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ABSTRACT
Hepatocellular carcinoma (HCC) is the most frequent type of liver cancer with 

poor survival rate and high mortality. Despite efforts on the mechanism of HCC, new 
molecular markers are needed for exact diagnosis, evaluation and treatment. Here, 
we combined transcriptome of HCC with networks and pathways to identify reliable 
molecular markers. Through integrating 249 differentially expressed genes with 
syncretic protein interaction networks, we constructed a HCC-specific network, from 
which we further extracted 480 pivotal genes. Based on the cross-talk between the 
enriched pathways of the pivotal genes, we finally identified a HCC signature of 45 
genes, which could accurately distinguish HCC patients with normal individuals and 
reveal the prognosis of HCC patients. Among these 45 genes, 15 showed dysregulated 
expression patterns and a part have been reported to be associated with HCC and/or 
other cancers. These findings suggested that our identified 45 gene signature could 
be potential and valuable molecular markers for diagnosis and evaluation of HCC.

INTRODUCTION

Liver cancer, with an increasing incidence rate, is 
the second most frequent cause of cancer related death 
worldwide [1]. The most frequent type of liver cancer 
is hepatocellular carcinoma (HCC), which originates 
from the main liver cells and accounts for 70%–85% of 
primary liver cancer, with poor 5-year survival rate and 
high mortality. 

Many factors can cause the liver cirrhosis which 
increases the risk of HCC, including chronic hepatitis B or 
C infections, heavy and prolonged alcohol consumption, 
diabetes and obesity and some inherited liver diseases. 
Hepatocellular carcinoma is usually diagnosed by 
computed tomography or magnetic resonance imaging, 
followed by a liver biopsy to confirm the diagnosis. 

Previous studies have identified many drivers with 
frequent mutations and aberrant expressions in HCC, 
such as TERT, TP53, CTNNB1 and ARIDA1A [2, 3]. 
Although further analyses explored the mechanism of 

tumorgenesis mediated by these drivers, the understanding 
of liver cancer remains to improve and deepen. Therefore, 
novel molecular markers are still urgently needed, which 
benefits for early diagnosis and risk assessment.

Moreover, hepatocarcinogenesis is a complex 
multistep process with multiple signaling cascades 
changed, including vascular endothelial growth factor 
(VEGF) signaling [4], Ras MAPK signaling [5], the 
PI3K/PTEN/Akt/mTOR pathway [6] and Wnt/β-Catenin 
pathway [7]. Notably, interactions between signaling 
pathways frequently occur and have been elucidated 
in many cancers, which emphasizes the roles of cross-
talk between key pathways or regulators in the genesis 
and development of tumor. For example, Lihong Xu 
and colleagues found that the cross-talk between the 
PPARδ and prostaglandin (PG) signaling pathways could 
contribute to the hepatocarcinogenesis through regulating 
HCC cell growth [8]. The cross-talk between the PI3K/
Akt and MEK/ERK cascades could result in cell cycle 
arrest and cell survival in order to adapt to endoplasmic 
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reticulum (ER) stress [9]. Some studies also focused on 
the cross-talk genes. For example, Jiang Du found that 
the dys-regulated genes in ARLC-SCC enriched for many 
pathways which showed obvious correlations by sharing 
cross-talk genes. They further identified 8 cross-talk genes 
which bridge multiple ARLC-SCC-specific pathways as 
candidate biomarkers [10]. Kang Ae Lee performed a 
comprehensive analysis to determine the extent of cross-
talk between the AHR and HIFs and focused on the 33 
shared genes between the two sets of genes exhibiting 
sensitivity to cross-talk [11]. These findings suggest 
that, investigating cross-talk between cancer-related 
pathways and genes can promote our understanding of the 
mechanism of tumorigenesis.

Here, we used expression profiles of HCC to identify 
markers which could accurately distinguish patients and 
healthy people, as well as the prognosis of HCC patients, 
through integrating network and pathway information with 
our developed method. These markers provide valuable 
choices for diagnosis, targets for treatment and objects for 
further analysis of HCC.

RESULTS

Identification of differentially expressed genes

In order to identify dysregulated genes during 
the genesis of HCC, we first obtained the microarray 
expression profile of a total of 433 samples including 
cancerous and pericarcinomatous tissues of HCC. Using 
one of the widely used method Limma [12], we identified 
249 significantly differentially expressed genes, consisting 
of 219 up-regulated genes and 30 down-regulated genes 
(Figure 1A, Supplementary Table 1). Further functional 
enrichment analysis demonstrated that these dysregulated 
genes were involved in many cancer-associated biological 
processes, such as metabolism [13], immune system [14] 
and especially the cell cycle [15] (Figure 1B), suggesting 
the dominating abnormity of cell proliferation in HCC.

The construction of HCC-specific interaction 
network

Given that a biological process is synergistically 
regulated by many factors other than independently 
by one gene, we assumed that the dysregulated genes 
controlled liver-associated physiological activities through 
interacting with each other or additional regulators. To 
obtain the dysregulated network of HCC, we mapped 
the 249 differentially expressed genes to the protein 
interaction network consisting of 14553 protein-coding 
genes (PCGs) and 662360 interactions between them, 
which was built by combining resources from BioGrid 
and HPRD database. Based on this integrated network, 
we extracted a HCC-specific network which contained 
differentially expressed genes and their closely associated 

PCGs (see Method). Finally, the HCC-specific network 
was composed of 522 nodes and 12841 edges (Figure 2). 
Notably, many genes with large degrees in this subnetwork 
have been reported to be associated with HCC, such as 
UBC, SUMO2, SNW1, POLR2A, CDC5L, CDK1, PLK1 
and HNRNPK. Functional enrichment analysis showed 
that, compared with the dysregulated genes, genes of 
HCC-specific network additionally enriched for processes 
about cell cycle phase transition, innate immune response 
and NF-kappaB signaling, which were not captured 
by the dys-regulated genes but were associated with 
cancer process (Supplementary Table 2). These findings 
suggested that the subnetwork may contain key regulators 
of liver pathophysiology, whose aberration may play 
important roles in HCC mechanism.

The identification of important genes based on 
HCC-specific network

Considering the importance and biological 
significance of hub genes in the interaction network 
and the close relationship of the subnetwork with HCC, 
we calculated a state score for each gene that combined 
the extent of the deviation and the degree in the HCC-
specific network to characterize its transcription status 
and importance (see Method). Totally, we identified 
480 genes which contained 455 up-regulated genes with 
state scores being positive and 25 down-regulated genes 
with state scores being negative, for subsequent analysis 
(Supplementary Table 3).

Risk pathways can distinguish disease and 
normal samples

The dysregulation of crucial pathways commonly 
occur in cancer, which were frequently caused by the 
aberrant activation or repression of key genes. Therefore, 
we used DAVID to obtain the enriched pathways of 455 
up-regulated genes and 25 down-regulated genes identified 
above, respectively. Totally, we obtained 31 pathways, 
among which 9 pathways contained both up-regulated 
and down-regulated genes, 18 pathways only contained 
up-regulated genes and 4 pathways only contained down-
regulated genes.

To explore whether these pathways could reflect 
disease status, we calculated a score for each pathway 
based on the expression profiles of up-regulated and 
down-regulated genes. Hierarchical clustering analysis 
of the 31 pathways based on our defined scores could 
nearly completely distinguish HCC and normal samples 
(Figure 3). Notably, pathways such as Wnt signaling 
pathway, cell cycle and TGF-beta signaling pathway 
showed active status. On the contrary, we found that focal 
adhesion and adhesions junction showed inactive status, 
which implied the tendency of metastasis. Moreover, we 
observed that many other cancer-associated pathways 
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were dysfunctional. These results suggested that these 
pathways could reveal the highlighted cancer-associated 
changes during the pathogenesis of HCC. 

The identification of cross-talk genes and their 
prediction efficiency

The biological regulation network is a complex 
system, in which the interactions between pathways 
are common and important to maintain many pivotal 
biological processes. The cross-talk genes are shared by 
pathways and are considered as indispensable members 
whose dysfunction may result in serious consequences 
including diseases. To further explore which caused the 
variety between HCC and control samples, we focused on 
the cross-talk genes between the 31 pathways identified 
above. Of the 223 gene in all these pathways, we found 
that 104 genes were shared by at least two pathways, 
which we considered as cross-talk genes and were used for 
subsequent analysis (Supplementary Table 4). For example, 
MAPK1, TP53, EGFR and RB1 were well-known HCC-
associated genes whose alteration were frequently observed 
in multiple layers including genome, transcriptome and 
epigenome. Moreover, we also found some other cross-
talk genes which had few reports about HCC, like some 
subunits of the anaphase-promoting complex/cyclosome 
(APC/C) complex (ANAPC1, ANAPC2, ANAPC4, 
ANAPC5, ANAPC7, ANAPC10 and ANAPC11). 
Moreover, the pathways enriched by the 104 cross-talk 
genes and found that they were involved in many cancer-
associated biological processes, such as TGF-beta signaling 
pathway, Wnt signaling pathway, adherens junction and 
cell cycle, implying their potential roles in HCC.

To extract reprehensive genes from the 104 cross-talk 
genes, we used Weka [16] to carry out feature selection 
and further identified 45 genes  which could reflect more 

information of samples and disease status. Then we 
constructed a model using random forest algorithm based 
on the expression levels of these 45 genes in the 433 
samples. Notably, these 45 genes contained 15 differentially 
expressed genes. All these 45 cross-talk model genes were 
found closely related to cancer (Supplementary Table 5 
and Supplementary Table 6). To detect the accuracy of our 
model, we obtained another two microarray data sets and 
two RNA-seq data sets. We applied our model to these 
four data sets and found it could accurately distinguish 
HCC patients and normal individuals. The AUC were 
0.746 and 0.862 for the two expression profile data sets, 
as while as 0.690 and 0.750 for the two RNA-seq data 
sets, respectively (Figure 4). Further, permutation analysis 
validated the significance of this model in the four data 
sets with P value of 0.05 (see Method).Taken together, 
these findings suggested that the 45 cross-talk genes 
we identified could be valuable biomarkers that were of 
clinical significance for diagnosis of HCC.

As our model was constructed with cross-talk 
genes which might reveal more mechanism with HCC, 
we wondered if they could reveal the prognosis of HCC 
patients. We used the 45 cross-talk model genes as a tag 
and made a survival analysis of HCC patients (Figure 
5, see Method). The blue curve represented the survival 
time of HCC patients with 45 cross-talk model genes not 
exhibiting changes and the red curve represented survival 
time of HCC patients exhibiting changes in at least one of 
these 45 cross-talk genes. A P value of 0.03 indicated that 
the 45 cross-talk genes may also serve as biomarkers to 
assess the prognosis of HCC patients.

DISCUSSION

Hepatocellular carcinoma severely influences the 
quality of patients’ life, which promotes us to develop new 

Figure 1: The analysis of differentially expressed genes. (A) Heatmap showing the 249 significantly differentially expressed genes, 
consisting of 219 up-regulated genes and 30 down-regulated genes. (B) Functional enrichment analysis of the differentially expressed genes 
with x axis represents the negative log10-transformed P values.
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and effective markers for diagnosis and treatment of HCC. 
In this paper, we integrated expression, networks and 
pathways to identify valuable markers of HCC. The 45 
gene signature we identified could accurately distinguish 
HCC patients and normal individuals, implying their 
potential clinical application.

The liver can regenerate after either surgical removal 
or after chemical injury. It is known that as little as 25% of 
the original liver mass can regenerate back to its full size 
[17]. Consistently, the differentially expressed genes mainly 
enriched in cell cycle-associated processes, such as mitotic 
cell cycle, cell cycle process and cell division, demonstrating 
that these dysfunctional genes could really reflect the 
physiological and pathological characteristics of HCC.

Almost all of the biological processes were precisely 
regulated by a diversity of factors, which make up a 
complicated network. Here, we extracted a subnetwork 
which contained many HCC-associated genes, such 
as UBC, SUMO2, SNW1, POLR2A, CDC5L, CDK1, 
PLK1 and HNRNPK. Interestingly, UBC and SUMO2 
were well-known ubiquitin-associated genes, which 
have been reported to be involved in cell-cycle process 
[18] and DNA damage [19, 20]. The knockdowns of the 
spliceosome protein SNW1 could result in mitotic arrest 
[21]. Since RNA polymerase II mediates the transcription 
of all protein-coding genes in eukaryotic cells, POLR2A, 
as the catalytic subunit of it, was frequently detected to 
acquire mutations in cancers [22], suggesting its important 

roles in the cancer development. Moreover, many studies 
have found that CDC5L, CDK1 and PLK1 were crucial 
regulators of cytokinesis [23, 24]. All these findings 
were concordant with the results above, suggesting that 
cell cycle and cytokinesis may be the major disturbed 
processes during the genesis of HCC.

During the cancer development, many key pathways 
showed aberrant changes. Notably, interactions between 
pathways are also of significance for normal life activities, 
the destruction of which may cause severe diseases 
including cancer. The cross-talk genes are the ones shared 
by pathways, which are considered as key regulators in 
biological processes. Based on this assumption, we finally 
identified 45 cross-talk genes, selected from the 31 risk 
pathway we identified through combining the defined up- 
and down-regulated genes. We assumed that these cross-talk 
genes could reflect more disease-associated information 
since they participate in different pathway regulation 
simultaneously and help us to accurately characterize the 
features of patients with HCC. Consistently, applying these 
45 genes to additional data sets showed that they could 
distinguish HCC patients and normal individuals with a 
high precision. Moreover, among the 45 genes, some genes 
has been considered as HCC biomarkers, such as SUMO2, 
PLK1, CCND1, CDK2 and RB1 [25, 26], suggesting that 
our method could capture the key changes of transcriptome 
in HCC development. Taken together, our work provided 
valuable sources of HCC-associated biomarkers which could 

Figure 2: The HCC-specific network. Red and green nodes represent up-regulated and down-regulated genes, respectively. Blue 
nodes represent the introduced genes which connect directly to the differentially expressed genes in the background network.
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Figure 3: The heatmap showing the hierarchical clustering of all samples using the scores of 31 identified pathways.

Figure 4: The ROC curve of our model showing its power of distinguishing HCC patients with normal individuals in additional two 
array data (A and B) and two RNA-seq data (C and D).
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be the alternative objects for future studies to further explore 
the mechanism and extend our understanding of HCC, 
which are all benefit for the clinical diagnosis and treatment 
 of HCC.

MATERIALS AND METHODS

Data acquirement

The expression profile data (GSE36376) 
of hepatocellular carcinoma, which was used for 
identification of molecular biomarkers, contains 240 
patient samples and 193 control samples.

We used two expression profile data sets and 
two RNA-seq data sets for validation of the prediction 
efficiency of molecular biomarkers. The two expression 
profile data sets were GSE25097, which contained 268 
HCC tumor and 243 adjacent non-tumor samples, and 
GSE49515, which contained 10 HCC tumor and 10 
adjacent non-tumor samples. The two RNA-seq data 
sets were GSE64041, which contained 60 HCC tumor 
and 60 adjacent non-tumor samples, and GSE95698, 
which contained 3 HCC tumor and 3 adjacent non-tumor 
samples. An independent dataset containing mRNA 
data and clinical information of 370 HCC patients 
from The Cancer Genome Atlas (TCGA-LIHC, https://
cancergenome.nih.gov/) was used to analyze survival 
time. The cBioPortal database was used to generate a K-M 
Survival curve using cross-talk model genes [27].

All these data were downloaded from GEO database 
(http://www.ncbi.nlm.nih.gov/geo/). All probe expression 
profile data were converted to gene symbol according to 
their platforms information.

Identify differentially expressed genes

We used the scale function of R to standardize the 
expression profiles. The differential expression analysis 
between tumor and control samples were carried out 
by the R package Limma [12]. Limma is one of the 
most commonly used statistical methods for analysis of 
differential expression, which is based on the empirical 
Bayes linear modeling approach. Genes with the P value 
< 0.05 and absolute fold change > 1.5 were considered as 
differentially expressed.

The construction of HCC-specific network

First, we downloaded the interaction pairs of genes 
from BioGrid [28] and HPRD [29] database, respectively. 
Then, the union of these two sets of interaction pairs 
was used to construct a background network. Second, 
we mapped the 249 differentially expressed genes to the 
background network and extracted the genes which had at 
least five direct interactions with differentially expressed 
genes. Finally, these genes and differentially expressed 
genes made up a subnetwork, which was called the HCC-
specific network.

Figure 5: Survival analysis of HCC patients with 45 cross-talk model genes as a tag.
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The state score

To further identify important genes, we determined a 
state score (W) for each gene in the HCC-specific network, 
which combined the extent of the deviation (E) and the 
degree in the network (D) and was calculated as follows: 
W = E*D. To calculate E, we first defined an interval (I) 
based on the expression profile of control samples for gene 
i: I = M-N, where M was calculated as the mean + standard 
deviation and N was calculated as the mean - standard 
deviation for gene i. Thus, if the expression (exp) of one 
gene in one sample did not exceed its I, we considered this 
gene intended to show a non-cancer expression pattern and 
E = 0; Otherwise, E = exp-M when exp was more than 
M and E = exp-N when exp was less than M. The genes 
with more absolute W were considered as more important, 
where genes were considered as up-regulated if W was 
positive and down-regulated if W was negative.

Calculate pathway scores

For pathway P in each sample, which contains m 
up-regulated genes and n down-regulated genes, we 
calculated a score as following:

pathwayscore =
( )
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where di is the expression level of up-regulated gene 
i in HCC samples and μi is the mean expression level of 
gene i in control samples. Similarly, dj and μj represent the 
expression level of down-regulated gene j in HCC samples 
and the mean expression level of gene j in control samples, 
respectively. If the pathwayscore is positive, we consider 
the pathway shows an active pattern; if the pathwayscore 
is negative, the pathway is considered to show an inactive 
pattern.

Generation of random forest regression model

Random forest is an ensemble method which 
combines many classification or regression trees [30]. 
Random forest algorithm has been widely used in the field 
of bioinformatics, such as transcriptional regulation [31]. 
Random forest can cope with a large set of correlated 
variables as well as complex interaction structures and it has 
already shown excellent performance without any tuning 
parameters [32]. In random forest, two methods are used 
to ensure the models to reject randomness: (i) Bootstrap 
aggregation, that is, each tree in the forest is constructed 
based on a set of randomly selected samples from the 
training cases (default to 70% for regression). (ii) Random 
Subspace Method, that is, a small group of input variables 
are selected at random, at each node to split (default to 30% 
for regression). The final decision is generated by majority 
voting from aggregation of the predictions of all trees.

For the classification model, we used the 433 
samples which were initially analyzed as training set and 
a second set of data which contained 511 samples were 
used as test set (GSE25097). A forest of 500 trees was 
fitted to distinguish HCC patients and normal individuals. 
The other three test sets (GSE49515, GSE64041 and 
GSE95698) did the same course as above.

The random forest model was constructed using the 
R package “randomForest” (version: 4.6–12).

Significance analysis of the model

To validate the significance of our model identified 
using random forest algorithm, we randomly selected 
45 genes from all genes commonly contained by the 
two data set (the training data set and one test set) and 
trained a model based on the initial expression profile of 
433 samples. Then the model was applied to each test set 
to distinguish HCC patients and normal individuals. For 
every test set, this process was repeated for 1000 times 
and the P value was calculated through determining how 
many times the AUCs were more than the observed one.
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