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ABSTRACT

In tumor tissues, hypoxia is a commonly observed feature resulting from 
rapidly proliferating cancer cells outgrowing their surrounding vasculature network. 
Transformed cancer cells are known to exhibit phenotypic alterations, enabling 
continuous proliferation despite a limited oxygen supply. The four-step isogenic BJ cell 
model enables studies of defined steps of tumorigenesis: the normal, immortalized, 
transformed, and metastasizing stages. By transcriptome profiling under atmospheric 
and moderate hypoxic (3% O2) conditions, we observed that despite being highly 
similar, the four cell lines of the BJ model responded strikingly different to hypoxia. 
Besides corroborating many of the known responses to hypoxia, we demonstrate that 
the transcriptome adaptation to moderate hypoxia resembles the process of malignant 
transformation. The transformed cells displayed a distinct capability of metabolic 
switching, reflected in reversed gene expression patterns for several genes involved 
in oxidative phosphorylation and glycolytic pathways. By profiling the stage-specific 
responses to hypoxia, we identified ASS1 as a potential prognostic marker in hypoxic 
tumors. This study demonstrates the usefulness of the BJ cell model for highlighting 
the interconnection of pathways involved in malignant transformation and hypoxic 
response.
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INTRODUCTION

The transformation of primary cells into malignant 
counterparts capable of forming tumors is a multistep 
process where changes in the genome give rise to new 
characteristics [1]. These include increased rate of 
proliferation, rewiring of the energy metabolism, increased 
vascularization, and the ability to escape survival 
restrictions such as hypoxia [2]. To enable the study of 

defined steps of tumorigenesis, an isogenic model system 
for malignant transformation was previously generated 
in the Weinberg lab [3]. By introducing stepwise genetic 
changes in the human fibroblast cell line BJ, an important 
model for molecular studies of cancer was established 
[3]. The model includes primary cells (normal stage: BJ), 
ectopic expression of the telomerase catalytic subunit 
(immortalized stage: BJ hTERT+) followed by stepwise 
additions of two oncogenes, the Simian virus 40 Large-T 
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(transformed tumor-forming stage: BJ hTERT+ SV40+) 
and the oncogenic and hyperactive version of H-ras 
(metastasizing stage: BJ hTERT+ SV40+ RASG12V). 
Transcriptomic analysis is a well-established approach 
for understanding gene expression patterns and has been 
extensively applied in cancer research. Transcriptional 
changes across various stages during cancer progression 
have previously been evaluated using genetically modified 
cell lines or clinical tissue samples of varying degree of 
malignancy, with data often derived from the Cancer 
Genome Atlas database (TCGA) [4–10]. Isogenic cell lines 
have the advantage of enabling evaluation of the effects of 
specific genetic changes. These models have been critical 
in the study of cellular mechanisms underlying cancer 
progression where the effects of key oncogenes can be 
assessed, for example to compare gene expression between 
HER2 positive and triple negative breast cancer cells and 
to assess the effects of various drugs on different isogenic 
colorectal carcinoma cell lines [11, 12]. Unique to this 
study is the isogenic nature of the BJ model system that 
enables hypoxic response to be studied under controlled 
conditions and allowing for comparison across four 
specific steps in cancer progression with accumulative 
genetic changes. 

Our previous analysis of the transcriptome changes 
across this model showed that a functionally diverse set of 
extracellular proteins was downregulated whereas genes 
associated with proliferation were upregulated. A number 
of differentially expressed genes (DEGs) identified across 
this model, for example BDH1, ANXA1, ANPEP and 
ANLN, have been corroborated at the protein level in 
tumor tissues of matching malignancy grades [13]. These 
data support that the BJ model is a relevant model system 
for the study of human tumorigenesis and corresponding 
proliferative capability. 

Oxygen is involved in almost all cellular functions. 
Under normal oxygen conditions, mammalian cells 
generate the energy that they require for molecular 
processes through oxidative phosphorylation in the 
mitochondria. As first demonstrated by Otto Warburg 
in the 1920s and thereafter confirmed in numerous 
different studies, transformed cancer cells predominantly 
generate energy through glycolysis instead of oxidative 
phosphorylation [14].  This is not universal to all cancer 
types, but is typically associated with poorly differentiated 
cancers [14]. The preference for glycolysis applies also 
under aerobic conditions and regardless of the fact that 
it is relatively inefficient in terms of ATP generation 
[15, 16]. This rewiring of energy metabolism is today 
known as one of the hallmarks of cancer. Further, solid 
tumors often contain hypoxic regions as a result of 
the tumor outgrowing the capacity of its surrounding 
vasculatory network. Creation of such oxygen-deprived 
microenvironments promotes malignant progression 
through clonal selection of aggressive phenotypes and 
subsequent poor prognosis [17]. At a molecular level 

decreased oxygen levels in tumors are associated with 
increased hypermethylation events with consequences on 
gene expression. Promoter regions of genes involved in 
cell-cycle arrest, DNA repair and apoptosis, glycolysis, 
metastasis, and angiogenesis have been shown to be 
targets for hypoxia-induced hypermethylation [18]. 
This exemplifies how multicellular organisms have 
evolved strategies for cellular adaptation to the hypoxic 
environment that is not advantageous for the normal 
functions of the cell. Hypoxic responses are known 
to enhance the acquirement of a malignant phenotype  
[19, 20]; especially through targeting pathways involving 
the Hypoxia Inducible factor alpha (HIF1a) [21], PI3K/
AKT/mTOR [22, 23], MAPK [24, 25] and NFkB [26] that 
mediate functions that are commonly altered in cancer.

To investigate the transcriptional changes induced 
by a decreased oxygen supply, and how the response 
differs between the four isogenically matched cell 
lines at different degrees of malignancy, we evaluated 
the transcriptome using RNA sequencing (RNA-seq) 
after cultivation in both the standard in vitro setup of 
atmospheric oxygen and at moderate hypoxia (3% O2) for 
six passages. By comparing differential gene expression 
regulation across the model, we explored how the different 
stages in the BJ cell model respond to moderate hypoxia. 

RESULTS

Stage-specific responses to moderate hypoxia

In order to generate a complete overview of the 
transcriptomic response to hypoxia at different stages 
of tumorigenesis, we cultured the four stages of the 
isogenic BJ cell model under atmospheric and 3% oxygen 
levels, respectively. We corroborated stabilization of 
HIF1α in response to decreased oxygen (see below) and 
employed RNA-seq analysis to identify corresponding 
transcriptomic effects. An overview of the isogenic model 
system and the experimental setup can be seen in Figure 
1A. Cell authentication was performed (Supplementary 
Figure 1), which confirmed the isogenic nature of the 
cells and the model’s stage-specific mutations [27]. Gene 
expression was estimated using the Kallisto software [28], 
followed by hierarchical clustering of pairwise Spearman 
correlations for all expressed protein-coding genes across 
the model (N = 14,993). Due to their isogenic nature there 
were relatively high correlations between gene expression 
for all the stages and oxygen conditions (Spearman 
correlation coefficients > 0.9, Figure 1B–1F). These 
within-model correlations across oxygen levels were 
notably higher than correlations between different cell 
lines of related character, such as between immortalized 
BJ and other immortalized cell lines of both fibroblast 
origin (HBF TERT88) and mesenchymal stem cell 
origin (ASC TERT1) (Supplementary Figure 2). Despite 
this, there was a significant pattern within the model 
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itself: the primary and immortalized samples clustered 
by model stage whereas the two transformed cell lines 
clustered according to oxygen level, indicating a higher 
degree of adaptation to the change in oxygen supply. To 
investigate this conserved phenotype, differential gene 
expression was calculated using a cutoff of 0.01 for 
adjusted p-value (Benjamini-Hochberg), a minimum fold 

change of 2 (log2FC > 1), and minimum expression of 1 
TPM in at least one of the samples being compared. For 
each model stage (primary, immortalized, transformed, 
and metastasizing cells) we identified 909, 1,090, 1,247, 
and 794 hypoxia-induced differentially expressed genes 
(hDEGs), respectively (Table 1 and Supplementary 
Table 1). A total of 3,063 hDEGs, corresponding to about 

Figure 1: Transcriptome profiling of the four-step BJ cell model for malignant transformation, in atmospheric and 
moderate hypoxic conditions. (A) Overview of the BJ cell line model for malignant transformation and experimental workflow. (B) 
Heatmap of pairwise Spearman correlations between RNA expression levels (log2 TPM, mean values across biological replicates) for all 
genes that are expressed (TPM > 1) in at least one sample (N = 14,933). Model stage is indicated in red and oxygen state is indicated in 
blue. Grey scale values indicate Spearman’s correlation coefficients (ρ). (C–F) Scatter plots of gene expression values (log2 TPM) showing 
the correlation between atmospheric oxygen level versus hypoxic condition. (C) Primary stage, N = 13,503, (D) Immortalized stage,  
N = 13,330, (E) Transformed stage, N = 13,634, (F) Metastasizing stage, N = 13,626). Spearman’s (ρ) correlation coefficients are shown 
in each plot respectively.



Oncotarget19733www.oncotarget.com

15% of the protein-coding genome were identified as 
hDEGs in at least one of the stages. The overlaps between 
hDEGs for all the stages of the BJ model are presented 
in Supplementary Figure 3. We note that hypoxic stress 
caused a strong downregulation of genes in each stage 
of the model except the third stage (SV40-transformed), 
where a majority of hDEGs were upregulated (Table 
1). These data show that the transcriptional response to 
oxygen deprivation is more accentuated in the transformed 
tumor-forming third stage (BJ hTERT+ SV40+), whereas 
the metastasizing stage has the fewest hDEGs. 

Functional enrichment reveals proliferation and 
angiogenesis as key responses to hypoxia

In order to deduce which biological functions are 
modulated upon moderate hypoxia, functional enrichment 
analysis was performed using the Database for Annotation, 
Visualization and Integrative Discovery (DAVID) tool 
[29]. Among the total of 3,063 identified hDEGs, functions 
related to proliferation, apoptosis, migration, adhesion and 
metabolic processes were significantly overrepresented 
(Figure 2A and Supplementary Table 2). Functional 
annotation clustering analyses for genes differentially 
up- and downregulated in each cell line respectively, 
were performed, and the top-three clusters are showed in 
Figure 2B (see Supplementary Table 2 for all significantly 
enriched terms and related genes). This analysis revealed 
that in the non-tumor primary cell line, both up- and 
downregulated genes are related to angiogenesis and 
proliferation, whereas angiogenesis and proliferative 
genes are among the upregulated genes in the malignant 
stages. Additionally, the top three upregulated clusters in 
the SV40-transformed cell line are mainly related to lipid 
metabolism and hypoxia, while the corresponding clusters 
for the last stage of the model are related to cell migration, 
proliferation and apoptosis. Corresponding downregulated 
clusters are related to RNA processing and regulation 
of apoptosis (third SV40-transformed stage), as well as 
interferon signaling and stress response (fourth mutated 
H-Ras stage). This reflects the generalized view provided 

by functional enrichment analysis, and the complexity 
of the genetic circuitry affected by the change in oxygen 
supply. Taken together, the enrichment analyses indicate 
that the four-stage model not only acquires important 
cancer-related milestones with decreased degree of 
differentiation as previously shown [13], but also distinct 
responses to lower oxygen levels.

Key roles by NFκB, HIF1A, and interferon 
signaling pathways

In order to identify the most influential molecular 
pathways in the response to hypoxia, we analyzed which 
common regulators were significantly enriched among the 
regulated genes for each cell line stage (complete results 
in Supplementary Table 3). By applying subnetwork 
enrichment analysis on the hDEGs, we could observe a 
strong response to hypoxia mediated by NFκB, and in 
particlular TNFα, IL1A, IL1B and IL6-regulated targets, 
TGFB1, and hypoxia-inducible factor 1-alpha (HIF1A/
HIF1α). These were the top overrepresented expression 
regulators in all four stages (p = 3.0 E-57 – 2.0 E-15), and 
more than 100 hDEGs were associated with each of these 
factors.  Further, we noted a gradual difference in response 
between the cell lines. While HIF1α was among the top-15 
most enriched regulators (p = 1.9 E-20) in the first stage, 
it ranked only below the top-70 most enriched regulators 
the fourth stage (p = 4.6 E-14). The primary cells further 
exhibited strong responses connected to transcription 
factors p53, JUN, FGF2 and SP1 (all p < 1.0 E-22), while 
these responses were less predominant in the later stages. 
In the fourth (mutated H-Ras) stage, interferon gamma 
(IFNG) took over as the most enriched regulator (p = 4.0 
E-54, with 188 regulated targets).

Known hypoxic stress responses corroborated in 
the model

The most well studied mediator of response to 
hypoxia is the transcription factor HIF1α. HIF1α mRNA 
is known to be constitutively expressed in most cells, but 

Table 1: Number of hDEGs and DEGs and their regulation between oxygen conditions and model stages

Between oxygen conditions (hDEGs)
Regulation Primary BJ Immortalized Transformed Metastasizing
Up 375 295 778 353
Down 534 795 469 441
Total 909 1090 1247 794

Within model (DEGs, atmospheric oxygen)
Regulation Primary versus 

immortalized
Immortalized 

versus transformed
Transformed versus 

metastasizing
Up 1056 2275 562
Down 889 1536 404
Total 1945 3811 966
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under normal oxygen conditions, normoxia [30, 31], HIF1α 
protein is hydroxylated and targeted for degradation by the 
von Hippel-Lindau tumor suppressor (pVHL). However, 
in hypoxia hydroxylation is commonly inhibited enabling 
HIF1α to escape proteolytic destruction and stabilize [32]. 
Upregulation of this protein in response to low oxygen 
conditions is therefore exhibited post-transcriptionally 
[30, 31]. In our cells, the transcript was expressed in all 
stages of the model and not significantly regulated (TPM 
values: 305, 285, 342, 309 across the model stages). We 
used immunofluorescence to determine whether its protein 
levels changed across the model’s stages or after hypoxia. 
In the primary cells (first stage), we detected nuclear 
expression of HIF1α at low levels at normal oxygen levels, 
which was accompanied by a strong increase of the protein 
at hypoxic conditions (Figure 2C, left). Further, we noted 
a clear increase of HIF1α protein in the later stages of the 
model (transformed and metastasizing) under atmospheric 
conditions, with no further increase in response to hypoxia 
(Figure 2C, right). The observed expression of HIF1α 
supports that a normal hypoxic response occurs in the 
primary cells, but that this pathway is modified after 
transformation. HIF1α has a wide range of transcriptional 
targets and several of these are upregulated upon hypoxia 
in the pre-malignant cell lines in our dataset, including 
the glucose transporter PLAUR, P4HA1, HK2, LDHA and 
extracellular matrix remodeling PLOD2. We hypothesize 
that the lower enrichment of HIF1A targets noted in 
metastasizing cells upon hypoxia as noted above, may be 
a result of its stabilization (Figure 2D) and activity already 
in atmospheric oxygen, thus resulting in less changes 
upon hypoxia.   Several other validated genes were also 
upregulated as a consequence of low oxygen levels. These 
include PDK1, known to be critical in the adaptation to 
hypoxia which acts by attenuating mitochondrial ROS 
production [33, 34]. PDK1 mRNA was significantly 
upregulated in low oxygen in the three first stages of 
the BJ model. In the last stage, the metastasizing cells, it 
was highly expressed already under atmospheric oxygen 
conditions and did not increase further upon induced 
hypoxia. PLOD2, a known prognostic factor upregulated 
in several tumors, and genes involved in angiogenesis, 
such as E2F, BRCA1 and ANGPTL4, were also among 
the hypoxia-induced genes in the two pre-malignant cell 
lines (Figure 2D). Thus, we found that both HIF1a and 
several other hypoxia-related factors increased normally 
in the early stages of the model, but in the latter two stages 
their levels were elevated already under normal oxygen 
conditions.

Transcriptome changes in low oxygen resembles 
the process of malignant transformation

Our functional analysis of the identified hDEGs 
revealed several biological functions that are highly 
relevant in a cancer context (Figure 2). To connect 
the changes induced by hypoxia to those related to an 

increased degree of malignancy within the model, we 
compared the sets of hDEGs with the corresponding 
progressive DEGs identified across the model stages 
(Figure 3A, Table 1, Supplementary Tables 1 and 4). 

Of the 909 hDEGs identified in the primary cell line, 
over a third (N = 357) were also differentially expressed 
between the primary and immortalized stages under 
atmospheric conditions (under which the model was 
initially created) and a majority of these (N = 250) were 
regulated in the same direction (co-regulated), mostly 
downregulated (Figure 3B). Thus, many of the changes 
incurred by the carcinogenesis process were enhanced by 
low oxygen. For example, genes involved in cell cycle 
arrest (such as the Cyclin dependent Kinase inhibitors 
1C and 2A [CDKN1C,CDKN2A] and trombospondin 1 
and 2 [THBS1,THBS2] were downregulated under both 
conditions. Others, such as proliferation and vasculature 
development genes (e.g. E2F receptors and several 
chemokines) were upregulated in both hypoxia and upon 
the introduction of hTERT, (Supplementary Tables 1 and 
4). For the immortalized cell line the resemblance between 
hypoxic response and the stepwise process of malignant 
transformation was even more prominent, sharing 60%  
(N = 649) of the hDEGs with DEGs introduced due to SV40 
transformation (Figure 3C). This includes the upregulation 
of mitotic genes linked to increased proliferation (e.g. 
the Aurora Kinase [AURKA], Cyclin E2 [CCNE2], 
kinetochore scaffold 1 [KNL1] and centrosomal protein 83 
[CEP83]). Additionally, several matrix metallopeptidases 
[MMP1, MMP11, MMO14 and MMP2] as well as proteins 
involved in collagen metabolism [CTSB, CTSK, CTSL, 
CTSS] and immune responses (interleukins and C-X-C 
motif chemokine ligands) were downregulated in the 
immortalized cell line due to both perturbations further 
supporting a link between hypoxic response and tumor 
progression (Supplementary Tables 1 and 4). 

The third stage, in which an SV40 transformation is 
introduced and whose gene expression was most affected 
by the hypoxic condition of all cell lines in the model, 
displayed the least overlap between hDEGs and DEGs. 
Only 32% of the hDEGs (N = 257) were also altered 
due to the RasG12V introduction. However, almost the 
complete set of these genes (N = 236) were co-regulated, 
exhibiting the same direction of regulation upon hypoxia 
as upon RASG12V introduction. Examples include 
the upregulation of several hypoxia-linked genes (e.g. 
BNIP3L, BNIP3, STC1, STC2, VEGFA and ICAM1) 
(Figure 3D, Supplementary Tables 1 and 4). Thus, in this 
isogenic cell model we note a strong similarity between 
the transcriptome regulated by hypoxia and that of the 
carcinogenesis process.

SV40 triggers capability of metabolic switching 

Among all hDEGs, enzymes related to metabolic 
pathways exhibited an overall upregulation (Figure 4A–4D 
and Supplementary Table 5). Across the different stages 
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of the model, the third SV40-transformed stage displayed 
a relatively high number of upregulated metabolic genes; 
supporting our hypothesis that metabolic switching 
primarily occurs at this stage (Figure 4C). Down-regulation 
of genes belonging to lipid, carbohydrate and amino acid 
metabolism occurred in the immortalized cell line (Figure 
4B). As shown in Figure 4C–4D, there was an evident 
upregulation of biosynthetic pathways during low oxygen 

conditions in the transformed and metastasizing stages. The 
downregulated enzymes in the immortalized cell line were 
almost entirely reversed in favor of lipid, carbohydrate and 
amino acid metabolic pathways in the third transformed 
stage. This exemplifies how the SV40-transformation 
appears to induce rewiring of energy metabolism, more 
specifically fatty acid metabolism, with known implications 
in clinical cancers [35]. The aldo-keto reductase 

Figure 2: Functional Enrichment Analysis of differentially expressed gene sets and expression of HIF1a across the 
BJ model in both oxygen conditions. (A) Enrichment map showing significantly enriched GO terms among all 3,063 hDEGs. 
Nodes represent gene-sets and edges represent mutual overlap, grouping highly redundant gene-sets together as clusters. Here, node size 
corresponds to the number of genes within the gene-set and edge thickness corresponds to the number of genes that overlap between two 
connected gene-sets. Lists of included gene-sets are supplied in Supplementary Table 2. (B) Top three significantly enriched clusters based 
on the Gene Ontology domain Biological Function in DAVID, separated for up- and downregulated genes in hypoxia at each stage of 
the BJ model. Lists of included gene-sets are supplied in Supplementary Table 2. (C) Confocal images of the four cell lines in the model 
immunofluorescently stained with an antibody (HPA000907) targeting HIF1a in atmospheric oxygen and hypoxia. HIF1a expression is 
shown in green and microtubules (Tubulin) in red. White scale bar indicates 10 um. (D) Bar plot showing log2 Fold Change for eight 
hDEGs involved in enriched functions. Only genes significantly differentially expressed in each stage respectively are included in the plots 
(p < 0.01, log2FC > 1, TPM > 1).
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AKR1B1, involved in glycerolipid metabolism and often 
overexpressed in human cancers and recently shown to 
promote breast cancer progression, showed a strong up-
regulation in the third SV40-transformed stage (log2FC = 
2.3), whereas it was downregulated in the immortalized 
stage (log2FC = −2.3) [36]. Stearoyl-CoA (SCD), involved 
in the metabolism of fatty acids, is another example of a 
protein that showed a reversed regulation between the 
immortalized and transformed stages (log2FC = −1.8 and 
log2FC = 1.1 respectively). Knockdown of this protein 
has previously been shown to induce apoptosis in tumor 
cells grown in vitro, indicating the ability for the SV40-
transformed cells to evade apoptosis through up-regulation 

of this metabolic process [37, 38]. Another distinct 
difference between the stages of the model is the down-
regulation of energy metabolism in the metastasizing stage 
(Figure 4D). In summary, our data support that a metabolic 
switch takes place in the SV40 transformation stage.

SV40-transformation renders distinct adaptation 
to moderate hypoxia

By comparing hDEGs shared across the model 
stages, the impact of the SV40 Large-T oncogene becomes 
clear: not only were the basal levels of HIF1α higher 
(Figure 2C) and a metabolic switch indicated, but more 

Figure 3: Comparison of differential gene expression due to moderate hypoxia (hDEGs) and differential gene 
expression changes within the BJ cell model (DEGs). (A) Arc plot showing the relative amount of DEGs and hDEGs at each 
stage of the model. Edges between the ovals represent DEGs and edges within each oval represent hDEGs. Atmospheric oxygen level 
is abbreviated “Atm.”. Up-regulation is indicated in yellow and down-regulation in blue. Lists of all DEGs and hDEGs are found in 
Supplementary Tables 1 and 4. (B–D) Venn diagrams showing the overlap of hDEGs in each stage of the model and DEGs between the 
current stage and subsequent stage within the model at atmospheric oxygen. Upper circles represent hDEGs and lower circles represent 
DEGs. Pie charts representing the shared genes in each Venn diagram show the distribution of up- and downregulation and how genes are 
regulated in the same way (co-regulation) or opposite way (anti-regulation) under hypoxic conditions relative to tumor progression.
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genes were differentially regulated in response to low 
oxygen in this stage (stage 3, BJ hTERT+ SV40+) than 
in the others. Additionally, the hDEGs shared with the 
previous immortalized stage (BJ hTERT+) were also more 
often regulated in the opposite direction (anti-regulated). 
Figure 5A shows the overlap of hDEGs between the 
sequential steps in the model (for the complete set of 
overlaps see Supplementary Figure 3). Among the 264 
hDEGs that were shared between the primary and the 

immortalized cells, (Figure 5A) 89% (N = 236) were co-
regulated (Figure 5B). Several of the upregulated genes 
are related to proliferation, such as the E2F receptor, 
MCM10, and the proliferation marker MKI67.  In 
contrast to this, 73% (n = 157) of the 216 hDEGs shared 
between the immortalized and transformed cells were anti-
regulated (Figure 5C), indicating a divergent response to 
hypoxia. Most of these were upregulated in the SV40-
transformed cells, but down-regulated in the immortalized 

Figure 4: Metabolic profiling of differentially expressed genes at each stage of the BJ model. PACFM plots based on the 
metabolic profiling (using the KEGG Orthology database) of RNA-Seq data showing fold changes of metabolic functions in atmospheric 
oxygen versus hypoxia for the cell lines across the BJ model: primary stage (A), immortalized stage (B), transformed stage (C) and 
metastasizing stage (D). Functional categories are indicated in the enlarged plot representing the primary stage. The outer and the inner 
circular heat maps show the average log2 fold changes of the functional categories within metabolism and the second hierarchy level KEGG 
Orthology functions, respectively. The bars in the third level represent the average fold changes of pathway level categories. Upregulated 
pathways are represented with red, and downregulated pathways are shown in blue. Similarly, the inner most circle shows the fold changes 
of individual enzymes where red and blue represent up- and downregulation respectively and green bars represent no change in expression 
between oxygen levels. Full names of the abbreviated KEGG categories can be found in Supplementary Table 5. 
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cells, such as Interleukin 8 [CXCL8] upregulated in the 
SV40 transformed cells (log2FC = 4.6) but downregulated 
(log2FC = -5.2) in the immortalized cell stage. This protein 
is known to promote the expression of VEGFA which 
mediates homeostatic adaptation to hypoxic condition by 
promoting vascularization to compensate for the decrease 
in oxygen supply [39].  VEGFA was also upregulated in 
the SV40 transformed cells (log2FC = 2.3). Further, one 
of the most important regulators of cellular redox state 
in normal and cancer cells, the mitochondrial superoxide 
dismutase SOD2, which catalyzes the transformation 
of superoxide radicals (O2-) into either oxygen (O2) or 
peroxide (H2O2), was anti-regulated in pre-transformed 
versus transformed stages: downregulated in the 
immortalized cells (log2FC = −3.7) and upregulated in 
the SV40-transformed cells (log2FC = 2.2). The hypoxia-
mediated increase of SOD2 in transformed cells points 
to their ability to evade apoptosis by fighting increased 
intracellular ROS levels that are triggered by the low 
oxygen levels. Increased levels of SOD2 have been linked 
to increased metastatic capability by enabling cancer 
cells to maintain an increased growth potential and stay 
protected from excess ROS that would otherwise lead 
to apoptosis and necrosis [40–42]. The dramatic change 
due to the SV40-transformation was also apparent when 
comparing gene expression within the model, rather 
than between oxygen levels for the same stages. At 
atmospheric oxygen concentration, under which the model 
was initially created, we observed 1,945 (primary versus 
immortalized), 3,811 (immortalized versus transformed), 
and 966 (transformed versus metastasizing) DEGs 
respectively. The corresponding numbers at low oxygen 
levels were 1,595, 2,729, and 395. Interestingly, the stages 
differed more from each other, in terms of number of 
DEGs, at atmospheric oxygen levels than in low oxygen. 
However under both conditions notably fewer genes 
were differentially expressed between the transformed 
and metastasizing stages and there were also fewer genes 
differentially expressed across the final two stages of the 
model under low oxygen conditions.

Among the 161 hDEGs shared between the 
transformed and metastasizing stages, a large majority 
(78% N=121) was co-regulated, indicating a conserved 
response to hypoxia across these stages (Figure 5D). Not 
surprisingly, HRAS was differently regulated in the HRAS 
mutated cells, and the mutated variant was upregulated 
upon low oxygen whereas the WT HRAS in BJ SV40 cells 
was repressed. Several genes related to lipid metabolism 
and increased motility were upregulated, for example 
several chemokines and colony stimulating factors CSF2 
and CSF3. 

In summary, despite relatively few hDEGs shared 
across the model, we observed a shared transcriptional 
response that is more conserved across the primary and 
immortalized stages, as well as across the transformed 
and metastasizing stages (Figure 5B–5D).  This shift in 

response between the SV40-transformed stage and the 
two untransformed stages separates the model system 
into two groups, supporting the hypothesis that SV40-
transformation causes a dramatic divergent shift in 
cellular response to hypoxia. STYK1 and ASS1, two 
enzyme-encoding genes, exemplify this shift in response 
as they were anti-regulated in the two pre-malignant stages 
compared to the two malignant stages (Figure 5E–5F). 

ASS1 identified as potential marker for poor 
prognosis in hypoxic tumors

As shown above, the BJ cell model clearly displays 
a shift in gene expression regulation during hypoxia 
between the pre-malignant (stages one and two) and 
malignant stages (stages three and four), more specifically 
affecting several metabolic pathways. This demonstrates 
how this model system could potentially be used for the 
identification of novel prognostic markers with implications 
in tumor hypoxia. Argininosuccinate synthase (encoded 
by ASS1) is an enzyme necessary for the biosynthesis of 
arginine, an amino acid whose abundance has previously 
been linked to tumor progression induced by hypoxia [43]. 
Arginine depletion using pegylated arginine deiminase 
(ADI-PEG20) has been suggested as a therapeutic option 
for aggressive tumors with hypoxic microenvironments that 
are hard to treat, currently undergoing clinical trials [43]. 
ASS1 expression is known to vary across different tumor 
types and both its loss of expression and overexpression 
has been shown to influence the effects of therapy [44]. 
Expression of ASS1 was observed at all stages of the BJ 
cell model (TPM values 155,679,25,78 across the model 
under atmospheric oxygen condition). Notably, ASS1 
displayed a distinct shift in regulation across oxygen 
conditions, being over two-fold significantly upregulated 
in both the transformed and metastasizing cells while 
over four-fold significantly downregulated in the two pre-
malignant stages (Figure 5F).

As tumor hypoxia is considered a major obstacle 
in clinical oncology due to induced resistance to 
conventional treatments such as radiotherapy and 
chemotherapy, we hypothesize that the up-regulation of 
this protein in malignant cells compared to pre-malignant 
cells could potentially be related to therapy resistance [45–
47]. Survival analysis using clinical data from The Cancer 
Genome Atlas (TCGA) showed that increased expression 
of ASS1 implies a significantly worse prognosis with 
decreased survival probability over a ten-years time 
period. As shown in Figure 5G, an endometrial cancer 
patient cohort was stratified into two different sub-groups 
with high and low expression of ASS1 (cutoff = FPKM 
58.6; optimally selected). The sub group with ASS1 
expression >58.6 FPKM (“high expression”) exhibited 
a survival probability less than 20% over a ten-year 
period, while the other group (“low expression”) exhibited 
a significantly and dramatically higher survival probability 
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around 80% (P = 8.14 × 10–9; log rank test). We speculate 
that this prognostic value can potentially be linked to 
hypoxic features of the tumor samples included, for 
which data is unfortunately lacking. The ASS1 regulation 
observed in the model at low oxygen exemplifies how 
the BJ cell model can be used for discovery of prognostic 
markers, not only for malignant transformation itself 
but also interconnecting the stage-specific features with 
induced perturbations.

DISCUSSION

By profiling transcriptome changes under 
atmospheric and moderate hypoxic (3% oxygen) 
conditions, we observed that even though the four cell 
lines in the BJ model for malignant transformation are 
highly similar, they display striking differences in their 
response to decreased oxygen supply. We could trace 
these differences to the SV40 Large-T transformation 

step. This oncogene has a large effect on both the steady-
state RNA expression of the cells, and on the response 
to moderate hypoxia. The addition of the mutated HRAS, 
on the other hand, has a relatively small effect on both 
states. This separation of the BJ model system into two 
groups, representing pre- and post-transformation states, 
is in accordance with our previous findings [13]. 

The hypoxic environment is capable of inducing 
cellular signaling with implications in hallmark functions 
such as proliferation, apoptosis, migration and metabolism 
that are typically altered during cancer progression. The 
ability of hypoxia to induce molecular changes that 
promote the malignant phenotype is clearly consistent 
with our finding that the response to moderate hypoxia 
resembles the process of malignant transformation across 
the BJ model, especially evident for the immortalized 
stage for which 60% of the identified hDEGs are co-
regulated during SV40 transformation. Due to the isogenic 
and accumulative nature of the model system used in this 

Figure 5: Comparison of hDEGs across the model reveals a shift in response to hypoxia after SV40-transformation. (A) 
Venn diagram showing the overlap of hDEGs across sequential tumor progression stages in the BJ model. Circle sizes reflect total number 
of hDEGs at each stage. Corresponding numbers are found in Table 1. (B–D) Comparison of log2 fold changes (log2FC) among shared 
hDEGs for each pair of sequential stages is shown for stage 1–2, 2–3, and 3–4 respectively, including lines indicating linear regression. 
Blue color gradient (light to dark) represents difference between expression values (ΔTPM from low to high). Lists of all hDEGs and their 
fold changes are found in Supplementary Table 1. (E–F) The log2 fold changes (log2FC ) of STYK1 (E) and ASS1 (F) in the four stages 
of the model, demonstrating the shift in cellular response to hypoxia between pre- and post-transformation of the SV40 oncogene. (G) 
Kaplan–Meier plot for ASS1 including data from an endometrial cancer patient cohort showing survival over a 10 years period. All 541 
patients were stratified into two groups with high ASS1 expression (FPKM > 59.6) and low ASS1 expression (FPKM < 59.6), respectively. 
The FPKM cutoff was optimally selected between 20 and 80 percentiles of the expression of ASS1 in all 541 patients. The separation based 
on this stratification is significant (P = 8.14 × 10–9; log rank test), and the hazard ratio is 3.336973. For follow-up on survival until the last 
event (15 years), see Supplementary Figure 4. Survival data for all patients included are found in Supplementary Table 6.
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study, our dataset enables co-regulated responses to be 
linked to specific events in cancer progression that are 
represented by the different stages of the model. 

The overall up-regulation of the enzymes belonging 
to metabolic pathways throughout the different stages 
of cancer cell lines indicates that moderate hypoxia 
triggers metabolic activity. Distinct upregulation of 
lipid, carbohydrate and amino acid metabolic pathways 
in the transformed tumor-forming state in comparison 
to the previous model stages supports the suggested 
mechanism that the cells increase the consumption of 
ATP to trigger elevated fluxes of glycolytic pathways 
[48]. Our data support that the metastasizing cells expand 
the ATP consumption to other biosynthetic pathways, 
including glycan biosynthesis and the metabolism of 
other amino acids and also increase in the carbohydrate 
metabolism (Figure 4D). The downregulation of oxidative 
phosphorylation in post-transformed cells during 
decreased oxygen supply indicates an adaptation capability 
of these cells to anaerobic conditions that is not observed 
in the pre-malignant stages. Oxygen concentrations in 
human tumors are highly heterogeneous, often containing 
regions where the oxygen concentration reaches zero, 
known as anoxic regions [49]. Even though tumor hypoxia 
often manifests itself at lower oxygen concentrations than 
used in this study, we observe large differences in gene 
expression upon moderate hypoxia. 

The BJ model has inherent limitations in its ability 
to mimic the in vivo response to hypoxia, above all the 
fact that cell lines can only serve to approximate the 
characteristics of cells present within the more complex in 
vivo environment where interactions between molecules 
and different cell types are important. The fibroblast origin 
of this model and that it was created under atmospheric 
oxygen pressure are other limitations. However, as shown 
before [13], this model remains suitable for studying 
the mechanisms underlying malignant transformation 
and provides a unique isogenic system of four defined 
stages. To gain a more in-depth and mechanistic 
understanding of the actual interactions underpinning the 
response to hypoxia observed in this study, our generated 
transcriptome dataset provides a guidance for follow-up 
studies which should also explore corresponding protein 
levels. Although studies support that protein levels, 
in general, can be directly estimated from RNA levels 
through the use of gene-specific conversion factors [50], 
this should be validated under the perturbation of hypoxia.

With this study we demonstrate how pathways 
involved in malignant transformation and response to 
hypoxia are interconnected. This is just one example of 
how the BJ cell model can be exposed to perturbations 
in order to provide deeper understanding of the link 
between cancerous stage and response to environmental 
changes, which will add strength to the overall 
mechanistic understanding of tumor development and 
behavior. Potentially, this model could also be used for 

the identification of novel prognostic markers through the 
separation of responses to perturbations, as demonstrated 
here by the differential regulation of ASS1 expression 
between pre-malignant and malignant cells. 

MATERIALS AND METHODS

Cell cultivation

All four cell lines in the model were cultivated in 
Dulbecco’s modified Eagle’s Medium (Sigma-Aldrich) 
supplemented with 10% Fetal Bovine Serum (Sigma-
Aldrich) for six passages at 37° C. Cultivation was 
performed in a humidified atmosphere containing 5% CO2 
and both under atmospheric oxygen pressure and under 
what is considered moderate hypoxia (3% oxygen) for six 
passages. The cells were grown up to 80% confluence and 
counted with a Scepter 2.0 Cell Counter (Merck Millipore, 
Billerica, MA, USA). Cells were cultivated in duplicate 
plates in parallel for each cell line and oxygen condition.

RNA sequencing

RNA was extracted from the cells using the 
RNeasy kit (Qiagen), generating high quality total RNA 
(i.e. RIN > 8) that was used as input material for library 
construction with Illumina TruSeq Stranded mRNA 
reagents (Illumina). Duplicate samples for each cell line 
were sequenced on the Illumina HiSeq2500 platform. 

Raw sequences were mapped to the Human 
reference genome GrCh37 and further quantified 
using the Kallisto software [28] to generate normalized 
Transcript Per Million (TPM) values. TPM values for 
genes were generated by summing up TPM values for 
the corresponding transcripts generated by Kallisto. 
Genes with a TPM value greater than 1 were considered 
as expressed. Differential expression analysis was 
performed with the Kallisto software (v0.42.1)+ [28] on 
the raw FASTQ files with default parameters, followed 
by differential expression analysis using the TXimport 
(v1.0.3) [51] and edgeR (v3.14.0)+ [52] R packages. 
All hDEGs and DEGs within the model are presented in 
Supplementary Table 4. The GRCh37 human reference 
genome assembly was used in all steps of the analyses. 
The generated data discussed in this publication have 
been deposited in NCBI’s Gene Expression Omnibus [53] 
and are accessible through GEO Series accession number 
GSE109367 (https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE109367).

Functional enrichment analysis was performed 
using the Database for Annotation, Visualization and 
Integrative Discovery (DAVID) tool [29], including 
only the summarized version of the Gene Ontology 
domain Biological Function, GOTERM_BP_FAT. This 
was performed against a background of all human genes 
and medium classification stringency (default). For 
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visualization of the enrichment analysis the application 
Enrichment map [54] was used for the program Cytoscape 
[55]. Enriched sub-networks were identified using 
Pathway Studio’s Expression regulatory sub-network 
enrichment, Elsevier’s Pathway Studio (11.2.5.9) (https://
www.elsevier.com/solutions/pathway-studio-biological-
research). 

Immunofluorescence staining of HIF1a

Cells were allowed to attach over night (at 37° C 
and 5% CO2) in a 96-well glass bottom plate (Greiner, 
Kremsmuenster, Austria) coated with fibronectin (VWR, 
US) at 12.5 μg/ml in PBS. Subsequent procedures for 
fixation, permeabilization and Immunostaining of cells 
have been described elsewhere [56–58]. The HIF1a 
protein was stained using the antibody HPA000907 that 
has been validated by overlapping staining in a transgenic 
HeLa cell line with GFP tagged target protein (published 
on www.proteinatlas.org). Images were manually acquired 
using a Leica SP5 laser scanning confocal microscope 
(DM6000CS) equipped with a 63× HCX PL APO 1.40 
oil CS objective (Leica Microsystems, Mannheim, 
Germany) and connected to the software LAS AF (LAS 
AF 2.6.0 BETA build 6964, Leica Microsystems). Images 
were acquired in four sequential steps with the following 
scanning settings: 16 bit, 600 Hz, line average 2, pixel 
size 0.08 μm. All images were acquired using the same 
detector gain (495) in all four cell lines, adjusted based on 
the strongest staining. Images were colored and assembled 
as RGB with the software ImageJ 1.46r (National 
Institutes of Health, USA).

Cell authentication

Cell line authenticity and mutational analysis was 
performed as previously described [27]. Briefly, the raw 
RNA-seq data was aligned using the 2-pass method of the 
STAR (v2.5.1b) aligner [59], followed by de-duplication, 
re-calibration and variant calling with the Genome 
Analysis Toolkit (GATK) Best Practices workflow 
(v3.5.0) [60]. The resulting variant calls were annotated 
using SnpEff and SnpSift (v4.2) followed by filtering and 
analysis using in-house Python and R scripts [61, 62].

Metabolic profiling

Metabolic profiling of the BJ model was elaborated 
by following a top-down analysis approach within the 
broad category of metabolism in the KEGG Orthology 
database [63]. The program PACFM (v.0.2) was used 
to plot the log2 fold change (log2FC) data between the 
atmospheric and hypoxic treatments of the cell lines at 
different hierarchy levels within metabolism. In order 
to facilitate intuitive comparison between the different 
stages of the BJ model, data was plotted by preserving 

the absent functional categories in each cancer cell line 
(Supplementary Table 5).

Survival analysis for ASS1

Cancer patient samples (n = 541) used for survival 
analysis were collected from Genomic Data Commons 
(GDC) on June 6, 2016, and all samples used are listed 
in (Supplementary Table 6). Based on the FPKM values 
of ASS1, the patients were classified into two groups and 
their prognoses were examined. All FPKM values for 
ASS1 from the 20th to 80th percentiles were tested and 
the value resulting in the lowest log-rank P value was 
selected. The Hazard Ratio was calculated based on COX 
regression coefficient. 
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