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ABSTRACT
Parkinson’s Disease is the second most common neurodegenerative disorder, 

affecting 1–2% of the elderly population. Its diagnosis is still based on the identification 
of motor symptoms when a considerable number of dopaminergic neurons are already 
lost. The development of translatable biomarkers for accurate diagnosis at the earliest 
stages of PD is of extreme interest. Several microRNAs have been associated with 
PD pathophysiology. Consequently, microRNAs are emerging as potential biomarkers, 
especially due to their presence in Cerebrospinal Fluid and peripheral circulation. This 
study employed small RNA sequencing, protein binding ligand assays and machine 
learning in a cross-sectional cohort comprising 40 early stage PD patients and 40 well-
matched controls. We identified a panel comprising 5 microRNAs (Let-7f-5p, miR-27a-
3p, miR-125a-5p, miR-151a-3p and miR-423-5p), with 90% sensitivity, 80% specificity 
and 82% area under the curve (AUC) for the differentiation of the cohorts. Moreover, 
we combined miRNA profiles with hallmark-proteins of PD and identified a panel 
(miR-10b-5p, miR-22-3p, miR-151a-3p and α-synuclein) reaching 97% sensitivity, 
90% specificity and 96% AUC. We performed a gene ontology analysis for the genes 
targeted by the microRNAs present in each panel and showed the likely association of 
the models with pathways involved in PD pathogenesis.

INTRODUCTION

Parkinson’s disease (PD) is the second most 
common neurodegenerative disease affecting over 5 
million people worldwide [1]. The disease is characterized 
by progressive death of dopaminergic neurons and the 

presence of intra-cytoplasmic inclusions consisting mostly 
of α-synuclein (α-syn) within many areas of the brain, 
including the substantia nigra (SN) [2–4]. PD is considered 
a complex and heterogeneous neurodegenerative disease 
that results in impairments in movement and cognitive 
capability [5]. Currently, PD diagnosis is primarily based 
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on the presence of two of the three major motor symptoms: 
bradykinesia, rigidity and tremor at rest [6]. Nevertheless, 
scales employed in clinical diagnosis are subjective and 
can only be detected when motor features are present and 
60–90% of dopaminergic neurons are already lost [7, 8]. 
The discovery of a reliable quantitative diagnostic test for 
PD is of extreme interest. Molecular biomarkers that are 
objective and measurable can be potential clinical tools 
to support PD clinical diagnosis, especially during the 
earliest stages of the disease.

Cerebrospinal Fluid (CSF) represents an optimal 
source of biomarkers of neurodegenerative diseases and 
has been extensively employed in PD biomarker research 
[1]. However, investigations are heavily based on proteins 
related to PD pathogenesis. For instance, studies have 
highlighted altered levels of α-syn and DJ-1 in PD patients 
compared with controls [9–14]. Furthermore, due to assay 
incompatibility and lack of standardized protocols, results 
are conflicting and do not show robustness for use as 
clinical biomarkers [15]. 

An emerging area of research is investigating 
microRNAs (miRNAs) as possible biomarkers of PD. 
miRNAs are small 21–24 nucleotide non-coding RNAs 
that regulate gene expression by inhibiting translation of 
target genes [16]. A large number of miRNAs are brain 
specific and have also been found in various biofluids 
[17, 18]. Altered expression of miRNAs in the brain has 
been described in several neurological disorders and 
neurodegenerative diseases [19, 20]. Due to their ability to 
cross the Blood Brain Barrier (BBB) and being both free 
in circulation as well as present in exosomes, miRNAs 
have the potential to be valuable biomarkers providing 
insights to the pathological signs detected in the Central 
Nervous System (CNS) [21]. miRNAs have been used 
as biomarkers for a potential non-invasive diagnosis of 
several disorders [22–25], but only a limited number of 
miRNAs have been implicated with PD [15]. 

In this study, we aimed at developing an algorithm 
based on molecular profiles which could improve the 
diagnosis of early stage PD. To this end, we analyzed the 
CSF miRNA and protein profiles, by means of small RNA-
sequencing and ligand binding assays, respectively, of a 
cross-sectional cohort composed of early stage PD patients 
(n = 40) and matched control subjects (n = 40). Through 
the combination of molecular and clinical endpoints and 
subsequent machine learning, we identified a panel of 
miRNAs with 90% diagnostic sensitivity, 80% diagnostic 
specificity and 82% ROC-AUC (Receiver Operating 
Characteristic-Area under the curve). Additionally, when 
combining one of the protein hallmarks of PD, α-syn, with 
miRNAs, we identified a subsequent panel with improved 
diagnostic accuracy with 97% diagnostic sensitivity, 90% 
diagnostic specificity and 96% ROC-AUC. Our panels 
showed strong robustness through scientific rationale and 
have great potential as clinical diagnostic biomarkers. 
Notably, through computational biology analysis, we 
show that these panels are associated with pathways, 

such as prion diseases and ubiquitin mediated proteolysis, 
proposed as key mechanistic regulators of PD pathology 
[26–31]. 

RESULTS

Variance analysis of the clinical information

The demographic characteristics of the 40 early 
stage PD patients and 40 control samples included in this 
study are summarized in Table 1. Among PD patients, the 
group consisted of 20 males and 20 females, ranging from 
39 to 80 years in age with an average of 61 ± 1 years, 
H&Y median: 2 and UPDRS III median: 21. Similarly, 
the control group consisted of 20 males and 20 females, 
ranging from 42 to 83 years in age with an average of 
64 ± 1 years. Analysis of variance revealed no significant 
source of variation in the expression data due to age, 
gender and disease duration.  

miRNA expression profile 

We employed Next Generation Sequencing (NGS) 
to globally profile miRNAs in the CSF of early stage PD 
patients and controls. Given the low RNA content in the 
CSF samples, we customized the small RNA sequencing 
workflow to achieve successful sequencing runs starting 
from low input RNA. On average, 27 million reads 
were generated per sample. Read length distribution and 
annotation were evaluated per sample to ensure enrichment 
of miRNAs in the 20–24nt read fraction. We were able to 
detect the expression of a total 1683 miRNAs. From those, 
389 passed the first exclusion criteria, which excluded all 
miRNAs with less than 5 read counts per sample. Of those, 
301 miRNAs were expressed in all samples. We searched 
for miRNAs exclusively expressed by either controls or 
early stage PD, and none of the miRNAs were expressed 
in one group only. Additionally, we removed miRNAs that 
had the same expression patterns across groups, finalizing 
with a total of 121 miRNAs comprised in the final dataset 
used for analysis.

Identification of a miRNA-based biomarker 
panel for the early diagnosis of PD

After processing and stringently filtered the 
miRNAs data, we used machine learning to identify a 
miRNA-based panel that could accurately distinguish 
early stage PD patients from controls. 

Through the combination of miRNAs and clinical 
endpoints, a total of 3200 models were created, trained 
and tested using Fuzzy Modeling, also known as fuzzy 
inference systems [32]. For the selection of the best models, 
we applied Fuzzy CoCo modeling to filter and exclude 
models with high complexity and difficult interpretation 
(such as models with large number of variables, complex 
relationships between the variables and subsequent 



Oncotarget17457www.oncotarget.com

interpretable interaction) [33]. The models fitting the 
defined criteria were subsequently subjected to a feature 
selection step, which revealed the 15 miRNAs most 
frequently found among all models (Table 2). Based on 
the top-ranking variables, 329 new models were created, 
trained and tested. In order to improve robustness, we 
applied advanced filtering pathways and focused on 
the models with diagnostic sensitivity and specificity 
values above 80%. This approach led to the identification 
of 5 preferential panels based on their robustness and 
complexity (Supplementary Figure 1A and Supplementary 
Table 1). From those, we selected Model A based on 
sensitivity, complexity and variable composition Figure 1A. 
Interestingly, Model A contains the 5 best ranking variables 
(Let-7f-5p, miR-125a-5p, miR-151a-3p, miR-27a-3p and 
miR-423-5p) and showed high predictive value with 90% 
diagnostic sensitivity, 80% diagnostic specificity and 82 and 
89% positive and negative predicted values respectively 
(Supplementary Table 1). Receiver Operating Characteristic 
(ROC) curve analysis was performed to determine the 
diagnostic accuracy of the panels, which presented 82% of 
area under the curve (AUC) (Figure 1B). 

α-syn improves robustness of a miRNA-based 
panel 

We determined if the hallmark proteins of PD and 
neurodegeneration (DJ-1, UCHL1 and α-syn) could be 
combined with miRNA profiles to develop robust panels. 
We measured the protein levels in the CSF of all subjects 
(Table 1). We combined the proteins and performed a 
similar analysis as described above. A total of 1600 models 
were created, trained and tested. After applying Fuzzy CoCo 
modeling, we identified 335 models of which a feature 
selection step was applied and α-syn emerged as the most 
frequent variable among all models (Table 2). Subsequently, 
we focused our analysis on models with diagnostic 
sensitivity and specificity values above 90%. This approach 
led us to identify 3 models with high predictive values 
(Supplementary Figure 1B and Supplementary Table 2). 
From those, we selected Model F based on sensitivity, 
number of variables and complexity Figure 2A. Model F 
comprises miRNAs miR-10b-5p, miR-151a-3p, miR-22-3p 
and α-syn. The model presents 97% diagnostic sensitivity, 
90% diagnostic specificity and 90 and 97% positive and 
negative predicted value respectively. ROC analysis 
revealed 96% AUC (Figure 2B).

Pathways analyses of the miRNAs included in 
Model A and Model F

We applied DIANA-TarBase [34] to identify all 
genes targeted by the miRNAs included in Model A and 
Model F. To this end, we considered only experimentally 
validated miRNA interactions. We identified 31 pathways 
involved in PD pathogenesis being regulated by the 

miRNAs proposed in model A (Figure 3A). Among the 
pathways regulated by the miRNAs presented in Model 
A, Prion disease (p < 0.001), TGF-beta signaling (p < 
0.001) and cell cycle regulation (p < 0.001) were the most 
prominent. Ubiquitin mediated proteolysis (p < 0.01), 
Neurotrophin signaling (p < 0.01), mTOR signaling (p < 
0.01), AMPK signaling (p < 0.01), FoxO signaling (p < 
0.01) and Huntington’s Disease pathway (p < 0.01) were 
also enriched in our analysis.

 For model F we identified 16 pathways being 
regulated by the miRNAs proposed in the model (Figure 
3B). For Model F, Prion disease pathways (p < 0,001), 
Hippo signaling (p < 0,001) and Fatty acid biosynthesis 
(p < 0,001) were enriched in the pathways analysis. 

DISCUSSION  

Currently, PD diagnosis still relies on the clinical 
diagnosis based on the emergence of motor symptoms; its 
accuracy is reported as not beyond 75% and may be even 
lower during the first years of diagnosis [35]. A reliable 
diagnostic test that supports the clinical diagnosis and 
facilitates the identification of early stages of disease is 
challenging and unavailable. Numerous efforts have been 
put into biomarker discovery for PD diagnosis, mostly 
using CSF due to its potential to reflect changes occurring 
in the brain [21].

miRNAs are important post-transcriptional 
regulators of gene expression, with each miRNA predicted 
to regulate hundreds of target genes and impact multiple 
cellular processes [36]. miRNAs were first discovered 
in 1993, and since then their expression pattern has been 
investigated in different human diseases and recently 
proposed as diagnostic, prognostic, and treatment 
response biomarkers [22–25, 37, 38]. In the field of PD, 
only a handful of studies have proposed miRNAs as 
potential biomarkers for PD, mostly investigating miRNA 
expression in the CSF of late stage PD patients [39–41]. 
Burgos et al. and Gui at al. provided a comprehensive 
examination of miRNAs and exosomal miRNAs detected 
in the CSF of late PD patients [39, 40]. However, 
when considering biomarker discovery with the aim of 
identifying novel diagnostic tools, both studies present 
limitations. For example, Gui et al., reported potentially 
misleading expression results due to the use of small 
nucleolar RNAs to normalize and quantify miRNAs 
detected in the CSF [40]. Although Burgos et al. overcame 
these limitations by using untargeted miRNAs analysis 
and global signal normalization, the authors focused 
their analysis particularly on differentially expressed 
miRNAs in late stage PD compared with controls while 
not exploring the applicability of miRNAs as biomarkers 
with diagnostic potential [39]. 

The availability of literature focusing on the 
integration of untargeted miRNA profiling, protein 
expression levels, clinical endpoints and advanced data 
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analysis tools, such as machine learning, in the early 
stages of PD onset is thus still scarce.

The goal of our study was to explore the potential 
use of miRNAs as diagnostic tools in the early stages 
of PD, specifically up to 3 years after initial clinical 
diagnosis. For this, we developed our methodology based 
on previous studies published by Burgos et al., and Gui et 
al., [39, 40].

Through the combination of an optimized exosomal 
miRNA isolation with small RNA sequencing, We were 
able to detect 1683 exosomal miRNAs present in CSF. 
To improve the robustness of our models, we first filtered 
and excluded all miRNAs with less than 5 read counts, 
reducing our data set to 389 miRNAs. Subsequently, we 
excluded miRNAs not expressed in all samples, finalizing 
with 301 miRNAs. Of these, 121 miRNAs were taken 
forward for analysis based on their expression pattern and 
their ability to differentiate controls from early stage PD.

Next, we employed BOSS (Biomarker Optimization 
Software System), an advanced machine learning 
platform for discovery and selection of biomarker 
panels, to identify and group together all miRNAs able 
to accurately distinguish controls from early stage 
PD patients. To select the best performing models, 
we focused on two characteristics: robustness and 
interpretability. We searched for models that provide 
a reliable binary diagnosis, control or early stage PD 
patient, and simultaneously provide insights on how the 
combination of variables discriminates control from early 
stage PD. To this end, we combined Fuzzy CoCo with 
Pareto analysis [33, 42]. Fuzzy CoCo has shown excellent 
results by dealing with the complexity of biological data 
while producing small (in terms of manageable number 
of biomarkers), multivariate, accurate, and interpretable 
models and has been applied for breast cancer diagnostic 
[33]. By using Fuzzy CoCo, we filtered and excluded all 
models with low performance, large number of variables 

and uninterpretable contextualization. Subsequently, we 
used Pareto analysis to select the best models based on 
robustness [42]. Through this advanced machine learning 
approach, we restricted our analysis from an initial 3200 
models to 5 potential biomarker panels. 

The selected miRNA biomarker panel, Model A, 
comprises of Let-7f-5p, miR-27a-3p, miR-125a-5p, miR-
151a-3p and miR-423-5p, and the consensus is that early 
stage PD patients should have high expression levels 
of Let-7f-5p and low expression levels of miR-27a-3p 
and miR-423-5p, whereas controls should have high 
expression levels of miR-125a-5p and low expression 
levels of miR-151a-3p in the CSF. To the best of our 
knowledge, none of these miRNAs have been previously 
proposed as potential biomarkers for PD, but  3 miRNAs 
are from conserved miRNAs families (Let-7, miR-151 
and miR-125), of which these families were reported in 
either blood or CSF samples from PD patients [40, 43, 44]. 
When considering neurodegenerative diseases, miR-27a-
3p was reported down regulated in Alzheimer’s disease 
(AD) patients with dementia [45]. To further contextualize 
our findings in relation to PD pathology, we explored the 
biological relevance of the miRNAs that make up Model 
A. We identified 31 pathways involved in PD pathogenesis 
being regulated by the miRNAs proposed in model 
A (Figure 3A). Interestingly, the analysis highlighted 
some regulated pathways previously associated with 
PD pathogenesis [26–31], suggesting that the miRNAs 
present in Model A comprise a molecular signature 
involved in several biological pathways associated with 
the development of PD. 

DJ-1, UCHL1 and α-syn are among the most 
studied proteins in PD and have been explored as potential 
biomarkers to differentiate PD from controls [11–14, 46, 
47]. The current consensus is that α-syn and UCHL1 
concentrations are generally lower in the CSF of late 
stage PD patients, whereas DJ-1 concentration is higher 

Figure 1: Selection of a robust miRNA-based panel. (A) Pareto Efficiency highlighting miRNA-based models. Gray dashed line 
represents threshold used to select models with over 80% sensitivity and specificity. Red dot represents the selected model (Model A) with 
90% sensitivity and 80% specificity. Green dots represent Models B-E. (B) ROC curve of selected Model A with AUC of 82%.
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[11–14, 46, 47]. Our initial analysis revealed that when 
combining miRNA profiles to DJ-1, UCHL1 and α-syn 
protein levels, we were able to increase the robustness 
of the models generated using the approach described 
above. We initially started our analysis with 1600 models 
and through an advanced machine learning approach we 
identified 3 models with high predictive values. From 
those, Model F was selected based on robustness. Model F 
is composed of miR-10b-5p, miR-151a-3p, miR-22-3p and 
α-syn. The interpretation of the model revealed that early 
stage PD patients should have low α-syn protein levels 
and, low miR-22-3p expression levels in the CSF, and high 
expression levels of miR-10b-5p and miR-151a-3p.  α-syn 
and miR-22-3p were previously reported as exhibiting  low 
expression levels in the CSF of PD patients [13, 14, 40]. 
The pathway analysis of Model F revealed an enrichment 
of Prion disease pathways (p < 0,001), suggesting that this 
molecular signature has a strong impact in such pathway 
compared to others (Figure 3B). 

After comparing both models, we observed that 
only one miRNA overlaps between them: miRNA-
151a-3p. One potential reason for the differences in the 
models could be due to α-syn being proposed as bait to 
miRNAs associated with protein aggregation which could 
play an important role in introducing changes to the 
molecular signatures that were identified. This is further 
elucidated by the fact that miR-10b-5p and miR-22-3p 
being proposed as regulators of several genes involved 
with protein aggregation and are predicted to interact 
with SNCA, the α-syn gene [48]. It is also relevant to 
highlight the challenges around protein analysis, namely 
when considering α-syn. In our study, we analyzed total 
α-syn in the CSF and found it expressed in lower levels in 
the CSF of early stage PD patients compared to controls. 
Although the majority of publications support this finding, 
there is still conflicting data available [15]. Furthermore, 

different isoforms of α-syn have been investigated and 
proposed as potential biomarkers, including monomeric 
and phosphorylated forms, among others [9, 49]. As data 
across different studies is conflicting, it is still unclear 
which isoform of α-syn could be the most robust endpoint 
to differentiate controls from PD patients at early or late 
stages. 

Although our findings are promising, further 
validation in heterogeneous, thoroughly characterized 
and larger scale cross-sectional studies are needed to 
further evaluate the robustness of the proposed molecular 
signatures in the context of early stage PD diagnosis.

MATERIALS AND METHODS

Sample collection and patients 

Early stage PD patients and controls were recruited 
from the outpatient clinic at the Neurodegenerative 
Department of the University of Tübingen, Germany, and 
clinical data is collated (Table 1). The study was approved 
by the Ethics Committee of the Medical Faculty of the 
University of Tübingen (480/2015BO2). All participants 
provided written informed consent. PD was diagnosed 
according to the United Kingdom Brain Bank Society 
Criteria [50]. All patients were investigated by movement 
disorders specialists, to keep the risk of misdiagnosis at a 
minimum. Control individuals were assessed as having no 
neurological disease. Early stage PD patients were chosen 
to represent a homogeneous cohort with very early disease 
state (mean disease duration = 2 years, median Hoehn and 
Yahr stage (H&Y) = 2, and median Unified Parkinson’s 
disease rating scale III (UPDRS III 6, 29) = 21) and to 
have the akinetic-rigid subtype of PD [6, 51]. We included 
only akinetic-rigid patients as there is increasing evidence 
that tremor-dominant and akinetic-rigid subtypes are the 

Figure 2: Inclusion of α-syn as a variable improves performance of a miRNA-panel. (A) Pareto Efficiency of models 
including miRNAs and α-syn. Gray dashed line represents threshold used to select models with over 90% sensitivity and specificity. Purple 
dot represents the selected model (Model F) with 97% sensitivity and 90% specificity. Green dots represent Models G and H. (B) ROC 
curve of selected Model F with AUC of 96%. 
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consequence of different pathophysiologies, to increase 
the probability to find (subtype-) specific results [52, 
53]. CSF was collected by lumbar puncture according 
to standardized guidelines previously described in the 
literature [54]. To prevent blood contamination, CSF 
samples were tested for hemoglobin. CSF samples free 
of blood were centrifuged (1600 g, 4°C, 15 min), frozen 
within 30–40 min after the puncture and stored at -80°C 
according to CSF collection and storage guidelines [55].  

RNA extraction 

Exosomal RNA was isolated from 250 ul of CSF 
using miRCURY™ Exosome Isolation Kit serum/
plasma kit and miRCURY™ RNA Isolation Kit – 

Biofluids (Exiqon, Denmark). RNA extraction protocol  
was optimized to maximize small RNA yield from low 
input of CSF. RNA was concentrated in 7 µl of RNAse-
free water. 2 µl of RNA was used for quality control 
and concentration assessment using Nanodrop UV-VIS 
Spectrophotometer  (Thermo Fisher Scientific, USA) and 
Bioanalyzer Small RNA Analysis Kit (Agilent, USA).

Library preparation and small RNA sequencing

Libraries for small RNA sequencing were prepared 
using NEB Next small RNA library prep kit (New 
England Biolabs, USA) following the manufacturer’s 
instructions with few adjustments to achieve successful 
sequencing runs from low input RNA. Briefly, 5 µl of 

Figure 3: Selected models are targeting genes involved in several pathways associated with PD pathogenesis. (A) 
Biological network representing pathways regulated by miRNAs present in Model A. (B) Biological network representing pathways 
regulated by miRNAs present in Model F. Bar charts represent the –log10(p-value) of enriched pathways.
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RNA was used as input for RNA adapter ligation (using 
3ʹ and 5ʹ RNA adapters) followed by reverse transcription 
and PCR amplification (15 cycles) with bar-coded 
primers. PCR products were pooled based on equal 
volume prior to size selection on a Pippin Prep system 
(Sage Science, USA) to recover the 147 nt and 157 nt 
fractions containing mature miRNAs. The resulting small 
RNA libraries were concentrated via ethanol precipitation 
and quantified using the Qubit 2.0 Fluorometer prior to 
sequencing with read length of 75 bp on a NextSeq 500 
sequencer (Illumina, USA).  A quality control assessment 
was performed, using Bowtie [56]. Raw sequencing data 
was transformed to FastQ format. 

Sequencing processing and normalization

Reads were mapped to the human reference genome 
(hg38 – UCSC) [57] using Bowtie54. Samples with less 
than 100,000 mapped reads were removed. Following, 
mapped reads were assigned to mature miRNAs using 
genome annotation data from Ensembl (v84) [58], UCSC 
(hg38) [57] and miRBase (v21) [59]. miRNAs with less 
than 4 mapped reads, in average, were not considered for 
further analysis. Raw counts uncertainty was estimated as 
the 95% tile of the coefficient of variation (CV) per unit 
of log2-transformed raw counts: for miRNAs with > 64 
read counts, the 95% tile CV is < 0.1; for miRNAs with > 

Table 1: Cohort summary
PD controls p value

Individuals (n) 40 40 NA
gender (male in % (m/f)) 50% (20/20) 50% (20/20) NA
age (in years mean +/- SD) 61 ± 1 64 ± 1 0.0998
Disease duration (in years mean) 
H&Y (median)
UPDRS III (median)
α-syn (pg/mL)
DJ-1 (pg/mL)
UCHL1 (ng/mL)

1.8 ± 1
2
21

506.1 ± 28*

4988 ± 499*

0.71 ± 0.45*

NA
NA
NA

868.4 ± 48*

7501 ± 619*

0.66 ± 0.42*

NA
NA
NA

< 0.0001
0.0023
0.209

p values are calculated with Pearson Chi Square or t-test.
*Mean ± SD.
A total of 80 individuals were include in this study, 40 early stage PD patients and 40 controls. Gender, age and disease 
duration were calculated for both groups and are presented below. Protein markers levels are represented by mean values 
plus SD (Standard Deviation). H&Y = Hoehn and Yahr staging and UPDRS III = Unified Parkinson’s Disease Rating Scale.

Table 2: Top ranking variables
miRNAs miRNAs+α-syn 

Ranking Variable Ranking Variable
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Let-7f-5p
miR-423-5p
miR-27a-3p
miR-151a-3p
miR-125a-5p
miR-30c-5p
miR-511-5p
miR-1911-5p
miR-382-5p
miR-335-5p
Let-7d-5p

miR-101-3p
miR-4418
miR-95-3p
miR-10b-5p

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

α-syn
miR-26b-5p
miR-10b-5p
miR-323a-3p

miR-4654
miR-203a-3p

miR-9-3p
miR-152-3p
miR-423-3p
miR-95-3p

miR-151a-3p
miR-182-5p
miR-1246
miR-22-3p
miR-30e-3p

On the left, variables most frequent among models with miRNAs only. On the right, variables most frequent among models 
including miRNAs and α-syn.
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32 read counts, the 95% tile CV is < 0.2; and for miRNAs 
with > 8 read counts, the 95% tile CV is < 0.5. miRNA 
expression data were normalized using DEseq2 [60].

Ligand binding assay measurement 

Quantitative determination of selected markers was 
done by ELISA following manufacturer’s guidelines and 
validated fit-for-purpose as proposed by Jani et al [60]. 
Total α-syn was measured using mono-kit human α-syn 
(Analytik-Jena, Germany). 100 µl of CSF were diluted 
1:1 in phosphate buffered saline (PBS) pH 7.7 containing 
0.05% Tween 20, 3% bovine serum albumin (BSA), 5 mM 
EDTA and 10 mM PefaBlock. The limit of detection was 
0.37pg/mL and the intra-assay precision < 15% CV. DJ-1 
was measured using Human DJ-1/PARK7 kit from Meso 
Scale Discovery (MSD, USA). For DJ-1 measurement, 
CSF samples were diluted 8-fold; the limit of detection 
was 12.0 pg/mL and the intra-assay precision was < 10% 
CV. UCHL1 was measured using Human Neurological 
Disorders Magnetic Bead Panel 1 from Millipore 
(Millipore, USA). 25 µl of CSF was used for this assay; 
the limit of detection was 0.31 ng/mL and the intra-assay 
precision was < 10% CV.

Biomarker panel identification  

Biomarker panel identification relied on BOSS 
(Biomarker Optimization Software System), an advanced 
machine learning platform for discovery and selection of 
biomarker panels. 

Initial pre-processing of the biomarker data included 
removal of near-zero variance predictors and exclusion of 
miRNAs expressed in less than 75% of the cohort. The 
final step before analysis was to randomize subjects into 
training and test: training (63.5%) and test (36.5%).

BOSS uses a combination of different multivariate 
methods to build high predictive models of disease status 
(PD vs. control). Fuzzy modeling and Pareto efficiency 
were employed to manipulate information in a way that 
resembles human communication and reasoning processes. 
Repeated 10-fold cross validation of the training set was 
used to give an indication of the accuracy of the resulting 
predictive models. The models were then applied to 
the data in the test set and predictive probabilities were 
generated. Confusion matrices were produced and 
model fit was assessed using the following parameters: 
sensitivity, specificity and area under the Receiver 
Operating Characteristics (ROC) curve.

Analysis of target genes 

DIANA-mirPath was used to perform target 
prediction and pathway analysis based on miRTarBase 
[34, 61]. The software performs an enrichment analysis 
of multiple miRNA target genes to Kyoto Encyclopedia 

of Genes and Genomes (KEGG) pathways. The statistical 
significance value associated with the identified biological 
pathways was calculated by mirPath [34].

Statistics

Demographic and baseline characteristics of 
the cohorts were assessed using summary statistics. 
Differences in means between early stage PD and Controls 
were assessed using T-test; differences in proportions were 
assessed using chi-squared tests.

CONCLUSIONS

In this study, we demonstrated that miRNAs 
are detectable in abundance in CSF exosomes and 
demonstrate the importance of dedicated data analysis to 
explore their potential as reliable diagnostic biomarkers 
to be deployed at the early stages of PD. To the best of 
our knowledge, this is the first study to integrate state-
of-the-art microRNA sequencing with protein analysis 
and complex machine learning. We propose two robust 
biomarker panels that efficiently distinguish early stage 
PD patients from controls. In addition, we showed that 
both panels are characterized by regulators of the key 
mechanisms of PD pathology. 
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