4.4 (DRD4) – 65 out of 73 
for all ChEMBL compounds and 15 out of 15 for the well-

Table 2: Binding targets of BP-Cx-1 identified by Diversity Profile–P9 panel

Receptor family Target Protein/protein family symbol Inhibition%

Adenosine receptors
A1 (h) ADORA1 62.1%

A2A (h) ADORA2A 86.6%

Adrenergic receptors
α2 ADRA2A-С 52.2%

β1 (h) ADRB1 51.5%
β2 (h) ADRB2 71.4%

GABAA 
(γ-Aminobutyric acid) BZD GABRA1 53.8%

Glutamate
AMPA GRIA 1-4 90.9%
Kainate GRIK 1-5 84.3%

Bradykinin receptors B1 (h) BDKRB1 76.7%
Dopamine receptors D4.4 (h) DRD4 62.7%
Histamine receptors H1 (h) HRH1 57.6%

Cholinergic receptors
α4β2 (h) CHRNB2, CHRNA4 73.5%

M CHRM1-5 96.3%

Vasopressin receptor
V2 (h) AVPR2 69.8%
V1a (h) AVPR1A 56.4%

Ion channels KATP KCNJ 50.3%
Transporters GABA SLC6A1 71.5%
Thyroid Stimulating 
Hormone receptor TRH1 (h) TSHR 68.8%

Glucocorticoid receptor GR (h) NR3C1 63.2%
Serotonin receptor 5-HT1 HTR1 A,B,D,E,F 81%

Purinergic receptors
P2X P2RX1-7 64%
P2Y P2RY1,2,4,6,11–14 52.6% 

Prostanoid receptors
EP2 (h) PTGER2 52.4%

IP (PGI2) PTGIR 68.7%
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fitted compounds. For GR (NR3C1) glucocorticoid receptor 
matching activities were identified for 81 out of 103 tested 
compounds (29 out of 32 for the well-fitted), for 5-HT1 (HTR1 
A,B,D,E,F in Table 2, HTR1A in Figure 4) serotonin receptor 
matching activities were identified for 59 out of 64 tested 
compounds (6 out of 6 for the well-fitted compounds) and for 
EP2 (PTGER2) receptor, matching activities were identified 
for 24 out of 27 compounds and for 10 out of 10 of the well-
fitted compounds. A smaller number of matches were identified 
for I2 (PTRIG) ligands - 8 out of 25 tested compounds with fit_
score ≥1 were active (8 out of 8 for the well-fitted compounds) 
and for the muscarinic (CHRM1-5 in Table 2, CHRM1 in 
Figure 4) cholinergic receptor – 50 active compounds were 
identified in ChEMBL (52 records were tested), however, only 
1 compound had the fit_score ≥1. Compounds active against 
BZD site of GABAA receptor (GABRA1) were also identified: 
8 compounds were identified, of which 5 were active (2 out of 
2 for the well-fitted compounds). 

Around 50 activity records against each of 
adrenergic (α2, ADRA2A; β1, ADRB1; β1, ADRB1) as 
well as , histamine (H1, HRH1) and vasopressin (V1a, 
AVPR1A) receptors were identified in ChEMBL database; 
activity profiles of all corresponding ChEMBL compounds 
were characterized by the fit_score <1 (Supplementary 
File 3, Figure 4). 

There was a number of receptors in the binding 
assays of the Diversity Profile–P9 panel, against which 
activity of BP-Cx-1 was smaller than 50% (Supplementary 
File 1). ChEMBL compounds were found active against 16 
of these receptors (Figure 4). Thus, while 212 out of 283 
tested ChEMBL compounds were active against cannabiod 
(CCKAR) and 145 out of 236 against opiod (OPRK) 
receptors, BP-Cx-1 had a low affinity to these (9% and 
23%, respectively). Likewise, 191 out of 208 and 106 out of 
145 ChEMBL compounds, were active against endothelian 
ETA (ENDRA) and ETB (ENDRB) receptors, respectively. 

Figure 3: Examples of Boolean bioactivity fingerprints.



Oncotarget18585www.oncotarget.com

BP-Cx-1 also demonstrated low affinity to nuclear 
receptors: 30% for ER (ESR), 13% for PR (PGR) and 36% 
for AR. 275 out of 353 tested ChEMBL compounds were 
active against estrogen receptors; 98 out of 108  and 109 
out of 136 were active against progesterone and androgen 
receptors, respectively. Interestingly, single instances of 
activity against these receptors were identified for the 
well-fitted ChEMBL compounds. Thus, activity records 
exist in ChEMBL database for: 4ʹ,5,7-Trihydroxyflavone 
against estrogen receptor, resorcylic acid lactone with 
molecular formula C21H28O6 against progesterone receptor 
and tetracyclic triterpene (C24H30O6) against androgen 
receptor. 

To compare chemical composition of ChEMBL 
compounds versus BP-Cx-1 compounds, the molecules 
found in ChEMBL database were plotted in Van Krevelen 
diagram and in the H/C vs MW diagram (Figure 5). It can 
be deduced that the major portion out of 1316 identified 
formulas corresponded to saturated compounds (Figure 5A)  
with molecular masses below 500 Da (Figure 5B). By 
the structural type we assume them to be terpenoids and 
lignans. For example, the role of lignans in biological 
activity was reported in our previous work [58]. It should 

be noted that the database query returned BP-Cx-1 
components with the highest relative intensity in mass-
spectrum. Given that 354 ChEMBL well-fitted compounds 
with fit-score ≥1 are low-molecular weight entities with 
high abundance (Figure 5), we hypothesize that saturated 
compounds play a significant role in interaction with the 
identified targets. 

Additionally, we calculated Murcko scaffolds for all 
ChEMBL compounds (Table 3). It can be deduced from 
Table 3 that the scaffolds of well-fitted compounds match 
those of furanditerpenes derivatives (Table 3, 1А, 2B), 
tetracyclic triterpenes (Table 3, sapogenins, 2А, 1В) and their 
precursors–phenanthrene structures (Table 3, 4А), as well 
as flavonoids (Table 3, flavanes, 3А) and simple aromatic 
structures (Table 3, fragments of noncondensed lignin, 5А, 
3B). Compounds of these types are part of various natural 
products [59, 60, 61], and they may also form in the course 
of successive acidic and alkaline hydrolysis of wood [62].

Polyphenolic compounds of flavonoid nature are 
the most investigated in the medical field (Table 3, 3А). 
Antiinflammatory [63], antitumor [64, 65], antiarthritic [66] 
activities were demonstrated for quercetin. The spectrum 
of biological activity of genistein isoflavone resembles that 

Figure 4: STRING protein association network for BP-Cx-1 and ChEMBL compounds targets. Bright-green–targets: 
activity of the well-fitted ChEMBL compound matched activity of BP-Cx-1; Light-green–targets: activity of other ChEMBL compounds 
matched activity of BP-Cx-1; Yellow–targets: activity of the well-fitted ChEMBL compound did not match activity of BP-Cx-1 (binding 
by BP-Cx-1 below 50%); Blue–targets: activity of other ChEMBL compounds did not match activity of BP-Cx-1 (binding by BP-Cx-1 
below 50%); Red–BP-Cx-1 targets: no matching activity records were identified in the ChEMBL database.
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of other flavonoids [67, 68]; besides, it is conformationally 
similar to estradiol and it might act as the latter [69]. It is the 
estrogen-like activity that is referred to as being responsible 
for the radioprotective effectiveness of this compound 
in ARS CD2F1 murine model (DRF 1.16 in case of s.c. 
prophylactic administration) where it acts via protection of 
bone marrow progenitor cell populations [70].

It is worthwhile to note that the present study 
demonstrated moderate activity of the BP-Cx-1 sample 
towards ER receptors (Supplementary File 1), while in 
our previous ARS study, efficacy of BP-C2, composition 
composed of BP-Cx-1 and molybdenum, was similar to 
that of genistein (DRF = 1.1). The results of that study 
suggested that the mechanism of action is associated with 
protection and acceleration of recovery of hematopoietic 
system of irradiated animals [16]. Apparently, induction 
of antiinflammatory signaling pathways, though not ER-
induced, results in a similar in vivo activity of BP-C2. 

Given that some flavonoids are reported to traverse 
the blood-brain barrier, when administered orally and/
or parenterally [71], it might be expected that other 
compounds of this group could act on CNS receptors. The 
studies dedicated to these effects are very scarce, but in a 
study of hispidulin, for instance, ability of this compound 
to act as a ligand in recombinant GABAA/BZD receptors 
expressed by Xenopus laevis oocytes was demonstrated as 
well as a pronounced anticonvulsive effect was observed in 
seizure-prone Mongolian gerbils (Meriones unguiculatus) in 
a model of epilepsy of oral formulation of this compound at 
10 mg/kg body weight [72]. 

Activity of furane diterpene compounds (Table 
3, 1А, 2B) towards CNS receptors such as salvinorin A, 
a selective high efficacy kappa-opioid receptor (KOPr) 
agonist, is reported; some intensive studies are performed 
to evaluate furane diterpene products with a reduced burden 
of undesirable effects associated with salvinorin A [73].

Earlier reports demonstrated that BP-Cx-1, when 
administered intravenously, was able to traverse the blood 

brain barrier [35]. Activity of BP-Cx-1 towards GABAA/
BZD receptors and a lack of effect towards opioid 
receptors (Supplementary File 1) are demonstrated by the 
results of the present study. 

Ginseng, Pulsatilla sp., Aesculus pavia and other 
plants are the natural sources of triterpene compounds 
(Table 3, 2А, 1В). Like flavonoids, natural saponines 
(glycosides) and sapogenins (aglycosides) are 
characterized by multiple biological activities: antitumor 
[74–77], antiinflammatory [78], pain reducing [79].

Phenanthrene structures (Table 3, 4А) are mainly 
obtained from Orchidaceae family plants. Phenanthrenes 
exhibit various biological activities, among which are anti-
inflammatory, antiallergic [80] and cytotoxic [81] effects. 

Thus, polyphenols’ “molecular promiscuity”, in 
a sense that a single molecule has multiple targets, is 
a characteristic feature for this class of compounds. 
It is important to note that the targets include diverse 
protein families such as GPCRs, enzymes, ion channels, 
transcription factors. Different polyphenolic molecules 
have been shown to influence signaling pathways 
associated with inflammation, oxidative stress, cancer, 
metabolic regulation, etc. [82–84]. 

CONCLUSIONS 

The reported study, for the first time, employed 
interdisciplinary approach towards identification of 
molecular targets and biologically active structures of 
the novel water-soluble lignin derivative – BP-Cx-1, 
used as a platform for a portfolio of medicinal products 
for the main therapy and supportive care of oncological 
patients.

It was demonstrated that BP-Cx-1 exerts multiple 
pharmacological effects towards neurotransmitters 
receptors, ligand-gated ion channels and transporters; 
most of molecular targets are involved in modulation 

Figure 5: Visualization of derived molecular space (A) Van Krevelen and (B) H/C versus molecular weight diagram. Blue, orange and 
green spheres represent formulas for FTICR MS compounds, ChEMBL compounds and ChEMBL well-fitted compounds, respectively.
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of inflammation and immune response. Examination of 
molecular composition of BP-Cx-1 with FTICR MS and 
subsequent identification of possible active components 
of BP-Cx-1 by searching for their molecular formulas 
in silico in ChEMBL indicate that the said biological 
activity may stem from multiple polyphenolic components 
likely contained in BP-Cx-1: flavonoids, sapogenins, 
phenanthrenes etc. In vitro and in silico target screening 
yielded not identical, but overlapping lists of proteins. 
Both methods identified adenosine receptors, dopamine 
receptor DRD4, glucocorticoid receptor, serotonin 
receptor 5-HT1, prostaglandin receptors, muscarinic 
cholinergic receptor, GABAA receptor.

Despite great molecular diversity of polyphenolic 
compounds and of their targets, biological activities of 
the known polyphenolic compounds are similar; the 
most of those activities are the anti-inflammatory and 
antiproliferative. Even though this class of compounds 
lacks selectivity towards particular targets, BP-Cx-1 
pleiotropic molecular activities may be beneficial in the 

treatment of multifactorial disorders, such as diseases 
associated with chronic inflammation (neurodegenerative 
diseases, rheumatoid arthritis, autoimmune disorders), 
cancer, type 2 diabetes. 

MATERIALS AND METHODS

BP-Cx-1 composition

BP-Cx-1 was provided by Nobel Ltd as a powder with 
95.9% active substance (batch A1) for the characterization 
analyses and as a sterile 0.42% ammonia solution (batch 
X112K14A1) for the in vitro studies. In the in vitro studies 
BP-Cx-1 was tested at a concentration of 0.0042% (V/V).

BP-Cx-1 characterization

Elemental analysis (C, H, and N) was conducted 
using Vario El Microcube analyzer. Ash content was 
measured by manual combustion of the test-agent at 
850°C. The content of all elements was calculated on 

Table 3: Murcko scaffolds distribution for all ChEMBL compounds and ChEMBL compounds with fit_score ≥1 (well 
fitted to BP-Cx-1 bioactivity)

Well fitted ChEMBL compounds All ChEMBL compounds
# Scaffold % # Scaffold %

1A 11.1 1B 6.3

2A 4.5 2B 5.6

3A 3.7 3B 3.3

4A 3.1 4B 3.0

5A 2.8 5B 2.2
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ash-free basis. Oxygen concentration was calculated as 
the difference between a mass of the sample and the ash-
corrected amount of CHN.

Quantitative 13C solution-state NMR spectra were 
recorded with Avance NMR spectrometer (Bruker, 
Germany), operating at 100 MHz carbon-13 frequency. A 
50 mg BP-Cx-1 sample was dissolved in 0.6 mL 0.3 N NaOD 
and transferred into 5 mm NMR tube. 13C NMR spectra were 
acquired with a 5 mm broadband probe, using CPMG pulse 
sequence with nuclear Overhauser effect suppression by the 
INVGATE procedure; the acquisition time and relaxation 
delay were 0.2 s and 7.8 s, respectively. Quantitative 
distribution of carbon among the main structural fragments 
of the test-agent was established under these analytical 
conditions [85]. The assignments were as follows (in ppm): 
5–108, aliphatic C atoms (∑CAlk) including 50–58, methoxy 
group (CCH3O); 108–165, aromatic C-atoms (∑CAr); 165–187, 
C atoms of carboxylic and ester groups (COO); 187–220, C 
atoms of quinonic and keto- groups (C=O).

1Н NMR spectra were recorded with Bruker AM-
400 at 400 MHz, in standard 5.0 mm NMR tubes. Each 
sample was analyzed in DMSO-d6 solution, and then in 
DMSO-d6 with addition of deuterated trifluoroacetic alid 
20%(wt). Samples were dissolved at 40 mg/mL. Spectra 
were recorded at 20°C, pulse delay of 3 s, AT = 1 s, NA 
= 32. Spectra were analyzed in NUTS (Acorn NMR) 
software. Five integration regions are considered for this 
work (in ppm): 1.6–3.3, aliphatic protons (∑HAlk); 3.3–4.3, 
methoxy group protons (∑HCH3O), 6.2–7.9 ppm, aromatics 
and vinylics (∑HAr); 9.4–11.0, protons in aldehyde groups 
(HC=O); 12.6–13.5, protons in carboxylic acid groups. 

FTICR mass spectra were acquired with FT 
MS Bruker Apex Ultra with harmonized cell (Bruker 
Daltonics) equipped with a 7 T superconducting magnet 
and electrospray ion source (ESI) in negative ionization 
mode, at the facilities of the Institute of Biomedical 
Chemistry of RAMS. Sample solution (200 mg/L) was 
injected into the ESI source using a microliter pump at 
90 µL/h flow-rate, pressure of nebulizer gas of 138 kPa 
and pressure of the drying gas of 103 kPa. A source heater 
temperature of 200°C was maintained to ensure rapid 
dissolution in ionized droplets. The spectra were acquired 
within a time domain of 4 megawords and 300 scans were 
accumulated for each spectrum. Resolving power was 
530 000 at m/z = 400. First, mass-spectrum was externally 
calibrated using synthetic carboxyl-containing polystyrene 
standard, as described in [86], and internal calibration was 
systematically performed against residual peaks of fatty 
acids [87]. Molecular identifications were performed 
with the proprietary “Transhumus” software, based on 
the total mass difference statistics algorithm, designed 
by A. Grigoriev [88]. The generated CHO formulas were 
validated by the following constraints (O/C ratio ≤ 1, H/C 
ratio ≤ 2, element counts (C ≤ 120, H ≤ 200, O ≤ 60) and 
mass accuracy window < 1 ppm). 

In vitro study

The study was performed by Eurofins Cerep 
(France) using standardized Diversity Profile - P9 
panel, comprising 53 receptors, 14 ion channels, 5 
transporters and 27 enzymes (results from enzyme assays 
are not disclosed in this article). Binding of BP-Cx-1 to 
receptors, ion channels and transporters was examined 
with radioligand binding assays. Assay parameters are 
presented in the Supplementary File 4.

Binding results are expressed as a percentage 
inhibition of control specific binding obtained in the 
presence of BP-Cx-1:

100–((measured specific binding/control specific 
binding) × 100%) 

Specific binding values correspond to values 
obtained in the presence of BP-Cx-1, less than nonspecific 
(background) signal. Inhibition effects greater than 50% 
were considered significant.

ChEMBL data mining

Data processing was carried out using Python 2.7 
scripts. Database management was carried out either in 
InstantJChem 17.2.6.0 [89] or in DataWarrior 4.6.1. [90].

ChEMBL version 23 was used. 3748 formulae identified 
in FTICR mass spectrum (Supplementary File 5) were extracted 
as described previously [91]. In brief, all CHO formulae for 
molecular weight range from 200 to 800 were generated and 
extracted from MySQL ChEMBL, using molecule_dictionary.
full_molformula field (Supplementary File 6). The formulae 
from MS were merged with all formulae extracted from 
ChEMBL, giving 41834 compound_properties.molregno 
primary keys (Supplementary Files 7). Fields assays.assay_id 
and assays.description and target_dictionary.pref_name were 
extracted using compound_properties.molregno as a primary 
key. Fields target_dictionary.pref_name and assays.description 
were searched with key substring list (Supplementary File 8), 
using a python script (Supplementary File 9), and found assays 
were extracted and saved to a CSV file (Supplementary File 
10). For the extracted assay_id’s activity data and compounds 
were retrieved from ChEMBL, using activities.assay_id and 
compounds_properties.molregno as primary keys, respectively. 
Compounds were standardized using ChemAxon Standardizer 
v.16.8.29.0 [92] (Supplementary File 11). ChEMBL activities 
were standardized using a python script (Supplementary File 
9) and ‘active/inactive’ (1/0) flag for all the compounds was 
assigned. Two types of activity fingerprints were built using 
a python script (Supplementary File 9) based on the flag 
values (Supplementary Files 2, 3). Scaffold distributions were 
analyzed in DataWarrior 4.6.1.

Network analysis was performed through mapping 
a list of targets to STRING database (http://string-db.
org/) which integrates known protein-protein interactions 
(evidence from curated databases and experiments, 
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minimum interaction score 0.400). GO molecular 
functions with highest confidence scores (p < 1e–06) were 
selected from the pathway enrichment results.
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