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ABSTRACT

Background: Recently, the multiphase method was proposed to estimate cohort 
effects after removing the effects of age and period in age-period contingency table 
data. Hepatocellular carcinoma (HCC) is the most common primary malignancy of the 
liver and is strongly associated with cirrhosis, due to both alcohol and viral etiologies. 
In epidemiology, age-period-cohort (APC) model can be used to describe (or predict) 
the secular trend in HCC mortality. 

Results: The confidence interval (CI) of the weighted estimates was found to 
be relatively narrow (compared to unweighted estimates). Moreover, for males, the 
mortality trend reverses itself during 2006–2010 was found from an increasing trend 
into a slightly deceasing trend. For females, the increasing trend reverses (earlier 
than males) itself during 2001–2005.

Conclusions: The weighted estimation of the regression model is recommended 
for the multiphase method in estimating the cohort effects in age-period contingency 
table data.

Impact: The regression model can be modified through the weighted average 
estimate of the effects with narrower CI of each cohort.

Methods: After isolating the residuals during the median polish phase, the final 
phase is to estimate the magnitude of the cohort effects using the regression model 
of these residuals on the cohort category with the weight equal to the occupied 
proportion according to the number of death of HCC in each cohort.
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INTRODUCTION

Evaluating disease and mortality patterns over time 
has become popular in understanding the utility of disease 
etiology in public health. However, the trend assessment 
of age-specific mortality presented inconsistent patterns 
between age groups. Birth cohort analyses are valuable in 
predicting future increases (or decreases) of diseases under 
the same pattern among birth cohorts. In epidemiology, 
one popular interpretation on the relationship between age, 
period, and cohort (APC) variables is that age and period 
interact to create unique generational experiences. Age 
effects are correlated with the outcome at various ages, 
such as deaths caused by cancer. Simultaneously, period 
effects influenced all ages over time. Birth cohort effects 
presented changes across groups with the same birth year 
who had the same outcome during the same period. Disease 
mortality is not only influenced by birth cohort effects but 
also affected by age and period. For example, if a person 
born in 1980 (i.e., birth cohort effects) is highly at risk of 
dying due to cardiovascular disease during his/her lifetime, 
it will take at least 30 years (i.e., period effects) for him/her 
to die during adulthood (i.e., age effects) at the beginning 
of 2010. Therefore, the conceptualization of cohort effects 
was proposed based on the interaction between age and 
period [1]. Although this conceptualization still has an 
exact linear relationship (age + cohort = period), exposures 
(predictors) are not intrinsic to birth cohorts. We would 
rather explain a cohort effect that existed while different 
disease distributions arise. However, as age + cohort = 
period, these three variables are linear dependent, and 
unless additional constraints are imposed, APC model that 
estimates the linear effects of age, period, and cohort is 
non-identifiable. We have explained this problem and the 
potential constraints imposed in our previous publications 
[2–5]. However, methodological complexity is a barrier for 
many researchers. As previously mentioned, a cohort effect 
is conceptualized as a period effect that is differentially 
experienced through age-specific exposure to an event 
or cause (i.e., interaction) [6]. Addressing the identifiable 
problem in this conceptualization is unnecessary because 
cohort effects are not conceptualized independently from 
age and period. The median polish analysis has been used 
to estimate cohort effects under this conceptualization [6, 7]. 

Recently, the multiphase method was proposed by 
Keys and Li [6] and provides three phases of estimating 
cohort effects with minimal assumptions on the 
contingency table data. Moreover, the median polish does 
not rely on a specific distribution or structure and thus 
can be widely applied to various types of data, such as 
rates, log rates, proportions, and counts. The first phase is 
graphical representation. Graphs were conducted by age 
across periods or birth cohorts and even birth cohort across 
ages or periods. For example, we conduct a graph of rates 
of age across periods. If age-specific rates of different age 
groups varied mutually among different periods, then the 

period effect may exist in contingency table data. Cohort 
effect can also be present while age-specific rates of 
different age groups interacted mutually among different 
periods. The second phase involves median polish 
analysis to remove the additive effect of age and period 
by iteratively subtracting the median from each row and 
column. The final phase is regression procedure, which 
contain cohort effects and random error. We regressed 
these residuals on the cohort category (defined as an 
indicator variable) in a linear regression model with the 
aggregated count data in the format of contingency tables. 

The median polish was developed to describe data in 
a two-way contingency table [8] and remove the additive 
influence of age (i.e., row) and period (i.e., column) by 
iteratively subtracting the median from each row and 
column. Selvin first applied the median polish to APC 
analysis [7]. This technique requires no assumptions 
about the distribution or structure of the data in a two-
way contingency table. Consequently, it can be widely 
used for any type of data contained in a table without any 
assumption, such as suicide data [9]. APC model was also 
used to describe the secular trend in disease incidence 
or mortality [3]. The APC model usually assumed that 
age, period, and cohort have additive effects on the log 
transformation of disease/mortality rate. 

Hepatocellular carcinoma (HCC) is the most 
common primary malignancy of the liver and is strongly 
associated with cirrhosis, due to both alcohol and viral 
etiologies [10]. Of all malignant tumors worldwide, HCC 
ranked fifth in terms of mortality in men (and the eighth in 
women). In Taiwan, it has been ranked as the first among 
all major cancers in men (and second in women) [11]. 

In this study, we investigated the longitudinal 
trends of HCC mortality data from the Vital Statistics 
as our demonstration. We evaluated the HCC mortality 
to identify the effects of age, period, and cohort and 
examined whether these effects varied by gender. This 
study aimed to use weighted average method to modify the 
multiphase method, in order to estimate the cohort effect. 
We also illustrated how to estimate the cohort effect using 
the multiphase method and compared the results to those 
estimated by proposed weighted average method. 

RESULTS

Figures 1 and 2 show the HCC mortality rates 
among age and period groups. These fluctuations were 
more significant among men than women. The distribution 
of rates according to age shows that HCC mortality rates 
begin at 40–44 age group (see Figure 1). Note that HCC 
mortality rates rose gradually among those in ≥60 age 
group (see Figure 2). However, HCC mortality rates based 
on age have considerably changed over time, which means 
that a significant cohort effect was hidden in the usual age-
period cross-classified Vital Statistics table and will not 
apparent until the distant future. We perform the median 
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polish procedure on the log-transformed HCC mortality 
rates. Tables 1 and 2 present the estimated cohort effects of 
the APC model on HCC mortality rates. Moreover, Table 3  
also presents the age and period effects for both gender. 
Subsequently, Tables 1 and 2 report the weighted estimates 
obtained after calculating the weighted average procedure 
for both gender. According to the smallest deviance 
(compared to unweighted estimates) of confidence interval 
(CI) of the weighted estimates, the weighted estimates are 
better to fit the data. For men, in the left panel of Table 1 
presents the cohort effects of the birth cohorts. The cohort 
effect increases from 0.75 (the earliest cohort effect in 

1891) to 1.13 (the greatest cohort effect in 1936). For 
women, the cohort effect increases from 0.69 (the earliest 
cohort effect in 1891) to 1.17 (the greatest cohort effect in 
1926). Note that the cohort effect significantly increased 
by approximately 51% and 68% compared to the cohort in 
1891 for men and women, respectively. In the right panel 
of Table 1, the increase was evenly distributed. Here, the 
cohort effect increased from 0.71 (the earliest cohort effect 
in 1891) to 1.05 (the greatest cohort effect in 1936). For 
women, the increased distribution is presented similarly 
in the right panel of Table 2. The cohort effect increased 
from 0.65 (the earliest cohort effect in 1891) to 1.04 (the 

Figure 1: HCC mortality rates per 100,000 by age and period, males, Taiwan, 1976–2010.

Figure 2: HCC mortality rates per 100,000 by age and period, females, Taiwan, 1976–2010.
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Table 1: Estimated rate ratios and 95% conference intervals for effect of birth cohort on hepatocellular carcinoma 
mortality of males in Taiwan, 1891–1966

Unweighted Weighted

Effects 95% CI for Effects Effects 95% CI for Effects 

Cohort

(1891~1966)

1891 0.75 0.62–0.89 0.71 0.59–0.84

1896 0.90 0.82–0.99 0.86 0.79–0.94

1901 0.91 0.85–0.97 0.81 0.73–0.90

1906 0.93 0.88–0.98 0.85 0.79–0.92

1911 0.97 0.92–1.02 0.89 0.84–0.94

1916 1.03 0.98–1.08 0.98 0.95–1.01

1921 1.01 0.97–1.06 0.98 0.96–1.00

1926 1.01 0.97–1.05 0.99 0.97–1.01

1931 1.06 1.01–1.10 1.03 1.01–1.05

1936 1.13 1.09–1.18 1.05 1.04–1.07

1941 1.09 1.04–1.14 1.04 1.03–1.06

1946 1.00 REF 1.00 REF

1951 0.87 0.82–0.92 0.93 0.91–0.95

1956 0.82 0.77–0.88 0.87 0.85–0.90

1961 0.77 0.70–0.85 0.74 0.70–0.78

1966 0.68 0.57–0.82 0.79 0.76–0.82

Note: REF = reference; CI = confidence interval.

Table 2: Estimated rate ratios and 95% conference intervals for effect of birth cohort on hepatocellular carcinoma 
mortality of females in Taiwan, 1891–1966

Unweighted Weighted
Effects 95% CI for Effects Effects 95% CI for Effects 

Cohort
(1891~1966)
1891 0.69 0.44–1.10 0.65 0.41–1.03
1896 0.84 0.66–1.07 0.78 0.61–1.00
1901 0.82 0.68–0.97 0.73 0.56–0.95
1906 0.85  0.74–0.97 0.78 0.68–0.89
1911 0.89 0.79–1.00 0.86 0.79–0.93
1916 1.01 0.90–1.12 0.98 0.94–1.02
1921 1.11 1.01–1.23 1.04 1.01–1.07
1926 1.17 1.06–1.30 1.03 1.01–1.05
1931 1.13 1.02–1.25 1.02 1.00–1.03
1936 1.16 1.05–1.28 1.02 1.00–1.03
1941 1 REF 1 REF
1946 0.86  0.77–0.97 0.97 0.95–0.99
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greatest cohort effect in 1921). Thus, we observed that 
the mortality rate increasing by approximately 48% and 
60% will become the peak value for men and women, 
respectively.

Among the birth cohorts, men born in 1936 
exhibited the highest risk of HCC mortality (Table 1). 
Consequently, for weighted estimates, the effect was 1.05 
(95% CI: 1.04–1.07) for the 1936 birth cohort compared to 
the reference birth cohort in 1946. However, a dramatically 
decreasing trend was observed for the earlier cohorts. 
Additionally, the effects were reversed after the 1936 
cohort. Moreover, we plot the unweighted and weighted 
cohort effects with 95% CI of men and women (Figures 3 
and 4), respectively. Both figures show that almost all of 
the widths of 95% CI of weighted are shorter than that of 
unweighted cohort effects.

In this study, we limited our APC analysis of the 
median polish procedure to estimating cohort effects and 
95% CIs of the HCC mortality. Based on this analysis, it 
appears that the residual errors (Ɛijk) were close to zero.

DISCUSSION

Considering the time trend of HCC mortality, the 
conventional analysis using a simple linear extrapolation 
of the observed log age-adjusted rates may underestimate 
some important characteristics hidden in the data (such 
as the cohort effects) and facilitate prediction that are 
grossly missing. If we directly observe the long-term 
trends of HCC mortalities from 1976 to 2010 in Taiwan 
(Figure 5), no one with any reason will doubt that the 
trends, having been increasing for 35 years, will increase 

1951 0.67 0.58–0.77 0.86 0.84–0.89
1956 0.74 0.62–0.88 0.79 0.75–0.83
1961 0.42 0.33–0.54 0.52 0.47–0.57
1966 0.49 0.31–0.78 0.49 0.44–0.54

Note: REF = reference; CI = confidence interval.

Table 3: Estimated age and period effects of among males and females, Taiwan, 1976–2010

Males Females

Effect Effect

Period

1976–1980 –0.25 –0.32

1981–1985 –0.10 –0.15

1986–1990 –0.08 –0.16

1991–1995 0.04 0.02

1996–2000 0.11 0.20

2001–2005 0.16 0.25

2006–2010 0.13 0.16

Age

40–44 –1.37 –2.01

45–49 –0.83 –1.36

50–54 –0.41 –0.90

55–59 –0.09 –0.29

60–64 0.12 0.20

65–69 0.32 0.53

70–74 0.45 0.83

75–79 0.54 1.02

80–84 0.62 0.98

85+ 0.67 1.00

Constant –6.74 –7.89
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for the next few years. However, in fact the recent trend on 
HCC mortalities in Taiwan is decreasing and is driven by 
cohort effects (identified from the APC analysis), which 
as described decreased after the 1936 cohort. In this study, 
applying APC model allows advanced and more accurate 
warning for trend changes.

From a clinical viewpoint, hepatitis B virus (HBV) 
infection is an important health issue worldwide with 
high morbidity, approximately 2 billion people infected 
and 350 million suffering from chronic HBV infection 
[12]. The HBV infection can induce a wide range of 
clinical problems, from inactive carrier status to fulminate 
hepatitis, cirrhosis, or hepatocellular carcinoma. Injecting 

hepatitis B vaccine is the most effective prevention 
method. Based on the policy implications, the first 
worldwide hepatitis B mass vaccination program was 
implemented in 1984 in Taiwan [13]. They screened 
pregnant women for HBsAg and then HBeAg. At first, 
the immunization program covered only infants of HBsAg 
carrier mothers in initially 2 years. From the third year of 
vaccination program, all infants were covered. Recently, 
the coverage rate of hepatitis B vaccine reached 99%. After 
three vaccines, approximately 90–95% of the people will 
have life-long immunity. Note that the decline in pediatric 
HCC in Taiwan can be attributed to the contribution of 
this worldwide vaccination program. The APC estimation 

Figure 4: Plot of the unweighted and weighted effects with 95% confidence interval of females.

Figure 3: Plot of the unweighted and weighted effects with 95% confidence interval of males.
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described in this paper can have an advanced warning for 
these (increased) trend changes (to be decreased recently).

This study investigated trend of cohort effect 
through applying median polish procedure. The weighted 
estimates for modification of the regression model of 
these residuals then allow a weighted average estimate on 
the effect with narrower CI of each cohort. The results 
are reported in the form of cohort effects using the 1946 
cohort, because these categories present the fewest 
changes in HCC mortality rates with cohort influence 
removed.

In most modeling methods (such as linear or 
nonlinear regression models), one of the common 
assumptions is that each real value of data provides equal 
information to estimate the parameters in a model which 
was undertaken. It means that the standard deviation 
of the error term is the constant underlying predictor 
variables. Based on our literature reviews, the assumption 
does not hold in modeling to empirically estimate the 
parameters. When we use weighted regression, the 
unknown parameters are estimated, a less weight is given 
for the less precise data points and more weights are 
given for the precise data points. The advantage is that 
weighted procedure can reduce the standard deviation of 
the estimator. However, the drawback of the weighted 
regression method is almost unknown in empirical 
practice. Because the exact weight is almost unknown, the 
estimated weight can be used to estimate the parameters. 
Moreover, experience shows that the weighting due to 
estimation does not change much and often does not affect 
regression analysis or its interpretation [14]. Theoretically, 
any disease with rates governed by age, period, and cohort 
effects is amenable for an APC model. Moreover, the 
weighted average estimates can be used for prediction 
[15–17]. If the CI is relatively narrow, the uncertainty is 

smaller, because the CI describes the uncertainty inherent 
in this estimate and range of values within which we can 
be reasonably sure that the true effect actually happens. 

Several potential limitations of our study should 
be noted. First, we can only infer about the etiologies of 
the changes observed. The HCC mortality based on age, 
period, and cohort effects are re-amenable for an APC 
model. However, the presence of set assumptions for the 
median polish that we used should be noted in the present 
study. Second, APC analysis can be used extensively in 
the epidemiology field in populations of developing or 
recently developed countries, where long-running cohort 
studies are limited. Third, we do not have information 
from the aggregated format datasets to adjust confounders, 
such as comorbidities or lifestyle, in the APC model. 
Further studies using individual data is needed to solve 
this limitation. Fourth, we use the number of deaths due 
to HCC as the weight to modify the regression procedure 
in the multiphase method. Because the exact weight is 
almost unknown, the use of various weights may cause 
minor inflation among estimated cohort effects. Lastly, 
circumstances in which various APC estimation methods 
to address the non-identifiable problem may occur (e.g., 
Holford adopts the linear and curvature trends to tackle the 
non-identifiable problem [18]). Meanwhile, the median 
polish provides conceptual shift form complex assumption 
among APC model to estimate the cohort effect with a 
minimum of assumptions and easily applies a general 
format for contingency table.

In conclusion, the weighted estimation to modify the 
regression model then allows a weighted average effect 
with narrower CI of each cohort. In summary, the weighted 
estimation of the regression model is recommended for 
multiphase method to estimate the cohort effects in age-
period contingency table data.

Figure 5: Age-adjusted mortality rate of death from hepatocellular carcinoma for men and women in Taiwan
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MATERIALS AND METHODS

Data source

To illustrate the calculations, we used the HCC 
mortality data from 1976 to 2010 for men and women 
in Taiwan, which were obtained from individual health 
records of the Ministry of Health and Welfare (MOHW). 
HCC mortality was classified based on the International 
Classification of Disease (ICD) Code 150. The mortality 
data were available for 10 five-year age groups (40–44, 
45–49, 50–54, 55–59, 60–64, 65–69, 70–74, 75–79, 80–
84, and 85+), 7 five–year time periods (1976–1980, 1981–
1985, 1986–1990, 1991–1995, 1996–2000, 2001–2005, 
and 2006–2010), and 16 birth cohorts (mid–cohort years: 
1891, 1896, 1901, 1906, 1911, 1916, 1921, 1926, 1931, 
1936,1941, 1946, 1951, 1956, 1961, and 1966). In Table 
4, we present an age–period contingency table format for 
the HCC mortality of men and women. From these, we 
calculated the age–specific and the age–adjusted (using 
the 2000 World Standard Population) mortality rates [19].

Let the mortality rate of the i th age group and the j th 
period group be denoted by λij The APC model is as follows:

log , , , ..., ,λ µ α β γij i j k i I= + + + = 1 2

j J=1, 2, ..., , (Eq-1)

k j i I= − + ,
 

where the intercept term is represented by μ, the age 
effects by αi, the period effects by βj, and the cohort effects 
by γK. The following constraints are used:

α β γi
i

j
j

k
k

∑ ∑ ∑= = = 0
 

The multiphase method in estimating cohort 
effects

The multiphase method includes three-phase 
processes that concretized the estimation of the cohort 
effect as a partial interaction in age-period contingency 
table data [6, 9]. The natural log rate (λij) is established 
using the log-additive effect as a constant term plus age, 
period effect, and multiplicative interaction term, which 

Table 4: Age-period contingency table of HCC mortality rate per 100,000 among males and females, Taiwan, 1976–2010

Males 1976–1980 1981–1985 1986–1990 1991–1995 1996–2000 2001–2005 2006–2010

40–44 31.41 33.10 33.20 31.24 30.40 29.10 23.26

45–49 46.50 55.13 52.88 53.61 49.79 47.66 42.25

50–54 68.11 72.47 74.56 81.73 81.65 74.19 69.12

55–59 84.12 97.32 98.96 115.57 127.55 117.70 100.19

60–64 103.58 120.45 115.71 143.74 164.14 168.20 145.35

65–69 126.15 140.12 138.76 160.29 186.58 204.31 203.50

70–74 135.44 147.79 170.44 195.56 201.40 223.00 253.46

75–79 145.41 178.22 186.70 226.86 243.87 234.63 263.24

80–84 123.63 160.33 175.09 229.23 267.55 264.61 276.39

85+ 133.97 232.56 212.33 227.57 248.07 292.51 272.51

Females

40–44 6.75 6.14 4.90 5.11 3.46 2.88 3.03

45–49 11.99 11.10 9.21 9.76 6.49 5.76 4.90

50–54 18.20 16.23 14.78 15.53 14.15 11.78 10.20

55–59 27.57 30.06 24.45 28.43 28.65 28.04 23.68

60–64 35.23 39.48 41.09 44.75 55.75 52.97 48.01

65–69 43.49 54.68 52.09 66.36 76.92 89.05 82.80

70–74 50.40 61.49 65.48 87.47 111.46 130.60 131.32

75–79 66.47 72.02 77.57 105.09 127.37 153.26 160.98

80–84 60.12 74.79 81.83 101.26 139.41 175.41 184.90

85+ 54.22 82.91 71.93 103.98 132.42 169.12 196.03



Oncotarget19834www.oncotarget.com

can be regarded as a fully saturated model that includes 
systematic and unsystematic components (random error). 
The systematic component contains cohort effect. After 
isolating the residuals from the median polish phase, the 
final phase is to estimate the magnitude of cohort effects 
through regression of these residuals (Ɛk) on the cohort 
category (cohort is an indicator variable entered as a 
collection of the m + n–1 cohorts as k = 1,2,…, m + n–1)

ε γ εk k ijk= +   (Eq-2)

The Ɛk is established using a vector of cohort effects 
(γk) and error terms (Ɛijk), where Ɛijk represented the error 
terms unmeasured as i age, j period, and k cohort categories. 

According to the cohort-specific mortality by 
age that calculated as removed and unremoved cohort 
influence to decide reference categories. Reference 
categories of cohort had a minimum difference in cohort-
specific mortality between with and without cohort 
influence. After subtracting residuals form contingency 
data, we can use the residual to calculate the log-additive 
rate (without cohort effect) with multiplying factor e–(residual) 

to the rate each age and period group. Then, take the 
ratio of log-additive rate without and with cohort effects 
for each cohort. If the rate ratio of the cohort is close to 
one, then it is determined as the referent birth cohort. 
The referent birth cohort can be determined based on the 
slight variation of its rate after removing the influencing 
factors.

Weighted average

For birth cohorts with members that achieved the 
cohort, let Wk denote the weight of the k th cohort category:

ε γ εk Wk k ijk= × +   (Eq-3)

However, the common assumption is that each 
cohort across i age and j period of data provides equal 
information (i.e., equally weighted) for the estimation 
of cohort effects in a model while the weighting factor 
is generally unknown. Empirically, the equally weighted 
assumption is usually violated while modeling to estimate 
the cohort effect. The empirical weighting factor most 
widely used is the number of death [20]. Each of these 
weights can be applied to the regression equation. The 
weighted average of the cohort effect can be performed 
via the weight equal to the occupied proportion according 
to the number of deaths due to HCC in each cohort.

To check model fitness and furthermore we plot 
deviance residuals which from the null model, the age 
model, the age-period model, and then to the APC model 
(under the proposed weighted method) progressively 
(Supplementary Figure 1).
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