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ABSTRACT

With targeted treatments playing an increasing role in oncology, the need arises for 
fast non-invasive genotyping in clinical practice. Radiogenomics is a rapidly evolving field 
of research aimed at identifying imaging biomarkers useful for non-invasive genotyping. 
Radiogenomic genotyping has the advantage that it can capture tumor heterogeneity, can 
be performed repeatedly for treatment monitoring, and can be performed in malignancies 
for which biopsy is not available. In this systematic review of 187 included articles, we 
compiled a database of radiogenomic associations and unraveled networks of imaging 
groups and gene pathways oncology-wide. Results indicated that ill-defined tumor 
margins and tumor heterogeneity can potentially be used as imaging biomarkers for 
1p/19q codeletion in glioma, relevant for prognosis and disease profiling. In non-small 
cell lung cancer, FDG-PET uptake and CT-ground-glass-opacity features were associated 
with treatment-informing traits including EGFR-mutations and ALK-rearrangements. 
Oncology-wide gene pathway analysis revealed an association between contrast 
enhancement (imaging) and the targetable VEGF-signalling pathway. Although the 
need of independent validation remains a concern, radiogenomic biomarkers showed 
potential for prognosis prediction and targeted treatment selection. Quantitative imaging 
enhanced the potential of multiparametric radiogenomic models. A wealth of data has 
been compiled for guiding future research towards robust non-invasive genomic profiling.
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INTRODUCTION

Considerable progress had been made in developing 
targeted therapies for genomic subtypes in cancer, but 
patient selection for these therapies can be challenging. 
Radiogenomics (sometimes imaging genomics) is a new, 

rapidly evolving field of research aimed at developing 
tools for non-invasive genotyping by identifying imaging 
biomarkers for genomic subtypes [1–3]. Radiogenomic 
analysis refers to the integration of radiophenotypes and 
genomic data in order to find radiogenomic associations 
(Figure 1). Radiogenomic analysis can be performed using 
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qualitative- or quantitative (computer-extracted, radiomics) 
imaging features, which can be used as individual 
biomarkers or can be incorporated in multiparametric 
prediction models. 

Radiogenomics yields considerable advantages for 
genotyping. Firstly, tumor genetic heterogeneity can be 
captured using radiogenomics. Biopsy-based genotyping 
in the clinical setting is generally confined to a single 
sample, although multiregional genotyping has been 
performed effectively to capture tumor heterogeneity 
[4–6]. Radiogenomic biomarkers have shown a great 
potential for capturing tumor heterogeneity non-invasively 
[7, 8]. Secondly, a non-invasive method can be performed 
repeatedly, and is therefore eminently suitable for treatment 
follow-up. In addition, radiogenomic markers are important 
for tumors for which biopsy is unavailable (e.g. glioma, 
retinoblastoma) [9]. Finally, radiogenomics is fast and cost-
effective, generally using routine clinical imaging. Several 
non-systematic reviews were published on radiogenomics 
[2, 3, 10–19]. The main purpose of this systematic 
review was to provide a comprehensive oncology-wide 
database of radiogenomic associations, and to review their 
clinical usefulness. A secondary objective was to assess 
radiogenomics on a pathway-level instead of a gene-level; 
to perform oncology-wide gene pathway analysis in order 
to identify relations between imaging and oncopathways.

RESULTS

Database of imaging-genomics associations

We included 187 articles published between July 
2004 and February 2017. A PRISMA flow diagram for 
the inclusion process is available in the Supplementary 
Table 1. Figure 2 illustrates the exponential growth of 
publications on a year-over-year basis. The major groups 

reflected diffuse glioma (n = 79, 42%), non-small cell lung 
cancer (NSCLC) (n = 51, 27%), and breast cancer (n = 18, 
10%). Often, studies used multiple modalities; 105 studies 
used MRI (56%), 80 CT (43%), 44 FDG-PET (24%), and 
5 mammography (3%). In 59/187(32%) articles biological 
clarifications for imaging-genomics relations were 
identified. The 2440 identified radiogenomic associations in 
the database are presented as a pivot table, which provides 
an easy graphical interface to perform data queries using 
Microsoft Excel (2010/2013) (Supplementary Table 2). 
Study characteristics and quality assessment are available in 
the Supplementary Table 3. The results section focuses on 
repeatedly identified imaging-genomics associations with 
possible clinical application.

Glioma: IDH-mutation status and 1p/19q 
codeletion

The 2016 World Health Organisation (WHO) 
Central Nervous System (CNS) tumor classification 
uses a combined phenotypic (histology) and genotypic 
classification for diffuse glioma (diffuse astrocytic and 
oligondendroglial tumors grade II-IV) [20]. The major 
genetic traits are IDH mutation and 1p/19q codeletion, both 
associated with a more favourable prognosis [21–26]. Table 
1 summarizes radiogenomics for IDH-status in glioblastoma 
(GBM, grade IV glioma), while Table 2 and Supplementary 
Table 4 show radiogenomics results for IDH-status and 
1p/19q codeletion in grade II-III glioma. On MRI, IDH-
mutated cases were characterised by increased perfusion 
parameters in both glioblastoma (higher tumor blood flow) 
[27] and grade II glioma (higher relative cerebral blood 
volume) [28]. Additionally, detection of 2-hydroxyglutarate 
(2-HG) with MR-spectroscopy (MRS) was a strong 
predictor of IDH-mutations in glioblastoma (grade IV) 
[29], grade II-III glioma [30] and grade II-III-IV glioma 

Figure 1: Illustration of the research methods of radiogenomics.
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[31]. Furthermore, four studies applied multiparametric 
models predicting IDH-status based on qualitative 
and quantitative features (Supplementary Table 5)  
[32–35]. 1p/19q codeletion, a pathognomonic trait that 
defines a distinct glioma entity (oligodendroglioma), 
was associated with ill-defined tumor borders [36–39] 
and tumor heterogeneity [36–39] on MRI of grade II-III 
glioma. Results of one study revealed combined perfusion 
and MRS metabolite ratios can discriminate tumors with 
1p/19q loss of heterozygosity with an accuracy of 72% [40]. 
MGMT-methylations status is relevant for glioblastoma, as 
it could aid patient selection for adjuvant temozolamide 
chemotherapy [41–43]. Supplementary Table 6 summarizes 
findings of studies assessing MGMT-methylation status  
[27, 32, 44–52] in glioblastoma. MGMT-methylated tumors 
showed higher apparent diffusion coefficient (ADC) values 
on diffusion weighted-MRI (DW-MRI) in four out of five 
studies [27, 44–47]. Supplementary Table 7 summarizes 
the findings of studies correlating MR features with 
EGFR-status in diffuse glioma. MR perfusion parameters 
correlated with EGFR-amplification [53], and EGFR-
mutation status in glioblastoma [54, 55] and with EGFR-
expression in grade II-II oligodendroglioma [56] and grade 
III-IV glioma [57]. 

Multiparametric modelling for radiogenomics in 
diffuse glioma

Supplementary Table 5 summarizes findings of 
studies incorporating quantitative imaging and genomics 

data in multiparametric models. Seven studies created 
prognostic models using whole-genome data and imaging 
[58–65]. Four studies successfully correlated quantitative 
perfusion traits with angiogenic gene signatures [66–69]. 

Non-small cell lung carcinoma: EGFR-mutations, 
ALK-rearrangements, KRAS-mutations

Radiogenomic studies for NSCLC follow the 
emerging field of personalized, genotype-directed therapy 
for NSCLC (Supplementary Table 8). However, divergent 
findings were reported on the association between presence 
of EGFR-mutation (treatable with tyrosine kinase inhibitors, 
TKI) and imaging (standardized uptake value [SUV] on 
FDG-PET and proportion ground glass opacity [GGO] 
on CT). FDG-PET uptake was both negatively [70–77] 
and positively [78, 79] correlated with EGFR-mutations, 
while other studies found no correlation [74, 80–83]. 
Additionally, EGFR-mutated tumors were on average more 
solid (less GGO) [80, 84, 85], although not completely 
solid (some degree of GGO) [86–88]. However, one study 
showed an inverse relation [83] and other studies found 
no association [70, 78, 89–95]. Similarly, ALK-rearranged 
tumors (treatable with ALK-inhibitors) were more 
solid in two [95, 96] out of four [80, 85, 95, 96] studies 
compared with ALK-wild-type (wt) tumors. When using 
GGO to discriminate ALK-rearrangements from EGFR-
mutations, ALK-rearranged tumors were more solid [80, 
95]. Compared with ALK-wt, ALK-rearranged tumors had 
more spiculated [80] and lobulated [95] tumor margins on 

Figure 2: The number of included articles per type of neoplasm, by year of publication.
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CT [80, 95]. Another driver mutation is KRAS, which is the 
most frequent driver mutation, but no CT or PET features 
were repeatedly associated with KRAS-mutation status 
(Supplementary Table 9).

Quantitative imaging and multiparametric 
modeling for radiogenomics in lung cancer

Recent studies performed multiparametric modelling 
and quantitative imaging in NSCLC [97–104]. Individual 
quantitative texture features successfully identified 
EGFR-mutation (multiple comparisons) [103, 104], 
as did multiparametric models adopting quantitative 
(AUC = 0.74–0.91), qualitative, (AUC = 0.89) [87], or 
combined quantitative-clinical features (AUC = 0.70) [98]. 

Quantitative CT- and PET-features could also predict ALK 
or ROS1/RET fusions (sens = 0.73, spec = 0.70) [105]. For 
development of prognostic imaging biomarkers, two groups 
used quantitative imaging for predicting prognosis-related 
gene clusters and found a lower kurtosis value linked with 
poorer survival [99]. Additionally, a module of tumor 
size, edge shape, and sharpness could predict survival 
[97]. Similarly, the prognostic value of PET-imaging was 
explained from a genomic perspective using radiogenomic 
analysis [100, 101]. 

Breast cancer

This review only included studies with analyses on 
a genomic level; imaging-receptor associations based on 

Table 1: Overview of radiogenomics for predicting IDH mutation status in glioblastoma (grade IV), p-values for 
associations

Necrosis Enhancement Diffusion Perfusion MRS Other

ID
H

-m
ut

at
io

ns

Glioma 
grade

Author Year of 
pub.

N MR 
Necrosis

MR CE 
Contrast 

enhancement

MR CE 
Contrast 

enhancement 
pattern

MR ADC 
apparent 
diffusion 

coefficient 
(mean; min)

MR TBF 
tumour 

blood flow 
(mean 

absolute; 
relative)

MRS (magnetic 
resonance 

spectroscopy) 
2-HG 

metabolite 
imaging

MR Edema 
(brain; 

peritumoural)

MR 
Nonenhanced 

tumour

Grade IV Choi [161] 2012 29 <0.001

Gutman [192] 2013 75 0.19 0.08 0.6 0.23

Wang [200] 2015 280 <0.001
0.003

0.621 0.395

Yamashita 
[27]

2016 55 <0.05 >0.05
>0.05

<0.001
<0.001

Table 2: Overview of radiogenomics for predicting IDH mutation status in glioma grade II-III, p-values for 
associations

Volume Margin Location Calcification Heterogeneity Enhancement Perfusion MRS PET

ID
H

-m
ut

at
io

ns

Glioma 
grade

Author Year 
of 

pub.

N MR 
Tumour 
volume

MR 
Tumour 
margin 

well 
poorly 
defined 

MR 
Location 
features

CT 
Calcifications

MR 
Heterogeneity

MR CE 
contrast 

enhancement 
tumour

MR CBV 
cerebral 

blood 
volume 

90th 
percentile

MRS 
(magnetic 
resonance 

spectroscopy) 
2-HG 

metabolite 
imaging

MRS 
Magnetic 
resonance 

spectroscopy 
other 

metabolites

PET 
FDG 
SUV 
max 
ratio

Grade 
II

Yu [201] 2017 92 0.007

Kickingreder 
[28]

2015 73 AUC 0.922 
OR 031 
p 0.01

Wang [202] 2015 146 <0.05

Metellus 
[203] 

2010 47 0.047 0.007 0.004 0.82 0.99

Grade 
II, III

Metellus 
[204]

2011 33 0.775

Pope [30] 2012 24 0.003

Saito [205] 2016 250 0.0004

Grade 
II, III, 

IV

Nakae [206] 2016 167 <0.001–0.49

Kalinina 
[31]

2012 75 Sens 0.960
Spec 0.952
P < 0.001
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immunohistochemistry analysis were reviewed elsewhere 
[10]. High FDG-PET uptake was found for gene expression 
signatures for basal like, while low uptake was found for 
luminal like cases [106]. Low FDG-PET uptake was also 
associated with expression of oestrogen-receptor related 
genes [107]. Other studies associated luminal B genes with 
quantitative dynamic MRI-perfusion [108] and BRCA-
mutations with sharp margins and rim enhancement on MRI 
[109], but these findings were not independently validated. 

Multiparametric modeling for radiogenomics in 
breast cancer

Radiogenomic imaging models were used in breast 
cancer in twelve studies [110–121]. Five studies [110, 112, 
118, 120, 121] focussed on Oncotype Dx gene-expression 
score, which predicts recurrence in early-stage ER+/
HER2- invasive cancers [122]. One [118] additionally 
assessed prognostic gene assays MammaPrint [123] and 
PAM50 [124, 125]. Enhancement heterogeneity, on either 
quantitative perfusion [110, 120] or quantitative texture 
analysis [118], was associated with high-risk assays in three 
studies. Rapid contrast uptake predicted high-risk Oncotype 
Dx in two studies [110, 112]. To increase insight into 
underlying genomics of MR-perfusion parameters a study 
associated gene expression profiles with a heterogeneous 
centripetal perfusion phenotype [116] and another study 
associated perfusion parameters with regulatory non-
coding transcripts of RNA associated with early metastasis 
[126]. Radiogenomics was applied for monitoring of anti-
VEGF treatment by measuring pre- and post-treatment 
perfusion and associated differential gene expression [119]. 
Additionally, a qualitative imaging model including tumor 
heterogeneity and enhancement predicted expression of 
immune-response genes [114]. Combined analysis of tumor 
shape (lobulated oval) on mammography and MRI showed 
significant correlations with Oncotype Dx [121]. 

Colorectal cancer

Nine studies were included for CRC [127–135]. 
Higher FDG-PET uptake was found for KRAS-mutated 
tumors in five [128, 129, 133, 136, 137] out of six [134] 
studies. Additionally, KRAS-mutations could be predicted 
in a multiparametric model using high FDG-PET uptake in 
addition to CT texture and perfusion features [137]. Cases 
that were both KRAS- and TP53-mutated also showed a 
higher SUVmax [129], as did cases that belonged to the 
group “KRAS- or BRAF–mutated” [132].

Renal cell carcinoma

Eight studies were included for RCC [138–145]. 
BAP1-mutations, associated with invasive disease [146, 
147], showed more calcifications (CT) in two studies, 
although in one non-significantly (p = 0.09 [138];  

p < 0.001 [140]). A radiogenomic risk score, based on 
a multiparametric qualitative CT model successfully 
predicted a predefined prognostic gene signature in RCC 
[142, 143]. One study identified genetic underpinnings of 
an imaging-based complication prediction score (PADUA) 
[145]. 

Hepatocellular carcinoma

Three studies were included for HCC [148–150]. 
Tumors with ill-defined margins on CT showed high 
expression of a gene expression signature for doxorubicin-
sensitivity [150]. Additionally, targetable high VEGF-
expression [151] was related to attenuation, heterogeneity 
and tumor margins on CT [148]. A gene signature of 
microvenous invasion (indicating poor prognosis) can be 
predicted by a CT biomarker including presence of small 
intratumoral internal arteries and the absence of hypodense 
halos [148]. A different genomic score for venous invasion 
was correlated with CT intratumoral arteries and margins 
[150].

Radiogenomics in other malignancies

In paraganglioma, four studies found higher PET 
SUV-values for SDHx-mutated tumors [152–154] or SHDx 
and VHL-mutated tumors [155], relevant for heritability 
risk assessment. In head neck tumors, EGFR-expression 
was related to CT invasion, mass effect, size/volume [156] 
and lower capillary permeability on perfusion CT [157]. 
Additionally, 14 studies each reported on radiogenomic 
associations of 14 other malignancies, respectively (Table 3). 

Oncology-wide comparison of radiogenomic 
correlations and gene pathway analysis

Looking at the molecular pathway-level, gene 
ontology analysis reveals associations between imaging 
groups and gene pathways in cancer (KEGG) oncology-
wide (Table 4). Distinct cancer pathways were associated 
with imaging group of necrosis (55 genes/6 pathways) 
and of contrast enhancement (37 genes/6 pathways). 
Enhancement features (degree) were associated with the 
targetable signalling pathways of VEGF (p < 0.0001) and 
PI3K-Akt (p < 0.0001) (Figure 3). In addition, enhancement 
was associated with mTOR signalling (p < 0.0001), MAPK 
(p = 0.0004) signalling, Focal adhesion (p < 0.0001) 
and Apoptosis (p = 0.0069). Necrosis was associated 
with PI3K-Akt signalling (p = 0.0005) (Figure 3),  
MAPK signalling (p = 0.0233), Wnt signalling 
(p = 0.0054), and p53 signalling (p = 0.0348). Furthermore, 
necrosis was significantly associated with Cell cycle  
(p < 0.0001) and Focal adhesion (p = 0.0470).

Supplementary Table 10 summarizes associations of 
imaging and individual genomic features that were found in 
multiple cancer types. Imaging groups (N = 14) comprised 
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features (e.g. tumor size, multifocality) of both MRI and CT 
in various malignancies. Results included the correlations 
of enhancement features with VEGF-expression in brain 
tumors (glioblastoma) [158] and head-neck tumors (oral 
cavity SCC) [156].

DISCUSSION

This study provided a comprehensive database of 
imaging-genomics associations, in which queries can be 
made (Supplementary Table 2). This review focussed on 

Table 3: Radiogenomics in other malignancies

Diagnosis Study Year N Study design  
(radiogenomic analysis) Genetic feature

Significantly 
correlated imaging 

feature
p-value

Cervical cancer Halle [194] 2012 187
Prediction of expression of a set of 

hypoxia-induced genes with a DCE-
MRI imaging model

Hypoxia-induced genes set (31) DCE-MRI imaging 
feature model (Abrix)

Multiple significant finding, 
appendix S2

Diffuse large 
B-cell lymphoma Lanic [232] 2011 57

Multiparametric modelling 
incorporating imaging (PET) and 

genomics to predict prognosis

Germinal center B cell-like (GCB) 
vs Activated B cell-Like (ABC) 

(gene set expression)
PET High SUV-uptake 0.0291

Extraskeletal 
myxoid 
chondrosarcoma

Tateishi [233] 2005 19
Describing MR findings 

in 19 extraskelatal myxoid 
chondrosarcoma patients

EWS-CHN translocation vs other 
cytogenic variants

MR Peripheral 
enhancement <0.05

Lipoma and 
atypical 
lipomatous tumor/ 
well-differentiated 
liposarcoma

Brisson [234] 2012 87

Identification of CT imaging 
biomarkers for MDM2 amplifications 

(classified as atypical lipomatous
tumor/well-differentiated 

liposarcoma)

MDM2 amplification

CT Lesion size >10 cm 0.011

CT Location: lower 
limb

CT Solid fat content
0.007

0.002

Melanoma brain 
metastases Bordia [235] 2016 98

Identification of MR imaging 
features of melanoma brain 

metastasis associated with genetic 
profiles and survival

BRAF mutation

MR Size of lesions <0.05

MR Edema
MR Hyperintensity T1
MR Hyperintensity T2 

compared to grey matter
MR Enhancement

MR Diffusion 
characteristics

<0.05

<0.05

<0.05

<0.05

<0.05

Multiple 
myeloma Mai [236] 2016 164

Identification of genetic 
underpinnings of qualitative MR 

imaging patterns

Any adverse cytogenetics (chrom. 
17p deletion/t(4;14)/chrom. 1q21 

gain)

MR Diffuse patterns 0.02

0.04

Ovarian cancer  
(high grade 
serous)

Vargas [237] 2015 46
Qualitative and quantitative 

assessment of CT features to predict 
gene expression subtypes (Clovar)

Mesenchymal gene expression 
subtype (Clovar)

CT Mesenteric 
infiltration 0.002–0.005

CT Diffuse peritoneal 
involvement

0.004–0.012

Neuroblastoma Liu [238] 2015 42
Use of FDG-PET and FDOPA-PET 
for distinguishing neuroblastoma 

genomic subtypes

DDC expression PET FDG ratio to 
FDOPA negative 0.02

HK2 expvression PET FDG ratio to 
FDOPA positive <0.0001

Mycn amplification PET FDG ratio to 
FDOPA positive 0.002

SLC6A2 expression PET FDOPA uptake 0.004

Medulloblastoma Perreault [239] 2014 47

Qualitative assessment of MR 
imaging features to predict 4 

molecular subgroups (wingless, sonic 
hedgehog, group 3, and group 4)

Group 3/4
MR Tumor location 
within the midline 

fourth ventricle
<0.001

Wingless

MR Tumor location 
cerebellar peduncle/

cerebellopontine angle 
cistern

<0.001

Sonic hedgehog MR Tumor location 
cerebellar hemispheres <0.001

Group 4 MR No/minimal 
contrast enhancement <0.001

Group 3 MR Ill-defined tumor 
margins 0.03

Pilocytic 
astrocytoma Zakrzewski 2015 86

Identification of transcriptional 
profiles related to radiological 

findings
Transcriptional profiles

MR: Solid or mainly 
solid, Cystic/Enhanced, 
Cystic/Non enhanced, 

Largely necrotic

No relation found

Pancreatic cancer Shi [131] 2015 60 Correlation of PET-imaging features 
with major oncogenomic alterations

CDKN2A loss of heterozygosity PET (MTV and TLG) 0.029 0.021 resp.

SMAD4 loss of heterozygosity PET (MTV and TLG) 0.001 0.001 resp.

TP53 mutation PET (MTV and TLG) 0.001 0.001 resp.

Prostate cancer Stoyanova [240] 2016 6

Multiparametric quantitative imaging 
association with whole genome(gene 

ontology) and predefined genomic 
classifiers

Whole genome expression, 
predefined genomic classifiers

Multiple quantitative 
imaging features 

including DCE-MRI

Significant findings for both 
predefined gene classifiers as 

newly identified pathways

Thyroid cancer Nagarajah [241] 2015 81
Identification of PET-imaging 

features related to BRAFv600E 
mutation

BRAFv600E mutation PET SUVmax 0.019
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both imaging-genomics associations with possible clinical 
application per cancer subtype and oncology-wide patterns 
in radiophenotype-genotype relations.

Diffuse glioma

The 2016 WHO classification for diffuse glioma in 
adults is largely based on IDH1-mutation status and 1p/19q 
codeletion [159]. However, biopsy-based genotyping is 
an invasive technique that can be unreliable due to spatial 
tumor heterogeneity. Imaging biomarkers reflect the whole 
tumor and could possibly enhance genotyping accuracy non-
invasively. Compared to IDH-wild type, IDH-1/2 mutated 
glioma have a favourable prognosis [21–23, 160]. IDH-
status is the top-level diagnostic stratification after histology 
in the WHO index 2016 [159]. Although 12 out of 15 studies 
identified associations between imaging and IDH-status, the 
majority of findings were not independently validated. MR-
perfusion [27, 28] and 2-HG MR-spectroscopy parameters 
[30, 31, 161], however, were correlated with IDH-status 
in multiple studies and yield potential for future imaging-
based IDH-mutation detection. The oncometabolite 2-HG 
is elevated in IDH-mutated cases and can be depicted using 

MR-spectroscopy [29, 162–164], although this is technically 
challenging due to overlap of neighbouring metabolites 
(GABA, glutamate and glutamine) in the spectrum. State-
of-the-art MR systems generate the high-quality spectra 
needed for 2-HG detection, enabling clinical practice 
integration [165]. The codeletion of chromosome 1p19q is 
an early genetic event in development of oligodendroglioma 
associated with greater chemosensitivity and improved 
survival [24–26, 159]. 1p19q co-deleted tumors were 
repeatedly characterised as heterogeneous [36–39] with 
ill-defined margins [36–39]. This phenotype is possibly 
caused by enhanced invasiveness of 1p19q co-deleted 
glioma. MGMT-methylated glioblastoma respond better to 
DNA alkylating chemotherapy with improved prognosis 
[41, 42]. The finding that MGMT-methylated cases showed 
higher ADC-values on DWI-MRI [27, 44–47] may only 
be relevant for detecting non-methylated, bad-responding 
elderly patients who may decide to refrain from treatment 
[166, 167]. EGFR aberrations were often correlated with 
MR-perfusion parameters, possibly due to the effect of 
EGFR on cell invasiveness and angiogenesis. However, 
despite the important role of EGFR in glioma development 

Table 4: Results of oncology-wide pathway analysis of radiogenomic associations: annotation for KEGG pathways 
in cancer 

Imaging group
Genes 

in input 
(n)b

Genes from 
input available 
in pathway (n)

Genes in 
pathway 

annotation 
(n)

KEGG cancer 
pathway p-value p Bonferroni 

corrected

necrosis degree 55 9 124 Cell cycle <0.0001 <0.0001

necrosis degree 55 10 346 PI3K-Akt signalling 
pathway 0.0000 0.0005

necrosis degree 55 6 139 Wnt signalling 
pathway 0.0000 0.0054

necrosis degree 55 7 259 MAPK signalling 
pathway 0.0002 0.0233

necrosis degree 55 4 68 p53 signalling 
pathway 0.0003 0.0348

necrosis degree 55 6 206 Focal adhesion 0.0004 0.0470
enhancement 
degreea 37 12 346 PI3K-Akt signalling 

pathway <0.0001 <0.0001

enhancement degree 37 8 206 Focal adhesion <0.0001 <0.0001

enhancement degree 37 5 60 mTOR signalling 
pathway <0.0001 <0.0001

enhancement degree 37 5 61 VEGF signalling 
pathway <0.0001 <0.0001

enhancement degree 37 7 259 MAPK signalling 
pathway 0.0000 0.0004

enhancement degree 37 4 86 Apoptosis 0.0001 0.0069
aWe excluded enhancement pattern features. bWe required a minimal of 20 genes of radiogenomic associations for an imaging 
feature group (genes from input) for inclusion in analysis.
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[168], suitable EGFR- targeted therapies for glioma have 
not been developed [169]. To ensure standardised glioma 
imaging features, models increasingly adopt quantitative 
imaging. Models allow for incorporating multidimensional 
parameters. Machine learning techniques are successfully 
adopted to optimize feature selection [34, 170, 171]. 
Potentially applicable models were found using quantitative 
features (3D texture, shape) [62], and a combination of 
quantitative and qualitative features (volume, haemorrhage, 
T1/FLAIR ratio) [59], both stratifying for survival and unique 
pathway activity. Additionally, prognostic models using 
quantitative imaging recently entered the phase of being 
tested in prospective setting [69, 171]. Although quantitative 
radiogenomic analyses showed great potential for genotyping 
in glioma, the vast variety of features and study designs made 
comparing results challenging.

Non-small cell lung cancer

Since specific therapies are available for genomic 
subgroups of NSCLC, genotyping is important 
for directing therapy [172]. However, biopsy-
based genotyping can cause treatment delay [173]. 
Radiogenomics may provide a reliable non-invasive tool 
for fast genotyping. EGFR-mutated [174, 175] and ALK-
rearranged [172, 176, 177] tumors are targetable and 

are therefore extensively researched in radiogenomics. 
Repeatedly, FDG-PET was associated with EGFR-
mutations, which may be biologically explained by the 
activating role of mutated EGFR glycolysis through AKT-
signalling [178, 179]. The major studies showed a higher 
FDG-PET uptake for EGFR-mutated tumors; one of these 
validated their results in an independent cohort [73]. The 
three studies that found a lower uptake for EGFR-mutated 
cases were possibly unreliable because lower uptake was 
either not confirmed in multivariate analysis [76], found 
in metastasis only [75], or found because the comparison 
group had highly avid KRAS-cases [77]. Proportion 
GGO versus solid appearance on CT might be useful 
to differentiate genetic NSCLC-subtypes. Seemingly, 
wild type tumors have a large proportion GGO, EGFR-
mutated tumors have a small component GGO, and ALK-
rearranged tumors are the most solid. However, validation 
studies with standardised GGO measurements are needed 
to reliably discriminate genotypes. Similarly, standardised 
tumor morphology features need to be assessed in order to 
validate the predictive value of ill-defined tumor borders 
for ALK-status. Multiparametric (quantitative imaging) 
studies can be powerful for predicting individual genetic 
traits, as well as gene clusters related to prognosis. 
However, findings need to be validated in independent 
cohorts before they can be used in clinical practice.

Figure 3: Genetic traits associated with either enhancement or necrosis. Genes associated with degree of enhancement  
(N = 37) and genes associated with necrosis (N = 55) are depicted. The genes IDH1, NF1, TP53, PGF and EGFR are shared between both 
groups. The two gene sets were both enriched for PI3K-Akt signalling (enhancement: 12 common genes, Bonferroni corrected p < 0.0001; 
necrosis: 10 common genes, Bonferroni corrected p = 0.0005).
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Breast cancer

In breast cancer, most radiogenomic associations 
were not independently validated. Limited results indicate 
FDG-PET can possibly discriminate molecular subtypes 
[106, 107]. Gene-expression scores such as Oncotype 
Dx recurrence risk test and MammaPrint metastasis risk 
test become increasingly important for clinical decision 
making in breast cancer, especially to prevent unnecessary 
chemotherapy. Since genetic tests are costly and time-
consuming, studies aimed at finding imaging surrogates. 
In multiple studies perfusion features showed potential 
for predicting high-risk genetic tests, indicating tumor 
perfusion may be sign of poor prognosis in breast cancer. 
Studies furthermore indicated the potential of perfusion 
imaging for predicting gene expression markers for anti-
VEGF treatment response. However, clinically applicable 
models are yet to be established.

Colorectal carcinoma, renal cell carcinoma, 
hepatocellular carcinoma

In colorectal carcinoma, KRAS-mutation indicates 
irresponsiveness to EGFR-targeted treatment [180, 181] and 
showed high FDG-PET uptake in multiple studies. The lack 
of this association in one study [134] and a reported low 
accuracy for prediction [129] might be explained by false-
positive high uptake due to inflammation [136]. Although 
findings are not yet prospectively validated, FDG-PET 
has great potential for providing biomarkers for EGFR-
treatment decision making in CRC. In renal cell carcinoma, 
the amount of calcifications shows potential for predicting 
BAP1-status, which could be useful for assessing stage, 
grade and invasiveness [146, 147]. However, findings need 
validation. Although multiparametric modelling studies 
in RCC were limited, great strides are put in assessing its 
application for predicting prognosis- and complication 
risk [142, 143, 145]. For hepatocellular carcinoma, 
radiogenomic biomarkers could aid both treatment 
selection (VEGF-targeted and doxorubicin treatment) as 
well as prognosis prediction. Microscopic venous invasion, 
a sign of poor prognosis and high recurrence risk, was 
associated with small intratumoral arteries (CT), which was 
independently validated [182]. However, it was noticed 
patients were not selected indiscriminately [183]. The 
amount of studies and their population size were too low to 
draw conclusions.

Patterns in radiogenomic associations

Repeatedly found imaging-genomics associations 
show patterns among different neoplasms. A convincing 
relation was found for enhancement on imaging and VEGF-
expression, identified in brain and head neck cancers. The 
same association was found in a study (not included) 

assessing radiogenetics using immunohistochemistry 
in HCC [184]. For a more profound understanding 
of radiogenomic relations and underlying regulatory 
networks, insights into the related biological process 
can be of considerable value. Angiogenesis was the 
most mentioned biologic link between imaging and 
genomics in glioblastoma [48, 54, 55, 57, 66, 67, 158], 
oligodendroglioma [56, 185], breast cancer [102, 126], oral 
cavity SCC [156], and RCC [138]. Angiogenesis-related 
genes such as VEGF and EGFR genes were compared with 
angiogenesis related imaging features such as perfusion 
and contrast enhancement. Similarly in gene pathway 
analysis, angiogenesis (biology) may be the link between 
enhancement (imaging) and VEGF-pathway-signalling 
(genomics). 

Oncology-wide gene pathway analysis of 
radiogenomic associations

The importance of targeting multiple regulators in 
cancer pathways instead of single genes, is increasingly 
recognized. Genes associated with enhancement were 
enriched for the VEGF-signalling pathway. Similar to the 
association between contrast enhancement and the VEGF 
gene, enhancement may be associated with the VEGF 
signalling pathway due to its regulating role in angiogenesis. 
Imaging biomarkers for the VEGF pathway may have 
clinical implications as they could aid patient selection for 
VEGF-targeted treatment. VEGF-targeted therapy has been 
shown to be effective in various cancer types, including 
CRC, NSCLC, and breast cancer [186, 187]. 

Gene pathway analysis results indicated furthermore 
that contrast enhancement and necrosis detected with 
imaging reflect MAPK- and PI3K-Akt-mTOR-activity. 
Similarly, this could again aid patient selection in the 
future for MAPK- and PI3K-AKT-mTOR pathways-based 
targeted therapies [188–190]. An important limitation 
for the gene pathway analysis was, nevertheless, the 
heterogeneity of the imaging features within the particular 
imaging feature groups. To minimize this effect, specific 
subgroups were created such as “enhancement patterns” and 
“amount of enhancement”. Another important limitation 
for this analysis was that different types of genomics 
information (e.g. gene mutation vs gene expression) were 
described in literature. In addition to that, alterations can in 
principle result in either the activation or repression of the 
involved gene. In the performed analysis, the direction of 
the change, activation versus repression, could not be taken 
into account. Therefore, this analysis could only reveal 
associations. 

Although evidently standardised imaging features 
and genetic tests are needed for further validation, results 
of this gene pathway analysis do reveal that oncology-
wide associations between imaging groups and oncology 
pathways with potentially clinical value may exist. Our 
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findings do not only indicate radiophenotype-genotype 
associations could be similar in different cancer types, but 
also imply that radiogenomics could aid patient selection 
and monitoring of pathway-targeted treatment in the future.

Radiogenomics techniques

Different approaches were seen for conducting 
radiogenomics analysis. A considerable disadvantage 
of qualitative imaging assessment is the poor 
interobserver agreement. A powerful tool to overcome 
this is a validated feature set, such as VASARI [191] 
for glioma imaging [58, 60, 64, 192]. The rapidly 
rising capacity of quantitatively computer-extracted 
imaging (perfusion-, diffusion- and texture features) 
enables more powerful and robust prediction of genomic 
traits. This radiogenomic approach has proven to be 
powerful for prognosis-prediction [58–64, 97, 99, 
142], and for revealing differential pathway-activity 
[60, 148, 193, 194]. The trend in radiogenomics is 
increasingly headed towards models of multiparametric 
multilevel (clinical, radiological and histopathological) 
data, unravelling radiogenomic networks [58, 63, 
64, 105, 116]. Methodologically, however, the use of 
quantitative imaging is still developing. Reproducibility 
of quantitative parameters is a major concern, since they 
are highly dependent on scanner systems and software 
packages. Particularly in MRI, it remains challenging, 
as it has less standardised quantitative values compared 
with CT- or PET-imaging. Moreover, overfitting of data 
models can be an issue. Standardised datasets such as The 
Cancer Imaging Archive (TCIA) [195] and The Cancer 
Genome Atlas (TGCA) [196] can provide a solution for 
validation in an independent cohort. Standardization of 
methods and prospective validation are needed before 
quantitative radiogenomics can be treatment informative.

Limitations

A limitation of this study was the marked 
heterogeneity of genomic and imaging features and 
the variety of analysing methods which made data 
integration challenging. Another constraint was that the 
effect size and the direction of associations were not 
always reported. There might have been publication bias 
for significant findings, but the novelty of this field of 
research reduces this risk. A limitation was that data of 
included multiparametric modelling studies were usually 
not published online, so these p-values could not be 
incorporated in the database. 

Potential of radiogenomics

Radiogenomic genotyping has the advantage that 
it can capture tumor heterogeneity, can be performed 
repeatedly for treatment monitoring, and can be 
performed in malignancies for which biopsy is not 

available. Moreover, radiogenomics is cost-effective 
using routine clinical imaging for analysis. The gene 
pathway analysis in this study revealed imaging-
genomic networks in oncology and indicated that 
radiogenomics may be suitable for predicting efficacy 
of pathway-targeted therapies. Although an extensive 
amount of potentially valuable radiogenomic biomarkers 
was identified, validation studies are needed since the 
robustness of features obtained by different scanners 
remains an important concern. This study provides an 
extensive database of imaging-genomic associations that 
can guide future research to developing radiogenomic 
tools for treatment selection and prognosis prediction 
in human oncology. Radiogenomics, connecting 
multiparametric quantitative imaging with genomic 
data, yields great potential for non-invasive genotyping, 
thereby contributing to the shift towards precision 
medicine in oncology.

METHODS

We performed this study according to the Preferred 
Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) statement [197].

Search strategy and article selection

We systematically searched the Medline and 
Embase databases for English literature published until 
1-2-2017 on radiogenomics in oncology with search terms 
referring to radiogenomics and oncology (Supplementary 
Table 1). References of included articles and literature 
reviews were checked for additional eligible studies. 
The following inclusion criteria were adopted: (1) the 
population consisted of human cancer patients; (2) the 
article comprised statistically assessed associations between 
imaging features on CT, MRI, FDG-PET or mammography 
and genomics; and (3) full-text was available in English. 
We excluded studies performing radiogenetics using 
immunohistochemistry analysis. We excluded case reports, 
editorial letters, and reviews. 

Extraction of study characteristics, quality 
checklist 

Study characteristics, quality assessment, p-values 
for associations and effect measures were incorporated in 
a database (Supplementary Table 2). P-values of studies 
using an extensive amount of quantitative imaging features 
or multiparametric models were reviewed separately. For 
quality assessment, the QUADAS-2 checklist [198] was 
used, with additional items to address radiogenomics 
specifically, including the availability of an independent 
validation cohort. All data generated or analysed during 
this study are included in this published article (and its 
Supplementary Information files). 
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Oncology-wide gene pathway analysis

Gene pathway analysis was performed to examine 
concordance between grouped radiophenotypes oncology-
wide and gene pathways. For this analysis, imaging 
features were classified for 14 coherent imaging groups. 
Significant radiogenomic associations for each imaging 
group were selected. Only single genes were selected (e.g. 
no chromosome-type aberrations), and the genes were 
annotated according to the HUGO Gene Nomenclature 
Committee (HGNC) nomenclature, regardless of neoplasm 
location or type of genetic information (DNA mutation, gene 
expression (mRNA), methylation status). A minimum of 20 
genes per imaging feature group was required for inclusion 
in the analysis. Gene pathway analysis was performed 
by comparing significantly associated genes within a 
particular imaging group with already existing functional 
gene pathway annotations; the cancer gene pathways in 
the Kyoto Encyclopaedia of Genes and Genomes (KEGG) 
database [193, 199]. The ToppGene Suite software 
(Division of Biomedical Informatics, Cincinnati Children’s 
Hospital Medical Center, Cincinatti, OH; https://toppgene.
cchmc.org/)) was used for gene pathway analysis based 
on functional annotation, calculating p-values using 
the hypergeometric probability mass function. method. 
P-values were corrected for multiple testing using the 
Bonferroni method (cutoff value 0.05). 
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