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ABSTRACT

Lung cancer is a devastating disease with overall bleak prognosis. Current 
methods to diagnose lung cancer are rather invasive and are inadequate to detect the 
disease at an early stage when treatment is likely to be most effective. In this study, 
a shotgun sequencing approach was used to study the microRNA (miRNA) cargo 
of serum-derived exosomes of small cell lung cancer (SCLC) (n=9) and non-small 
cell lung cancer (NSCLC) (n=11) patients, and healthy controls (n=10). The study 
has identified 17 miRNA species that are differentially expressed in cancer patients 
and control subjects. Furthermore, within the patient groups, a set of miRNAs were 
differentially expressed in exosomal samples obtained before and after chemotherapy 
treatment. This manuscript demonstrates the potential of exosomal miRNAs for 
developing noninvasive tests for disease differentiation and treatment monitoring 
in lung cancer patients.

INTRODUCTION

Liquid biopsy, or the test of blood samples to look 
for biological material shed from tumors, is being used 
increasingly for cancer diagnostics, treatment planning, 
and monitoring treatment response. Among the entities 
targeted by liquid biopsy are tumor cells, cell-free DNA 
and extracellular vesicles, specifically exosomes [1, 2]. 
Exosomes contain lipids, proteins, DNA, as well as coding 
and noncoding RNAs [3–5], and reflect the status of the 
cells from which they originate as well as the cellular 
mechanisms they engage in [1, 3]. MicroRNAs (miRNAs) 
are a fraction of short noncoding RNA molecules sized 
between 19 and 22 base pairs. These small transcripts 
are capable of modulating various cellular processes 
and have also been implicated in several pathological 
phenotypes [6]. miRNAs target the 3’ untranslated regions 

of messenger RNAs and regulate gene expression both at 
the translational and post-translational level [7]. In cancer 
cells, miRNAs function both as tumor suppressors as well 
as oncogenes [8, 9]. Therefore, it appears quite plausible 
that exosomal miRNAs may constitute a gene signature 
that could potentially reveal information about the 
disease pathobiology and prognosis [10]. Indeed, utilizing 
miRNAs as biomarkers for early detection and diagnosis 
have led to a more favorable treatment outcome [11].

Lung cancer is a devastating disease with 228,190 
newly diagnosed cases and 159,480 cancer-related deaths 
in the US in 2016 [12]. Lung cancer is classified into two 
major groups: small cell lung cancer (SCLC) and non-
small cell lung cancer (NSCLC) that accounts for 85% 
of all lung cancers. In recent years, our understanding 
of lung cancer has improved significantly. However, 
the prognosis remains bleak with an overall 5-year 
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survival of only 17% [12] and 7% [13, 14] for NSCLC 
and SCLC, respectively. Current methods to diagnose 
lung cancer involve rather invasive procedures [15]. 
To collect a sufficient sample from a detected lesion, a 
traditional needle biopsy, bronchoscopy, thoracentesis, 
or other invasive methods are required depending on the 
disease site. An accurate diagnosis is more likely when the 
obtained tissue is adequate for histopathological analysis. 
However, occurrences of inadequate sample collection 
make for an unreliable diagnosis, furthering patient risk 
and discomfort for repeated tissue collection. Therefore, 
gathering diagnostic information using noninvasive 
procedures can lessen the reliance on traditional biopsies, 
easing patients from additional distress.

Recently established methods for plasma DNA 
analysis have advanced targeted therapies for early-stage 
NSCLC by detecting biomarkers indicative of actionable 
mutations, such as EGFR and ALK mutations [16]. 
Liquid biopsies have also advanced the characterization 
of additional genetic alterations, such as BRAF, MET 
exon 14 skipping mutations, and ROS-rearrangements, 
that suggest effective alternatives for cancer treatment 
with targeted therapeutics as opposed to traditional 
cytotoxic chemotherapy [17]. To supplement the genetic 
biomarker information provided by circulating tumor 
DNA, exosomal content of miRNA can provide valuable 
diagnostic information, as seen in prostate cancer [18] and 
malignant mesothelioma [19]. A simple blood draw and 
isolation of exosomes allow for the profiling of a patient’s 
miRNA expression signature. This recent approach of 
analyzing a patient’s miRNA profile has the potential to 
provide insight with regard to lung cancer type, prognosis 
as well as treatment efficacy.

RESULTS

The number of sequences successfully aligned to the 
human genome and the number of mature miRNA detected 
in different disease and treatment groups are presented 
in Table 1. Overall, the number of sequences aligned to 
the human genome varied from 4.7 to 18.4 million with 
median value 9.4 million per sample. The median percent 
of sequences aligned to the mature miRNA in SCLC and 
NSCLC before treatment was 27.9% and 24.8%; SCLC 
and NSCLC, after treatment, 27.9% and 17.8%; and in 
the healthy control group, 39.5%. Of these, 36 miRNAs 
were observed to be differentially expressed between 
study groups. The Venn diagram (Figure 1) demonstrates 
the distribution of the miRNA species between disease 
and treatment groups. Of these, the largest number of 
miRNA species (n=11) uniquely characterized differences 
between NSCLC and healthy control subjects. The effect 
of treatment in the SCLC group was characterized by n=7 
unique miRNA species. SCLC subjects were specifically 
characterized by n=3 miRNA. Interestingly, no miRNAs 
were unique for NSCLC samples after chemotherapy 

treatment. Only five miRNAs, or 31% and 27%, were 
shared between SCLC and NSCLC datasets, suggesting 
that miRNA content is disease-specific.

Unsupervised hierarchical clustering was used to 
analyze the differentially expressed exosomal miRNA. As 
shown in Figure 2A, NSCLC and healthy control samples 
formed four major clusters: the first cluster consisted 
mostly of untreated NSCLC samples, the second and third 
clusters were a mixture of treated NSCLC and control 
samples, and finally, the fourth cluster was made up of 
only control samples. Figure 2B depicts the distribution 
of SCLC and control samples and their clustering into 
three groups: the first cluster contained mostly SCLC 
untreated samples while the second and third were formed 
by the treated SCLC and control samples, respectively. 
Therefore, the content of exosomal miRNA can not only 
accurately distinguish SCLC and NSCLC patients, but 
also aid in monitoring the progress treatment.

Differentiation of samples using exosomal 
miRNA

The differentially expressed miRNAs were 
examined to determine their capacity to differentiate case 
and control samples or to mark therapy progress. ROC 
analysis was conducted for 18 miRNAs differentially 
present between NSCLC and control groups, 16 miRNAs 
that distinguish SCLC and control, and 2 and 17 miRNAs, 
respectively, that can discern NSCLC and SCLC groups 
before and after treatment. A separate test was conducted 
to examine 24 miRNAs differentially expressed between 
non-treated SCLC and NSCLC specimens. Features with 
an area under curve >0.8, signifying good and excellent 
accuracy of prediction, were selected and are presented 
in Table 2. These analyses revealed 7 miRNAs with 
“good” and “excellent” prediction accuracy, that can 
distinguish NSCLC and control samples (hsa-miR-451a, 
hsa-miR-486-5p, hsa-miR-363-3p, hsa-miR-660-5p, 
hsa-miR-15b-5p, hsa-miR-25-3p, hsa-miR-16-2-3p); 1 
miRNA separating SCLC and control (hsa-miR-1180), 
and 3 miRNAs separating SCLC samples before and 
after treatment (hsa-miR-221-3p, hsa-miR-224-5p, hsa-
miR-125b-5p). For NSCLC, no miRNAs were found to 
separate case, control and treated patients. The comparison 
between SCLC and NSCLC specimens collected before 
treatment initiation revealed 13 miRNAs (Table 2) capable 
to correctly distinguish SCLC and NSCLC patients. Of 
these, 3 miRNAs (hsa-miR-331-5p, hsa-miR-451a, 
hsa-miR-363-3p) should be noted for an exceptional 
performance. These 3 miRNAs were able to discriminate 
SCLC and NSCLC cases with 100% sensitivity, 100% 
specificity underscoring the potential of miRNAs to serve 
as good candidates for differentiating NSCLC and SCLC; 
NSCLC, in contrast to SCLC, appeared to be relatively 
easy to identify using exosomal miRNA; however it is 
difficult to follow the progress of treatment using the same 
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approach. The provided data warrant future investigation 
implementing large discovery and verification cohorts.

Exosomal miRNA patterns and biological 
processes in the tumor

Based on the differences observed in exosomal 
miRNA content between NSCLC and SCLC patients, we 
hypothesized that the exosomal miRNA could be indicative 
of the biological differences existing within different 
types of lung cancer. To gain new insight into the disease 
biology, we employed the Ingenuity Pathway Analysis 
(IPA) platform (Table 3). In both cases, the analysis agreed 
with the top three Diseases and Bio Functions affected in 
both NSCLC and SCLC groups: Cancer, Organismal Injury 
and Abnormalities, and Tumor Morphology. However, the 
fourth and fifth places were different: Respiratory Disease, 
Reproductive System Disease were seen in NSCLC, 

and Renal and Urological Disease, Respiratory Disease 
were seen in SCLC. The top five Molecular and Cellular 
Functions signified by miRNA in NSCLC were Cell Cycle, 
DNA Replication, Recombination and Repair, Cell Death 
and Survival, Cellular Development, and Cellular Growth 
and Proliferation. For SCLC samples, the top functions were 
Cellular Assembly and Organization, Cellular Function and 
Maintenance, Cellular Movement, Cell Morphology, and 
Cellular Development. The top five canonical pathways 
in NSCLC were PTEN Signaling, PI3K/AKT Signaling, 
Molecular Mechanisms of Cancer, Glioblastoma Multiforme 
Signaling, and Pancreatic Adenocarcinoma Signaling; 
in SCLC, the top five canonical pathways were Calcium 
Signaling, Purine Ribonuclease Degradation to Ribose-1-
Phosphate, UDP-N-acetyl-D-galactosamine biosynthesis 
II, Regulation of the Epithelial-Mesenchymal Transition 
Pathways, and Xanthine and Xanthosine Salvage.

Table 1: Number of sequences aligned to human genome and to mature miRNA genes in different disease treatment 
groups

Diagnosis Treatment Sequences aligned to human 
genome (median ± std. error)

Mature miRNA
(median ± std. error)

NSCLC Untreated 7897208 ± 893462.4 632902 ± 124703

NSCLC Treated 1.22 x107 ± 531804.1 758692 ± 255011

SCLC Untreated 6249009 ± 1075251 193518 ± 78980.59

SCLC Treated 7814297 ± 675651 771620 ± 175591

Healthy Control Untreated 1.01x 107 ± 951995 227399.5 ± 43119

Figure 1: Distribution of miRNA species amongst study groups.
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A similar analysis applied to the set of SCLC 
exosomal miRNAs affected by treatment revealed 
biological alterations associated with the therapeutic 
intervention. The changes in the list of top five Diseases 
and Disorders categories included a switch of “Organismal 
Injury and Abnormalities” and “Cancer” between the 
first and second place and appearance of Inflammatory 
Response within the list of top five categories. On the 
other hand, the list describing Molecular and Cellular 
Functions underscored the strong effect of treatment; 
the top categories affected by treatment were Cellular 
Growth and Proliferation, Cellular Development, Cell 
Death and Survival, Cell Cycle, Cellular Movement. The 
top Canonical Pathways affected by SCLC treatment 
were Molecular Mechanisms of Cancer, Glioblastoma 
Multiforme Signaling, Glioblastoma Signaling, PI3K/
AKT Signaling, and Glucocorticoid Receptor Signaling. 
In summary, the analysis suggests that the treatment 
affects the functional profile of tumor and causes the rise 
of inflammatory processes.

IPA molecular activity prediction modeling and 
model verification

The hypothesis that the exosomal miRNA cargo 
reflects the patterns of gene expression in tumor tissue 
was tested further using the Molecular Activity Prediction 

algorithm implemented in IPA software. The assumption 
was made that elevated miRNA leads to suppression 
of target genes and that decrease of miRNA facilitates 
expression of target genes. The activity prediction 
algorithm was then implemented for the regulatory 
networks of six important lung cancer oncogenes (FAK, 
PXN, MET, RON (MST1R), EPHA2, AXL). Of them, 
focal adhesion kinase (FAK) is a non-receptor tyrosine 
kinase, upregulated in NSCLCs, and involved in neoplastic 
transformation, invasion, and metastases, such as cell 
adhesion, migration and apoptosis [20]; PXN is known 
to be associated with lung adenocarcinoma progression 
[21]; MET is important in promoting tumor growth, 
progression and invasion in lung cancers [22]; RON 
(MST1R) is involved in tumor growth and metastasis 
[23, 24]; EPHA2 is overexpressed in 70% of NSCLC 
and strongly associated with patient’s survival [25]; AXL 
is an emerging drug target in NSCLC and SCLC [26, 
27]. Figure 3 exemplified the results of this analysis for 
EPHA2 and AXL genes.

In summary (Table 4), the prediction suggests that 
EPHA2 is upregulated in NSCLC through the repression 
of TP63 and suppression of CCND1; in SCLC, the 
suppression of EGFR does not affect EPHA2; therefore, 
we should expect higher level of EPHA2 in NSCLC 
samples. During the treatment of SCLC, EPHA2 is 
suppressed via downregulation of TP53. FAK in 

Figure 2: Distribution of case samples before and after chemotherapy, contrasted by samples from healthy control 
subjects. NSCLC (A) and SCLC (B).
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NSCLC is suppressed via EGFR, and downregulation of 
IGF1R and integrin; in SCLC, suppression is achieved 
via downregulation of MET and EGFR; therefore, the 
model predicts that FAK expression has no difference 
in NSCLC and SCLC. During the SCLC treatment, 
FAK is suppressed via downregulation of ERBB2, 
IGF1R, and MYCN. PXN in NSCLC is suppressed via 
ITGA5 and IGF1R downregulation, stimulatory effects 
of ABL1 upregulation does not affect resulting trend 
towards the gene suppression; in SCLC, suppression 
is achieved via downregulation of NRP1; therefore we 
should expect a higher level of PXN in NSCLC than in 
SCLC specimens. During the treatment of SCLC, PXN 
is suppressed via downregulation of IGF1R, CCR5, and 

ABL1. MET in NSCLC is suppressed via EGFR, JUN, 
F2 downregulation, stimulatory effects of P38MAPK 
upregulation does not affect resulting trend towards the 
MET suppression; in SCLC, suppression is achieved via 
combined downregulation of F2, EGFR, ITGB4, NRP1, 
P38MAPK; therefore, we should expect a higher level of 
MET in NSCLC than in SCLC specimens. The treatment 
of SCLC upregulates PXN expression via upregulation 
of FOS and downregulation of P38MAPK. RON 
(MST1R) in NSCLC was unaffected, while in SCLC, 
RON upregulation was achieved via ESR1 suppression; 
therefore, we should expect a higher level of RON in 
SCLC specimens. The treatment of SCLC suppressed 
RON via upregulation of ESR1. AXL in NSCLC, 

Table 2: ROC analysis of exosomal miRNA in liquid biopsies

Groups Compared miRNA Cut Point Sensitivity Specificity Correctly 
Classified AUC

SCLC vs. Control hsa-miR-1180 ( ≥.0000.. ) 80.00% 90.00% 86.67% 0.94

NSCLC vs. Control

hsa-miR-451a ( ≥.0047.. ) 83.33% 100.00% 93.75% 0.98

hsa-miR-486-5p ( ≥.0038.. ) 100.00% 90.00% 93.75% 0.98

hsa-miR-363-3p ( ≥.000089 ) 83.33% 100.00% 93.75% 0.95

hsa-miR-660-5p ( ≥ 8.87e.. ) 83.33% 100.00% 93.75% 0.91

hsa-miR-15b-5p ( ≥.000015 ) 83.33% 90.00% 87.50% 0.91

hsa-miR-25-3p ( ≥.000109 ) 83.33% 90.00% 87.50% 0.91

hsa-miR-16-2-3p ( ≥ 6.05e.. ) 83.33% 100.00% 93.75% 0.88

SCLC Treated vs. 
Untreated

hsa-miR-221-3p ( ≥.0014.. ) 100.00% 80.00% 88.89% 0.95

hsa-miR-224-5p ( ≥ 6.86e.. ) 100.00% 80.00% 88.89% 0.9

hsa-miR-125b-5p ( ≥.000045 ) 60.00% 100.00% 77.78% 0.8

SCLC vs. NSCLC

hsa-miR-1228-5p ( ≥ 3.56e.. ) 80.00% 100.00% 90.91% 0.9333

hsa-miR-1246 ( ≥.0008.. ) 60.00% 100.00% 81.82% 0.8333

hsa-miR-203 ( ≥.000022 ) 80.00% 100.00% 90.91% 0.8333

hsa-miR-483-5p ( ≥.0000.. ) 80.00% 100.00% 90.91% 0.8333

hsa-miR-542-3p ( ≥ 3.82e.. ) 83.33% 80.00% 81.82% 0.8

hsa-miR-331-5p ( ≥ 4.67e.. ) 100.00% 100.00% 100.00% 1

hsa-miR-451a ( ≥.0027.. ) 100.00% 100.00% 100.00% 1

hsa-miR-486-5p ( ≥.0076.. ) 83.33% 100.00% 90.91% 0.9667

hsa-miR-660-5p ( ≥ 8.87e.. ) 83.33% 100.00% 90.91% 0.8667

hsa-miR-15b-5p ( ≥.0000.. ) 83.33% 100.00% 90.91% 0.9333

hsa-miR-16-2-3p ( ≥.0000.. ) 66.67% 100.00% 81.82% 0.8333

hsa-miR-25-3p ( ≥.0002.. ) 66.67% 100.00% 81.82% 0.8667

hsa-miR-363-3p ( ≥.0000.. ) 100.00% 100.00% 100.00% 1

* miRNA with area under curve (AUC) >0.80 were selected.
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Table 3: Biological processes identified by exosomal miRNA

NSCLC SCLC SCLC treated

Diseases and 
Biological function p-values

Diseases and 
Biological 
Function

p-values Diseases and 
Biological Function p-values

Cancer 1.1E-7 - 2.8E-20 Cancer 1.4E-3 - 1.17E-8 Organismal Injury 
and Abnormalities 9.66E-09 - 1.64E-28

Organismal Injury 
and Abnormalities 1.1E-7 - 1.33E-19 Organismal Injury 

and Abnormalities 1.4E-3 - 1.17E-8 Cancer 9.66E-09 - 1.64E-28

Tumor Morphology 1.43E-8 - 4.51E-18 Tumor Morphology 1.4E-3 - 1.17E-8 Inflammatory 
Response 1.02E-08 - 1.10E-25

Respiratory Disease 9.37E-8 5.79E-14 Renal and 
Urological Disease 9.69E-4 - 2.4E-6 Respiratory Disease 5.92E-09 - 2.44E-23

Reproductive 
System Diseae 6.03E-8 - 3.13E-13 Respiratory Disease 1.4E-3 - 3.17E-6 Gastrointestinal 

Disease 8.29E-09 - 6.12E-22

Molecular and 
Cellular Functions p-values Molecular and 

Cellular Functions p-values Molecular and 
Cellular Functions p-values

Cell Cycle 7.79E-8 - 7.44E-25 Cellular Assembly 
and Organization 1.44E-3 - 1.7E-12 Cellular Growth and 

Proliferation 9.66E-09 - 6.99E-33

DNA Replication, 
Recombination, 
Repair

4.55E-8 - 2.13E-19 Cellular Function 
and Maintenance 1.44E-3 - 1.7E-12 Cellular 

Development 9.66E-09 - 5.48E-31

Cell Death and 
Survival 1.11E-7 - 2.14E-19 Cellular Movement 1.29E-3 - 1.34E-11 Cell Death and 

Survival 1.00E-08 - 5.61E-30

Cellular 
Development 1.10E-7 - 4.51E-18 Cell Morphology 9.56E-4 - 5.35E-

10 Cell Cycle 9.82E-09 - 2.89E-24

Cellular Growth 
and Proliferation 9.62E-8 - 4.51E-18 Cellular 

Development 1.40E-3 - 1.41E-8 Cellular Movement 2.11E-09 - 1.80E-18

Canonical 
Pathways p-values Canonical 

Pathways p-values Canonical 
Pathways p-values

PTEN Signaling 1.77E-14 Calcium Signaling 1.44E-03
Molecular 
Mechanisms of 
Cancer

1.04E-10

PI3K/AKT 
Signaling 3.57E-14

Purine 
Ribonucleoside 
Degradation to 
Ribose-1-phosphate

2.33E-03
Glioblastoma 
Multiforme 
Signaling

2.22E-10

Molecular 
Mechanisms of 
Cancer

6.51E-13
UDP=N-acetyl-
D-galactosamine 
Biosynthesis II

4.50E-03 Glioblastoma 
Signaling 2.15E-08

Glioblastoma 
Multiforme 
Signaling

2.26E-12

Regulation of 
the Epithelial-
Mesenchymal 
Transition Pathway

8.73E-03 PI3K/AKT 
Signaling 6.11E-08

Pancreatic 
Adenocarcinoma 
Signaling

3.66E-12 Xanthine and 
Xanthosine Salvage 9.33E-03 Glucocorticoid 

Receptor Signaling 1.68E-07
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was upregulated through the IKZF1 suppression, while 
in SCLC it was unaffected; therefore, we should expect a 
higher level of AXL in NSCLC specimens. The treatment 
of SCLC suppressed AXL via downregulation of ERBB2.

The prediction was verified in Oncomine using the 
relevant NCBI GEO dataset GSE3398; gene expression 
was compared between Lung Adenocarcinoma and Small 
Cell Lung Carcinoma cases. According to the algorithm, 
the levels of AXL, EPHA2, MET and PXN expression 
were greater in NSCLC, the expression of RON was 
greater in SCLC, and the model predicted no difference 
in levels of FAK expression between NSCLC and SCLC. 
Consistent with the prediction, with the exception of AXL 
and RON, gene expression data from Oncomine confirmed 
the expression patterns for EPHA2, MET, PXN, and FAK, 
indicating that the model delivers accurate prediction for 
2/3 of the genes.

Biological function of individual exosomal 
miRNA

To understand biological functions, miRNAs 
exhibiting differential expression above 2 logs fold of 
magnitude were selected. The development of NSCLC 
was associated with an increase of molecules associated 
with endoplasmic reticulum (ER) stress [28] - hsa-
miR-3648 (up 2.08 folds) and TNF-α, IL-6 suppression 
[29] - hsa-miR-4488 (up 3.49 folds), and decrease of one 
that is known to regulate glioma cell invasiveness and the 
release of extracellular vesicles - hsa-miR-5096 (down 
3.02 folds) [30–32].

In SCLC, several molecules were elevated: the 
marker of breast cancer chemotherapy resistance and 
self-renewal capability - hsa-miR-4508 (up 2.07 folds) 
[33], serum-based biomarker for muscle-invasive bladder 
cancer survival [34] - hsa-miR-486-3p (up 2.16 folds), 

Figure 3: The expression levels of EPHA2 and AXL genes in NSCLC and SCLC tissues, as suggested by Molecular 
Activity Prediction algorithm (IPA) in response to miRNA influence, and the data of gene expression profiling from 
Oncomine. (A) Predicted upregulation of EPHA2 gene in NSCLC tissue; (B) the lower level of expression of EPHA2 gene in SCLC; 
(C) Predicted downregulation of EPHA2 gene in response to treatment; (D) Oncomine reveals higher levels of EPHA2 gene expression in 
lung adenocarcinoma and squamous cell carcinoma than in small cell lung carcinoma, as consistent with predicted patterns. (E) Predicted 
upregulation of AXL gene in NSCLC; (F) the lower level of EPHA2 gene in SCLC; (G) Predicted downregulation of AXL gene in response 
to treatment; (H) Oncomine reveals higher levels of AXL gene expression in small cell lung carcinoma than in lung adenocarcinoma and 
squamous cell carcinoma, contradictory to the predicted patterns.
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the noted above as an indicator of the ER stress [28] and 
a suppressor of antitumor adenomatous polyposis coli 
2 (APC2) [28] - hsa-miR-3648 (up 2.2 folds), a critical 
β-catenin-activated prometastatic miRNA and a negative 
regulator of the metastasis suppressors RhoGDI1 and 
ALCAM [35] - hsa-miR-483-5p (up 3.16 folds), apoptosis 
suppressing [36] - hsa-miR-1228-5p (up 3.29 folds). The 
hsa-miR-5096 (down 2.76 folds) of unknown function was 
downregulated.

In the case of SCLC, treatment lead to elevation 
of hsa-miR-1228-5p (up 5.17 folds), hsa-miR-483-
5p (up 3.45 folds), and the implicated in breast cancer 
chemotherapy resistance [33] - hsa-miR-4532 (up 
2.4 folds), as well as hsa-miR-3168 (up 2.4 folds) 
of unknown function. In contrast, the level of tumor 
suppressive hsa-miR-542-3p (down 2.04 folds) [37–40] 
was downregulated.

The treatment of NSCLC was not associated with 
any significant changes in exosomal miRNA content. 
Two of the most affected miRNA molecules, hsa-miR-
423-5p, known as a positive regulator of autophagy in 
hepatocellular carcinoma [41] and the regulator of cell 
proliferation of gastric cancer cells [42], and hsa-miR-331-
5p, connected to chemotherapy resistance and relapse in 

leukemia [43], were upregulated but only by 1.06 and 1.18 
logs fold magnitude, respectively.

DISCUSSION

The cargo of exosomes reflects biological processes 
taking place inside the cells of origin [3] and the status 
of the important oncogenes such as EGFR and KRAS 
[44]. It is therefore not surprising that the cancer related 
functional categories were among the top of the list (Table 
3), which is consistent with the relatively high success 
rate of our molecular function modeling. Similarly, the 
neuroendocrine origin of SCLC may help explain the 
abundance of glioblastoma-related canonical pathways 
affected by SCLC treatment. The fact that the Akt/PKB 
signaling pathway [45] was affected by SCLC treatment 
suggests the presence of ongoing an apoptotic process.

The disagreement between predicted and observed 
behavior of several genes deserves a special comment. 
Recent studies demonstrate overexpression of the 
receptor tyrosine kinase AXL in lung adenocarcinoma 
tumor tissues compared with adjacent lung tissues [27] 
and strong association of AXL expression with tumor 
invasiveness [46]. Therefore, the predicted upregulation of 

Table 4: The results of Molecular Activity Prediction algorithm (IPA) predicting the effect of miRNA on the 
expression levels of genes in NSCLC and SCLC tissues

Group Effector Molecules Predicted Effect

NSCLC

TP63 ↑ CCND1 ↓ EPHA2 ↑

EGFR ↓ IGF1R ↓ Integrin ↓ FAK ↓

ITGA5 ↓ IGF1R ↓ ABL1 ↑ PXN ↓

EGFR ↓ JUN ↓ F2 ↓ P38MAPK ↑ MET ↓

RON (MST1R) (.)

IKZF1 ↓ AXL ↑

SCLC

EGFR ↓ EPHA2 (.)

MET ↓ EGFR ↓ FAK ↓

NRP1 ↓ PXN ↓

F2 ↓ EGFR ↓ ITGB4 ↓ NRP1 ↓ P38MAPK ↓ MET ↓

ESR1 ↓ RON (MST1R) ↑

AXL (.)

SCLC Treated

TP53 ↓ EPHA2 ↓

ERBB2 ↓ IGF1R ↓ MYCN ↓ FAK ↓

IGF1R ↓ CCR5 ↓ ABL1 ↓ PXN ↓

FOS ↑ P38MAPK ↓ MET ↑

ESR1 ↑ RON (MST1R) ↓

ERBB2 ↓ AXL ↓

↑- upregulation, ↓-downregulation, (.) - no effect.
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AXL in NSCLC samples matches well with the provided 
literature data, but contradicts with the data from the 
Oncomine dataset. Moreover, the available literature 
suggest that in SCLC the level of intrinsic AXL expression 
is low [47] which aligns well with the predicted effects 
of exosomal miRNA and again contradicts the data from 
Oncomine. Potential explanation of this discrepancy could 

come from the available data suggesting that two patient 
populations, one with a low and one with a high level of 
AXL [26], exist within the SCLC cohort. The information 
about MST1R expression in SCLC and NSCLC is 
similarly perplexing. The publication by Cervantes et al. 
[48] describes MST1R expression in lung tumors and 
demonstrates the elevated levels of MST1R expression 

Table 5: Study group demographics

Group Sample ID Histology Age (years) Sex Chemotherapy Treatment

Untreated NSCLC

C3 Adenocarcinoma 77 F
C4 Adenocarcinoma 83 M
C5 Adenocarcinoma 75 M
C6 Adenocarcinoma 65 M
C7 Adenocarcinoma 58 M
C8 Adenocarcinoma 78 M

Treated NSCLC

D1 Adenocarcinoma 69 M Carboplatin, Taxotere, 
Pemetrexed

D2 Adenocarcinoma 65 F
Bevacizumab, Cisplatin, 
Navelbine, Carboplatin, 
Taxotere, Pemetrexed

D3 Adenocarcinoma 77 M Cisplatin, 5-Fluorouracil
D4 Adenocarcinoma 63 F Carboplatin, Pemetrexed
D5 Adenocarcinoma 60 F Cisplatin, Pemetrexed

Untreated SCLC

A1 Small cell carcinoma 68 M
A2 Small cell carcinoma 80 M
A5 Small cell carcinoma 72 M
A7 Small cell carcinoma 70 F
A8 Small cell carcinoma 81 M

Treated SCLC

B1 Small cell carcinoma 62 F Carboplatin, Etoposide

B2 Small cell carcinoma 70 M Carboplatin, Etoposide, 
Sunitinib

B3 Small cell carcinoma 61 M Cisplatin, Etoposide, 
Carboplatin, Topotecan

B4 Small cell carcinoma 69 M Cisplatin, Vinorelbine

Healthy Control

LS8812673 24 F
LS5547864 27 F
LS5541008 26 F
LS2370663 27 F
LS2370341 25 F
LS2360497 29 M
LS5541302 28 M
LS8809463 26 M
LS8811933 28 M
LS8819505 38 M
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in lung tumors of neuroendocrine origin (SCLC). This 
observation contradicts Oncomine data where the higher 
levels of MST1R were found for NSCLC but not for 
SCLC. The provided examples suggest that the success 
rate of in silico modeling could be higher if verified 
against matching biopsy tissues rather than a contradictory 
Oncomine reference set.

The utility of miRNA signatures for lung cancer 
diagnosis and prognosis is well established [49–53]. 
Therefore, use of miRNAs has increased markedly over 
the past several years especially due to the non-invasive 
nature of circulating miRNA analysis in sera [54, 55] or 
sputum [56]. Recently, a study reported that about half 
of lung cancer diagnoses is detected at a late stage of the 
disease (III/IV) [12]. Thus, miRNAs have the potential 
to fulfill a critical need for early detection. For example, 
elevated plasma levels of miR-21, miR-126, miR-210, and 
miR-486 were reported in association with stage I lung 
cancer [57]. In addition, miRNA signatures may also serve 
as a practical diagnostic approach for identifying various 
NSCLC subtypes; high levels of miR-205 were seen in 
patients with squamous cell carcinoma distinguishing these 
patients from those with other subtypes of NSCLC [58, 59].

miRNA profiles have also been utilized as a 
prognostic biomarker for lung cancer progression. For 
instance, a group of 34 miRNAs detected in the serum 
can determine asymptomatic individuals with early-stage 
lung cancer at risk for progression to an advanced stage 
[60]. Furthermore, the expression patterns of several 
miRNAs (let-7, miR-221, miR-137, miR-372, and miR-
182) show a positive correlation with survival rates in 
lung cancer patients [53, 61]. Similarly, another study 
indicated that the expression levels of a set of 11 miRNAs 
that included miR-486, miR-30d, miR-1, and miR-499, 
were significantly correlated with disease prognosis [62]. 
In adenocarcinoma patients, a group of 32 miRNAs was 
highly expressed in tumor tissue, and more specifically, 
let-73, miR-25, miR-191, miR-34a, and miR-34c were 
correlated with prognosis [63]. Another practical miRNA 
signature of miR-21 and miR-24 pre- and post-operation 
[64] showed promise as potential biomarkers for cancer 
recurrence.

In contrast to NSCLC, there are currently very few 
studies that have identified miRNA specific for SCLC 
using peripheral blood. For example, Nishikawa et al. 
reported elevated miR-375 [65] in lung neuroendocrine 
carcinoma, Yu et al. suggested miR-92a-2 [66] as a 
SCLC biomarker, and Demes et al. [67] proposed 2 
miRNAs (miR-21 and miR-34a) to differentiate various 
types of neuroendocrine tumors in lung. Thus, to the 
best of our knowledge, the present study represents a 
significant advancement in identifying miRNAs that can 
help discern SCLC and NSCLC with high specificity and 
sensitivity.

Of note, none of the molecules seen in the present 
study featured as lung cancer biomarkers in the large 

report of Inamura [50]. Of the 18 miRNA described in 
our study, only 3 were previously reported in regard to 
lung cancer diagnostics. For example, Xiance et al. [49] 
found hsa-miR-486-5p upregulated, and hsa-miR-15b-
5p to be downregulated in blood-derived exosomes from 
adenocarcinoma and squamous cell carcinoma patients, 
and Rabinowits et al. [68] found hsa-miR-203 in blood-
derived exosomes and reported it as biomarker for lung 
adenocarcinoma. Notably, of the three molecules found 
in the blood circulating exosomes, two (hsa-miR-486-
5p, hsa-miR-15b-5p) are in agreement with our findings 
in NSCLC. In our study, hsa-miR-203 was not specific 
enough to differentiate NSCLC from healthy subjects 
but was capable of discriminating NSCLC and SCLC 
cases (sensitivity 80%, specificity 100%) with the same 
effectiveness as hsa-miR-486-5p (sensitivity 83%, 
specificity 100%). One of the possible explanations of 
this phenomenon is a difference in miRNA content of 
exosomes and miRNA derived from tissues and serum. 
The study by Zhao et al., (2016) demonstrated higher 
complexity of miRNA profiles in bovine sera than in 
sera-derived exosomes [69] with several miRNA species 
exclusive for each compartment. Similar results were 
demonstrated by Lim et al., (2017) [70] who demonstrated 
difference in miRNA profiles between cells and exosomes 
harvested from cell medium. Hence, in the future, we 
could see a higher number of matches between datasets 
once additional lung cancer-related studies that are based 
on blood-derived exosomes become available.

In this study, the miRNA species from blood-derived 
exosomes were studied in lung cancer patients (NSCLC 
and SCLC) and a group of healthy control individuals. 
We have demonstrated that exosomal cargo is different 
between patients with different types of cancer as well as 
between tumor-bearing and control individuals. We have 
demonstrated the change in exosomal miRNA profiles of 
patients who underwent chemotherapy treatment—the 
effect was stronger in the SCLC cohort. Our analysis 
suggests that exosomal miRNA could serve as a potential 
marker of biological processes within a tumor, can 
differentiate patients, and mark chemotherapy response in 
lung cancer patients.

MATERIALS AND METHODS

Study cohort

The study cohort comprised 30 subjects (Table 5)  
that included 11 NSCLC patients (untreated n=6, 5 male, 
1 female, median age 76 years; treated n=5, 2 male, 3 
female, median age 65 years), 9 SCLC patients (untreated 
n=5, 4 male, 1 female, median age 72; treated n=4, 3 male, 
1 female, median age 65.5) and 10 healthy control subjects 
(5 male, 5 female, median age 27 years). Serum samples 
from the patients were collected in the University of 
Chicago (Chicago, IL). Healthy donor sera were purchased 
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from Innovative Research Inc. (Novi, MI). Study was 
conducted under IRB 9571 and 13473. All patient subjects 
provided informed consent.

miRNA sequencing and statistical analysis

Exosomal RNA was extracted from 500 μl of serum 
using exoRNeasy Serum/Plasma RNA kit for purification 
of RNA from exosomes and other extracellular vesicles 
out of serum or plasma samples (Qiagen, USA) [71, 
72] according to manufacturer’s instructions. Library 
preparation, as well as cluster generation and deep 
sequencing, were performed according to the 5' ligation-
dependent (5' monophosphate-dependent) protocol as 
described by the manufacturer (Digital Gene Expression 
for small RNA; Illumina, San Diego, CA, USA). For each 
sample, 5 μl of total exosomal RNA extracted from serum 
was used for small RNA library preparation. Small RNAs 
were size-selected between 17 and 52 nt., according to the 
single-stranded DNA marker in the small RNA sequencing 
kit (Illumina). The library was quantified using picoGreen 
and qPCR. Sequencing was performed on a Hiseq 2500 
(Illumina). Image processing and base calling were 
conducted using Illumina's pipeline.

Sequence data analysis and statistical comparisons 
were carried out using Bioconductor packages and an 
in-house developed analysis pipeline using R statistical 
environment. After mapping the deep sequencing data onto 
the human genome and counting the reads for the mature 
miRNAs in the miRBase database, raw miRNA expression 
data were normalized, and differential expression analysis 
was performed by Bioconductor package “edgeR.” 
Significant miRNAs were selected when fold change was 
more than 2 or less than 0.5, and FDR ≤ 0.05. Heatmaps 
were generated using Cluster v3.0.

Receiver operator characteristic (ROC) analysis 
was conducted in STATA v12 using miRNA counts 
standardized to the count of mature miRNA in the sample. 
The models of gene signaling networks and molecular 
activity prediction were created using IPA software.
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