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ABSTRACT

Anabolic androgenic steroids (AAS) are some of the most common drugs used 
among athletes, frequently in combination with resistance training, to improve 
physical performance or for aesthetic purpose. A great number of scientific reports 
showed the detrimental effects of anabolic androgenic steroids on different organs 
and tissues. In this literature review, we analyzed the AAS-mediated carcinogenicity, 
focusing on Leydig cell tumor. 

AAS-induced carcinogenicity can affect DNA transcription through two pathways. 
It can act directly via the androgen receptor, by means of dihydrotestosterone 
(DHT) produced by the action of 5-a-reductase. It can also work through the 
estrogen receptor, by means of estradiol produced by CYP19 aromatase. In addition, 
nandrolone and stanazolol can activate the PI3K/AKT and PLC/PKC pathways via 
IGF-1. This would result in cell proliferation in Leydig cell cancer, or magnify cyclin 
D1 concentration inducing breast cell proliferation. 

AAS abuse is becoming a serious public health concern in view of the severe health 
consequences secondary to AAS abuse. The negative role of AAS in supraphysiological 
dosage impairs the expression of enzymes involved in testosterone biosynthesis. 
Abnormal synthesis of testosterone plays has a negative effect on the hormonal 
changes/regulation, and might be involved in certain carcinogenic mechanisms. At 
the light of this review, it could become very interesting to perform an information 
campaign more strengthened in gyms and schools in order to prevent male fertility 
impairment and other tissues damage.
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INTRODUCTION

Anabolic androgenic steroids (AAS) are one of the 
most commonly used drugs among athletes to improve 
physical performance. The use of AAS was prohibited 
by the International Olympic Committee in 1976 and 

more recently the World Anti-Doping Agency included 
these compounds in the list of prohibited substances [1]. 
Despite those bans, AAS abuse is continuing to increase 
particularly in the general population at fitness centers, 
mainly for aesthetic purposes [1–3]. The non-medical 
use of AAS among athletes and specific subsets of the 
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general population (high school and college students) is 
considered a major and widespread public health issue 
[4–6]. It is becoming increasingly clear that the abuse 
of AAS is associated with serious adverse effects to the 
liver [7], cardiovascular [8, 9], central nervous [10–12], 
musculoskeletal [13–15], endocrine [11], fertility and 
reproductive [16–18] systems.

AAS are synthetic derivatives of testosterone and 
their pharmacodynamics is similar to all other steroid 
hormones. AASs are membrane-permeable and influence 
the nucleus of cells by direct action. When the exogenous 
hormone penetrates the membrane of the target cell, the 
first step is the link to an androgen receptor (AR) located 
in the cytoplasm of the cell. From there, the compound 
hormone-receptor diffuses into the nucleus, where it either 
alters gene expression [19], or activates processes that 
send signals to other parts of the cell [20]. AASs exert 
their actions by several different mechanisms: (i) they 
modulate androgen receptor expression as a consequence 
of intracellular metabolism; (ii) they affect directly 
the androgen receptor and thus subsequent interaction 
with co-activators and transcriptional activity; (iii) they 
interfere with glucocorticoid receptor expression eliciting 
an anticatabolic effect; and (iv) they act on the CNS 
resulting in behavioral changes, following the genomic 
and non-genomic pathways [21].

Thanks to drug designers, to date, more than 100 
AAS compounds were synthesized. Analyzing their 
chemical structure, metabolic half-life, and physiological 
effects, three classes of AAS can be identified. The 
first class was obtained by the esterification of the 
17β-hydroxyl group of testosterone and includes 
testosterone propionate and testosterone cypionate. The 
second class was composed by AASs esterified, connected 
with the long side chain moieties, with a substitution of 
a hydrogen for the methyl group at C19. The third class 
of AAS comprises those compounds that are alkylated at 
C17, such as 17α-methyltestosterone and stanozolol [22].

Many animal and “in vitro” studies have 
demonstrated that supraphysiologic doses of AAS enhance 
the expression of oxidative stress proteins as well as of 
inflammatory and proapoptotic mediators [23]. To the best 
of our knowledge, only a few studies have been focused 
on the specific effect of ASS on carcinogenicity. 

A relationship between AAS use and cancer was 
previously suspected and recently proven. Clinical cases 
reported a causal connection between AAS use and 
both hepatocellular adenomas and adenocarcinomas. 
The physiopathological mechanism hidden behind 
this connection remains unclear. What is known is that 
the AAS induced biological effect is carried out by the 
androgen receptor (AR), an intracellular receptor located 
not only into reproductive organ cells but also into 
bone, muscle, brain, liver, kidney cells and adipocytes. 
AAS-AR binding initiates a cascade of events: receptor 
dimerization, nuclear translocation, binding to the 

specific promoter of genetic sequences and expression 
modifications [24]. 

FROM AAS GENOTOXICITY TO 
CARCINOGENICITY

Testosterone is mainly produced by the Leydig 
cells of testes in males, and ovaries and theca cells in 
females [25–26]. Smaller amounts are also synthesized by 
the adrenal gland in both sexes [27]. The production is 
regulated by a complex neuroendocrine mechanism which 
includes the pulsatile release of luteinizing hormone (LH) 
and subsequent cAMP activation of steroidogenic cascade 
and numerous steroidogenic stimuli and intratesticular 
factors that play a role in the intricate regulatory network 
of testosterone [28]. Cholesterol is the common substrate 
for all steroid hormones biosynthesis which is completed 
in the mitochondria. Steroidogenic acute regulatory 
protein (STAR) transfers cholesterol to the inner 
membrane of mitochondria. Through the mobilization 
and delivery from the outer to the inner mitochondrial 
membrane, cholesterol is converted to pregnenolone by the 
cytochrome P450 cholesterol side-chain cleavage enzyme 
(CYP11A1, also known as P450scc) [29]. Pregnenolone 
is further metabolized to progesterone by mitochondrial 
or microsomal 3b-hydroxysteroid dehydrogenases 
(HSD3B1). In Leydig cells, maturation of progesterone to 
androstenedione is catalyzed by the 17a-hydroxylase/C17–
20lyase (CYP17A1 also known as P45017A1); further 
conversion of androstenedione to testosterone is dependent 
on the activity of 17b-hydroxysteroid dehydrogenase 
(17bHSD), steroid dehydrogenase specific for androgen 
production [27, 30] (Figure 1).

There are three main pathways in which testosterone 
exerts its effects. It can act directly on androgen receptor, 
or via dihydrotestosterone (DHT) produced by the action 
of 5-a-reductase, or via estrogen receptor by means of 
estradiol produced by CYP19 aromatase [31]. NR3A 
(also known GRIN3A) is an androgen nuclear receptor 
normally linked to heat shock proteins (HSP). When 
testosterone and DHT, bind to this receptor in the presence 
of bio-available androgens, it undergoes a conformational 
change, making free-form HSP, dimerization and moving 
through the nucleus. Here, this can activate DNA 
transcription of specific responsive genes through the 
DNA-binding domains to androgen response elements 
(ARE), by means of its zinc-finger motif. [32].

AAS mimics testosterone physiological effect, by 
inducing expression alterations on of DNA sequences. 
For example, Nandrolone is transported into the target 
tissue cell cytoplasm as testosterone. However, the mRNA 
produced interferes with the physiological biosynthesis 
of testosterone, reducing cholesterol conversion to 
pregnenolone through CYP11A1. Analogously, the 
conversion from progesterone to androstenedione through 
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CYP17A1 is reduced resulting in diminishing endogenous 
testosterone production [33]. 

However, the genotoxicity mechanism is not 
well understood. Torres-Bugarín et al. [34], in a review 
analyzing androgen effects on cellular functions, 
concluded that a combination of genetic and epigenetic 
factors is the cause of toxicity, mutagenicity, genotoxicity, 
and carcinogenicity of sexual hormones. Epigenetic factors 
include three molecular mechanisms, controlling genetic 
transcription: DNA methylation, histone modifications 
and chromatin condensation [35]. DNA methylation 
inhibits the bind between transcriptional factors and their 
target sequences, both promoters, and introns, impeding 
the activation of transcriptional expression. In an animal 
model, 5α-DHT increased DNA methylation of srd5α2 
(steroid 5α-reductases type 2) [36]. The latter is also 
regulated by chromatin condensation degree [37]. 

On taking account genetic factors, testosterone 
synthetic derivatives can be metabolized to 17β-estradiol 
in adipose, cerebral and testicular tissues. As previously 
described, the 17β-estradiol (E2) has an important role 
in estrogen-dependent breast cancer, and it is described 
as a potential mutagenic and carcinogenic mediator [38]. 
Furthermore, its metabolites are also considered inducers 
of cell proliferation. 

During their catabolism, AAS reveal their oxidative 
role, increasing ROS, which are highly unstable and 
extremely reactive oxygen species, which easily lose 
hydrogen atoms. In this manner, they form covalent 

bonds with DNA bases or sequences, inducing a known 
genetic damage [39]. This mechanism was supposed to 
be connected to hepatocellular alterations because of 
its interference with bilirubin metabolism and vascular 
and cellular hyperplasia. For this kind of tumorigenesis 
action, different patterns of evolution were described, such 
as hepatic peliosis and focal-nodular hyperplasia/liver 
adenomas [40–41].

Moreover, in a study conducted by Seraj et al. [42] 
about testosterone derivative genotoxicity, its ability 
in generating DNA adducts was established. These 
processes, individually or in combination, can induce 
micronuclei formation among animals exposed to higher 
concentrations of AAS. Micronuclei are strictly related 
to several mutagenic stresses and are formed following 
chromosomal damage. These are chromatin particles 
derived from acentric chromosomal fragments, which are 
not incorporated into the daughter nucleus after mitosis. A 
variety of factors influences micronuclei formation, such 
as; age, sex, genetic constitution, physical and chemical 
agents. One of these agents has been proven high-dose 
nandrolone exposition, which determines a significant 
DNA damage in blood, liver, bone marrow, brain and 
testicle cells in experimental animals exposed [43]. On 
the other hand, AAS can elicit profound modifications in 
genetic sequences by means of alterations in telomerase 
activity [44]. Nourbakhsh et al. [45], tried to verify the 
implications of androgens in ovarian carcinogenesis. They 
demonstrated that both testosterone and androstenedione 

Figure 1: Mechanism of testosterone action. Free testosterone is transported into target tissue cell cytoplasm, where it can either 
bind the androgen receptor, or be reduced to 5α-di-hydro-testosterone (DHT) by the cytoplasmic enzyme 5-alpha reductase. The T-receptor 
complex undergoes to a structural change that allows its translocation into the cell nucleus, where it directly binds to specific nucleotide 
sequences of the chromosomal DNA. The produced mRNA promotes the biosynthesis of testosterone.
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increased ovarian cancer cell viability via the expression, 
activity, and phosphorylation of telomerase, and by 
blocking phosphatidylinositol 3-kinase pathway inhibitors. 
Consequently, it was stated that the PI3K/Akt pathway 
triggered this upregulation and that the hTERT mRNA 
levels were significantly increased with exposure to 
testosterone and androstenedione, thanks to quantitative 
PCR analyses. hTERT is a gene capable to encode the 
telomerase catalytic subunit, thus, allowing sustained 
cell proliferation, which has already been revealed to 
be regulated in human prostate cancer cells in vivo by 
androgens. In addition, androgen use has been reported to 
improve telomerase expression and behavior. Tamoxifen 
and letrozole inhibit estradiol and androgens effects on 
telomerase activity which is not affected by flutamide 
(an androgen receptor antagonist) administration [46]. 
Alterations in telomerase activity are at the basis of 
stanozolol-induced DNA-damaging effects.

With regards to the theoretical genotoxic effects on 
DNA, it should be pointed out that AAS effects are linked 
to dosage and frequency of administration. Therefore 
abusers abide by strict and controlled administration 
regimens resorting to specific strategies. “Stacking”, one 
of the strategies employed, involves the use of multiple 
AAS in order to lower doses of each substance and 
their adverse effects [47]. A common occurrence is the 
simultaneous administration of AAS and growth hormone 
(GH). It is estimated that one in each four sportsman takes 
both these drugs [48–49].

AASs promote muscle fiber mass and hypertrophy 
by augmentation of satellite cell proliferation, myonuclei 
number and muscle protein synthesis [50]. GH, instead, 
directly regulates muscle protein expression and 
production, by binding its receptors but also indirectly 
by activation of the IGF-1 receptor, which can activate 
the PI3K/Akt pathway in order to endorse myocellular 
proliferation (Figure 2). As far as myogenesis is 
concerned, IGF-1 is a positive key signaling molecule 
inducing not also satellite cell multiplying but also 
myoblast differentiation and subsequent myoblast fusion 
into myotubes. Consequently, overexpression of IGF-1 
causes significant hypertrophy and excess in proliferation 
[51]. Furthermore, IGF-1 seems to mediate the growth-
promoting influences of anabolic steroids. Based on 
that, AAS and GH or IGF-1 are combinations with a 
high performance-enhancing potential. Testosterone 
stimulates the mitotic activity of satellite cells, while 
GH or IGF-1 mediates these effects on skeletal muscle 
cell growth and differentiation [52]. This combined 
effect on myocells, should be considered in the light 
that supra-physiological doses of GH are associated 
with increased incidences of colorectal, thyroid, breast, 
and prostate cancers. Moreover, high-level detection of 
plasmatic IGF-1 has been associated with cancer risk and 
cancer prognosis [53]. IGF-1 has been involved in tumor 
development and progression because cancer cells have 
an increased expression of IGF-1 receptors. In addition, 
Cappello et al. [54] have demonstrated that Heat shock 

Figure 2: Molecular mechanisms of AAS-induced carcinogenicity.
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proteins (Hsps) perform critical functions in maintaining 
protein homeostasis under physiological and stressful 
conditions. Hsp60 is a constitutive mitochondrial protein 
with specific functions related to mitochondrial protein 
folding, especially in response to oxidative stress [55–56]. 
Hsp90 was found to be overexpressed in multiple cancers, 
including prostate cancer. Hsp90 is able to activate over 
200 proteins, including the AR, where Hsp90 prevents 
proteasome degradation and stabilizes AR conformation 
poised for ligand activation [57]. AR binds to Hsp90 in 
its inactive form. Upon binding of androgens, the receptor 
detaches from Hsp90 and becomes activated [58–60].

Sirianni et al. [61] using a human breast cancer cell 
line, MCF-7, as an experimental model, demonstrated that 
stimulating aromatase expression and estrogen production 
through IGF-1 can promote cell proliferation. High 
doses of nandrolone (aromatizable) and stanozolol (non 
aromatizable), could potentially increase breast cancer risk 
because in cases of high bioavailability, these compounds 
can attach to the ER, inducing its nuclear translocation 
in vivo [62–64]. Rapidly increase in the concentration 
of IGF-1R, ERK1/2 and AKT phosphorylation, is 
demonstrated by the ICI block on AAS-dependent 
kinase activation. Considering the above data, estrogens 
induce cell proliferation in target cells via the increased 
expression of up-regulated CCND1, encoding cyclin 
D1 regulating cell cycle G1 phase, which determines 
breast cancer cell proliferation [65–67]. Nandrolone and 
stanozolol magnified cyclin D1 concentration, inducing 
cell proliferation.

TESTICULAR CANCER

Testicular cancer represents 1% of male neoplasms 
and 5% of urological tumors, with 3–10 new cases 
occurring per 100,000 males/per year in Western society 
[68–69]. In the last decades, the incidence of this cancer 
is constantly increasing, especially in industrialized 
countries [70–72]. Leydig cell tumors are usually benign, 
but approximately 10% are malignant. The malignant 
variants occur only in adults.

Table 1 subdivides testicular cancers according to a 
pathological classification, in germ cell tumors, sex cord/
gonadal stromal tumors and miscellaneous non-specific 
tumors [73].

Leydig cell tumors represent the most common 
kind of the sex/gonadal stromal category [74–75]. Their 
insurgency is located between the third and sixth decades 
of adult life: when it occurs before, it is frequently related 
to hormones therapy/abuse.

Adults with androgen-secreting tumors are 
generally asymptomatic. Adult clinical manifestations of 
estrogen-secreting tumors include loss of libido, erectile 
dysfunction, infertility, gynecomastia, feminine hair 
distribution, and gonadogenital atrophy [76]. Taking into 
account the etiology, Leydig cell tumors are associated 

with cryptorchidism, testicular atrophy, infertility, 
germline mutations in fumarate hydratase, hereditary 
leiomyomatosis and renal cell carcinoma [77]. These 
symptoms are commonly found in AAS abusers. In fact, 
the testicular atrophy represents one of the most frequent 
side-effects related to AAS abusers, so a relationship 
between Leydig cell cancer and AAS must be taken into 
consideration.

AASS AND LEYDIG CELL CANCER

To investigate the side effects of AASs abuse on 
testicular cells, several animal studies were performed. 
Dohle et al. [78] showed that exogenous administration 
of synthetic testosterone caused a negative alteration 
on the hypothalamic-pituitary axis, inhibiting the 
secretion of both Follicle-stimulating hormone (FSH) 
and luteinizing hormone (LH). This mechanism could 
lead to a decreased serum androgens concentration and 
cause hypogonadotropic hypogonadism with subsequent 
testicular atrophy. Androgen action is mediated by binding 
to androgen receptors (AR) both in testis and in other 
tissues [79]. Inside Sertoli cells, the receptor activation 
will represent the start impulse of spermatogenesis [78]. In 
rats’ testis, ARs are expressed in the somatic Leydig cells, 
in peritubular myoid cells, and in Sertoli cells as well as 
in rete testis, the epithelial cells of the epididymis, and 
prostate [80]. AASs effects are strictly dependent on AR 
presence and distribution, suggesting an AASs influence 
on the male reproductive system.

AASs abuse induces testicular damage by 
triggering oxidative stress via inflammatory cytokines, 
matrix metalloproteinases, cell adhesion molecules, 
apoptotic markers, and DNA damage [81–83]. These 
mechanisms interfere with testis development, 
morphology, function, and sperm features. In this context, 
Noorafshan et al. [84] showed that weight and volume 
of testis decreased in animals that received high doses 
of AASs in comparison to the control animals. Other 
studies, performed on animal models confirmed that 
AASs administration in animal model induced testicular 
weight reduction [85]. Furthermore, it is well described 
that in animal model AASs assumption can cause 
morphological changes, such as reduction of number 
and size of Leydig cells, cytoplasmic vacuolization, on 
seminiferous tubule length and lipid droplet deposition 
[81, 83–84]. Moreover, several sperm alterations were 
observed in animals undergoing AASs administration. 
Treatment with relatively high doses of AASs leads to 
a decrease sperm count, and sperm motility [84, 86–89]. 
Both high and low doses of AASs significantly lowered 
the sperm motility compared to the control group. These 
findings suggest relevant sperm alterations due to AAS 
abuse. Finally, it is well known that anabolic agents may 
induce cell proliferation. Several studies reported the 
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relationship between AASs assumption with infertility 
and carcinogenesis progression [90–91]. 

Barone et al. [92], demonstrated blood–testis barrier 
(BTB) alterations. Tight junctions (TJs), basal ectoplasmic 
specializations (ES) and desmosome–gap junctions 
(D-GJs) compose the BTB in order to distinguish the basal 
and adluminal compartments in the seminiferous tubules. 
This study showed an increase in gene coding of TJ-
integral membrane protein adaptor, TJP1 and an abnormal 
distribution with immunofluorescence staining was 
revealed in cell cytoplasm of the basal compartment and in 
some cells at the adluminal compartment. TJP1 anomalous 
localization has been linked to epithelial carcinoma in situ 
[93–96]. Furthermore, an altered induction of MUC1 was 
suspected after nandrolone administration. This protein is 
a component of the mucosal glycocalyx associated with 
the testicular germ cell line and impaired spermatogenesis 
[97–98]. Usually intracytoplasmic, MUC1 expression 
was detected by Barone et al. [92] in the nuclei of 
many seminiferous tubule spermatids in different mice 
treated with different nandrolone doses. MUC1 nuclear 
translocation from the cytoplasm has been associated with 
transcription control and cell proliferation, mimicking an 
oncoprotein [91, 99–100].

Using rat Leydig tumor cell line, R2C cells, as an 
experimental model, Sirianni et al. [101], demonstrated, 
that high concentration of androgens promotes Leydig 
cell aromatase metabolism, determining the presence of 
local estrogen quantities. The resulting aromatase over-
expression in this tumor cells leads to considerable higher-
than-normal E2 levels, which can either initiate or cause 
progression of Leydig cell tumor. 

This mechanism is mediated differently by 
different AAS classes, as shown by the comparison of 
nandrolone, an aromatizable androgen, with stanozolol, 
a non-aromatizable one. Stanozolol is not susceptible to 
aromatase metabolism, resulting in a high concentration of 
testosterone, which provokes aromatase over-expression, 

transcription and production. Nandrolone is easily and 
rapidly converted to estradiol, because of constitutively 
aromatase activation in Leydig R2C cells. This causes 
an immediate increase in estrogen quantities with less 
androgen concentration, promoting aromatase gene, 
CYP19, transcription. In an experimental animal model 
also conducted on R2C cells, Pomara et al. [102] reported 
that testosterone levels increase when lower nandrolone 
concentration are administrated to Leydig cells. The 
increment stopped after treatment with higher androgenic 
concentrations. Different dose-dependent effects are 
caused by the nandrolone-induced modification in 
genetic expression in testosterone synthesis molecules, in 
particular, steroidogenic acute regulatory protein (StAR) 
and CYP17A1. The exact mechanism by which nandrolone 
exerts its effect is currently not known yet, but it could 
possibly be through miRNA regulation, post-translational 
modification or protein degradation.

Nandrolone is an androgen receptor agonist. On 
binding to the AR receptor, it may induce the release 
of the AR receptor from Hsp90 and its translocation 
to the nucleus [103]. In our previous experiments, 
higher nandrolone concentrations induced a more 
pronounced increase in Hsp90 levels of expression and 
phosphorylation. This result is an indirect demonstration 
that nandrolone binds to AR-receptor and induces its 
activation. AR-receptor may act as a transcription factor 
binding to HREs or rapidly activating the MAP kinase 
pathway; and activates the CREB transcription factor 
via phosphorylation of ERK1/2 or through the direct 
binding of CREB in the cytoplasm [104]. The expression 
of STAR, HSD3B1, CYP11A1, CYP17A1 as well as of 
other enzymes of the testosterone biosynthesis pathway is 
activated by cAMP steroidogenesis. The latter is activated 
by the MAP kinase and CREB pathway, which is triggered 
by the non-conventional activation of the AR-receptor. In 
our experiments, nandrolone induced over-expression 
of STAR and HSD3B1, but downregulated CYP17A1 

Table 1: Subdivision of testicular cancers under pathological classification

Germ cell tumors Sex cord/gonadal stromal tumors Miscellaneous non-specific tumors
• Intratubular germ cell neoplasia 
(IGCNU), unclassified type 
• Seminoma (including cases with 
syncytiotrophoblastic cells) 
• Spermatocytic seminoma (mention if 
there is a sarcomatous component) 
• Embryonal carcinoma 
• Yolk sac tumour 
• Choriocarcinoma 
• Teratoma (mature, immature, with 
malignant component) 
• Tumours with more than one 
histological type (specify percentage of 
individual components).

• Leydig cell tumour 
• Malignant Leydig cell tumour 
• Sertoli cell tumour - lipid-rich 
variant - sclerosing - large cell 
calcifying 
• Malignant Sertoli cell tumour 
• Granulosa cell tumour - adult type - 
juvenile type 
• Thecoma/fibroma group of tumours 
• Other sex cord/gonadal stromal 
tumours - incompletely differentiated 
- mixed 
• Tumours containing germ cell 
and sex cord/gonadal stromal 
(gonadoblastoma)

• Ovarian epithelial tumours 
• Tumours of the collecting ducts and 
rete testis 
• Tumours (benign and malignant) of 
non-specific stroma.
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and CYP11A1. The down-regulation of CYP17A1 and 
CYP11A1 can be explained as an effect of nandrolone 
binding to the AR while the overexpression of STAR and 
HSD3B1 is consistent with the progesterone-like activity 
of nandrolone, overall leading to a decrease of testosterone 
synthesis [105].

Thus, Chimento et al. [106], suspected that 
pathophysiology of AAS-induced cancer induction and 
proliferation depends on two mechanisms. Firstly, the 
so-called estrogen-dependence that is related to estrogen 
production and not related to their androgenic effect. 
Secondly, the IGF-1R implication: this complex process 
was apparently demonstrated through the observation 
that ICI, an ER antagonist, reduces AAS-dependent 
cell proliferation. The same effect is generated by 
administration of IGF-1R pathway inhibitors (including 
IGF1R, PKC and PI3K inhibitors) which provoke a 
decrease of aromatase expression. 

This consideration is not very innovative, 
considering that previous scientific literature extensively 
reported the estrogenic actions of androgens and the 
IGF-1R activation secondary to the binding of AAS to 
a membrane ER [107–108]. In human primary prostatic 
stromal cell cultures, DHT and T have already reported 
influencing IGF-1 protein expression. This was not the 
case E2 [109].

Whatever the underlying mechanism is (either a 
non-genomic AAS molecular process involving IGF-1 
dependent signaling pathways or AAS-activated IGF-
1R signaling through a membrane AR) the result is an 
activation of the IGF-1-mediated cascade pathway. 

In turn, IGF-1 signaling activation of PI3K/ 
AKT and PLC/PKC pathways, results in an increase in 
aromatase expression and estrogen production inducing 
cell proliferation in Leydig cell cancer [101]. 

DISCUSSION

AASs are a known cause various functional 
disorders, which may affect liver, cardiovascular, 
reproductive, musculoskeletal, endocrine, renal, 
immunologic or neuropsychiatric systems. Their effect 
is related to dosage, frequency, and patterns of use 
[110–111]. Beyond these deleterious macro-effects, 
testosterone-derived androgens may act directly on 
cellular functions, with either genetic or epigenetic factors 
determining toxic, mutagen, genotoxic and carcinogenic 
results. AAS can also influence cancer cell proliferation 
via genomic and non-genomic mechanisms, such as the 
so-called estrogen-dependence mediated by ER, aromatase 
expression and IGF-1 production, which can even amplify 
each other. Therefore, IGF-1 can be considered as a well-
known cancer inducer and promoter affecting each stage 
of tumor development, from cellular proliferation to the 
metastatic phase. 

In the study conducted by Chimento et al. [106], 
aromatizable and non-aromatizable androgens promoted 

testicular tumor development in rat Leydig cells via the 
pathophysiology described above. This suggests that 
further and analogous consideration to human Leydig 
cell cancer should be considered. However, these are not 
the only mechanisms suspected to be involved in cancer 
development after AAS use. Barone et al. [92], analyzed 
alterations that occur at the blood–testis barrier (BTB). 
They reported modifications induced on Leydig cells 
different from those induced by IGF-1. This study showed 
an increase in gene coding of TJ-integral membrane 
protein adaptor, TJP1 and an anomalous localization linked 
to epithelial carcinoma in situ [93–96]. Furthermore, after 
nandrolone administration, MUC-1 nuclear translocation 
has been associated with transcription control and cell 
proliferation, mimicking an oncoprotein [91,100]. 

Other mechanisms hypothesized involved DNA-
damage at different levels include: micronuclei formation 
[34, 42], DNA methylation [36], ROS-mediated DNA 
covalent binding [39], and alterations in telomerases [44–45].

CONCLUSIONS

The negative role of AAS in supraphysiological 
dosage impairs the expression of enzymes involved in 
testosterone biosynthesis. The side effects on the natural 
synthesis of testosterone play a potential role on the 
hormonal changes/regulation and could be suspected 
to be at the base of certain carcinogenic mechanisms. 
Furthermore, easily accessible and commonly diffused 
AAS, such as nandrolone and stanozolol, have the 
potential to induce and cause progression of particular 
kinds of cancer, such as Leydig cell tumor through 
multiple processes pathways. Their deleterious effect 
is further augmented by the fact, that such tumors have 
a high incidence in young people, the cohort of people 
abusing AAS. Further studies are necessary to investigate 
the potential link between AAS abuse and cancer.
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