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ABSTRACT

We investigated the relationship between axitinib pharmacogenetics and clinical 
efficacy/adverse events in advanced renal cell carcinoma (RCC) and established a 
model to predict clinical efficacy and adverse events using pharmacokinetic and 
gene polymorphisms related to drug metabolism and efflux in a phase II trial. We 
prospectively evaluated the area under the plasma concentration–time curve (AUC) 
of axitinib, objective response rate, and adverse events in 44 consecutive advanced 
RCC patients treated with axitinib. To establish a model for predicting clinical efficacy 
and adverse events, polymorphisms in genes including ABC transporters (ABCB1 and 
ABCG2), UGT1A, and OR2B11 were analyzed by whole-exome sequencing, Sanger 
sequencing, and DNA microarray. To validate this prediction model, calculated AUC 
by 6 gene polymorphisms was compared with actual AUC in 16 additional consecutive 
patients prospectively. Actual AUC significantly correlated with the objective 
response rate (P = 0.0002) and adverse events (hand-foot syndrome, P = 0.0055; 
and hypothyroidism, P = 0.0381). Calculated AUC significantly correlated with actual 
AUC (P < 0.0001), and correctly predicted objective response rate (P = 0.0044) as 
well as adverse events (P = 0.0191 and 0.0082, respectively). In the validation study, 
calculated AUC prior to axitinib treatment precisely predicted actual AUC after axitinib 
treatment (P = 0.0066). Our pharmacogenetics-based AUC prediction model may 
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determine the optimal initial dose of axitinib, and thus facilitate better treatment of 
patients with advanced RCC.

INTRODUCTION

Axitinib is a highly selective inhibitor of vascular 
endothelial growth factor receptor (VEGFR) tyrosine 
kinases 1–3 by blocking downstream signaling through 
Akt and extracellular signal-regulated kinase (ERK) in 
renal cell carcinoma (RCC) [1]. Cytochrome P450 (CYP) 
3A and uridine diphosphate glucuronosyltransferase 
(UGT) 1A1 are involved in axitinib metabolism [2, 3]. 
ATP-binding cassette (ABC) transporters, such as breast 
cancer resistance protein (BCRP,  encoded by ABCG2) 
and P-glycoprotein (MDR1,  encoded by ABCB1) are 
efflux transporters expressed on the luminal membranes 
of enterocytes, and are engaged in the absorption and 
excretion of several drugs [4]. Previous reports have 
demonstrated that specific polymorphisms of ABCG2 
and ABCB1 affect plasma concentrations of tyrosine 
kinase inhibitors (TKIs), including axitinib [5–7]. These 
polymorphisms may alter axitinib pharmacokinetics and 
contribute to determining its optimal dose [8].

Favorable efficacy with acceptable tolerance has 
been shown in Japanese patients treated with axitinib 
as first- and second-line therapy for metastatic RCC 
[9, 10]. In a randomized phase II trial in patients with 
metastatic RCC, axitinib dose titration was associated 
with a significantly higher objective response rate (ORR) 
compared with placebo titration [11]. An observed 
association between diastolic blood pressure and increased 
efficacy suggests the potential use of this parameter as a 
prognostic biomarker [2, 12]. Even where dose titration 
is an acceptable approach to optimal dose determination, 
however, the area under the plasma concentration–time 
curve (AUC) of axitinib [13] for a substantial portion of 
patients remained low. Another concern may be ethical 
implications of balancing optimal dosing against the 
potential for harmful adverse events (AEs) which may 
increase the risk of cerebrovascular disease [8, 14].

We hypothesized that plasma axitinib concentration 
and its pharmacokinetic (PK) parameters, including AUC, 
may correlate with clinical efficacy/AEs, and that the 
PK data may individually predict these outcomes using 
baseline patient background. Based on our hypotheses, we 
established a model to predict clinical efficacy and AEs 
using polymorphisms in genes that may be related to drug 
metabolism and efflux. To the best of our knowledge, this 
is the first report of a pharmacogenomics-based, validated 
predictive model of axitinib outcomes.

RESULTS

Overview

The individual values for axitinib AUC, total 
clearance, C-max, C-0 hr, and trough are summarized 
in Table 1. Plasma concentrations of axitinib differed 
between individuals (Figure 1A1 and 1A2). C-0 hr was not 
always consistent with trough value (Figure 1A3). Clinical 
efficacy and AEs for axitinib in the initial 44 patients are 
summarized in Table 2. 

Actual AUC significantly correlated with ORR 
and AEs

Patients with higher actual AUC had a significantly 
higher ORR than those with lower actual AUC (P = 
0.0002, Figure 1B). A positive correlation between ORR 
and actual AUC, total clearance, C-0 hr, and trough 
was found in the linear regression analysis (P = 0.0198, 
0.0013, 0.0076, and 0.0110, respectively).

Regarding AEs, actual AUC significantly 
correlated with hand-foot syndrome (P = 0.0055) and 
hypothyroidism (P = 0.0381), but not with other AEs 
including hypertension (P = 0.6300, Figure 1C). ORR 
was associated with hand-foot syndrome (P = 0.0147) and 
hypothyroidism (P = 0.0031), but not with hypertension 
(P = 0.6537). 

Pharmacogenetics-based AUC model

Whole-exome sequencing for germline DNA 
variants demonstrated that the OR2B11 variant 
significantly correlated with actual AUC (P = 0.0005, 
Figure 2A). Figure 2B shows the regression model 
formula by gene polymorphisms of ABC transporters 
(ABCB1 and ABCG2), CYP3A, UGT1A, and OR2B11 
and coefficient of covariates (parameters  of the six genes 
and axitinib dosage). A statistically significant correlation 
between calculated AUC and actual AUC was observed in 
the linear regression analysis (Figure 2C, R2 = 0.784, P < 
0.0001) and Kruskal–Wallis analysis (P < 0.0001).

Calculated AUC correlates with clinical efficacy 
and AEs

To validate the model, we evaluated the relationship 
between calculated AUC and ORR and AEs. Categorized 
calculated AUC significantly correlated with ORR (P = 
0.0044, Figure 3A). Calculated AUC also significantly 
correlated with hand-foot syndrome (P = 0.0191) and 
hypothyroidism (P = 0.0085), but not with hypertension 
(P = 0.3232) (Figure 3B). 
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Table 1: Baseline patient characteristics and axitinib plasma pharmacokinetics

Factor Category n = 60
Age, year Mean (range) 67.3 (42–90)
Gender Male/Female 42/18
Prior systemic therapy Median (range) 16 (1–3)
Pathology Clear/Non-clear 50/10
Axitinib dose, mg/day Median (range) 10 (2–12)
ECOG PS 0/1/2–3 46/7/7

AUC, ng, hr/ml Median (range) 154.5 (11.5–1933.4)
Total Clearance, L/hr Median (range) 56.2 (5.2–900.9)
C-max, ng/ml Median (range) 23.3 (1.6–200.8)
C-0 hr, ng/ml Median (range) 9.7 (0–137.1)
Trough, ng/ml Median (range) 4.6 (0–86.3)

ECOG PS, Eastern Cooperative Oncology Group performance status.
AUC, area under the plasma concentration–time curve.
Total Clearance, dose/AUC.
C-max, maximal observed plasma concentration.
C-0 hr, observed plasma concentration just before administration.
Trough, trough observed plasma concentration.

Table 2: Summary of efficacy and adverse events

Efficacy n = 44
Best response rate (%)
Complete response 1 (2.3)
Partial response 11 (25.0)
Stable disease 25 (56.8)
Progressive disease 3 (6.8)
Not evaluated 4 (9.1)
% Best tumor reduction 
Median (range) 13.1 (−58.9–100)

Adverse events n = 44
G2 (%) G3 (%)

Thrombocytpenia 1 (2.3) 0 (0)
Creatinine increased 5 (11.4) 0 (0)
Hypothyroid 33 (75.0) 0 (0)
AST/ALT increased 3 (6.8) 1 (2.3)
Diarrhea 6 (13.6) 2 (4.5)
Hand–foot syndrome 6 (13.6) 3 (6.8)
Proteinuria 10 (22.7) 7 (15.9)
Hypertension 10 (22.7) 21 (47.7)
Fatigue 2 (4.5) 1 (2.3)
WBC decreased 1 (2.3) 0 (0)
Mucositis oral 2 (4.5) 0 (0)
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Predictive ability of calculated AUC in validation 
study

To validate the prediction model, calculated AUC 
was prospectively compared with actual AUC following 
axitinib treatment in the 16 additional consecutive 

patients. A statistically significant correlation was 
found between calculated AUC before axitinib 
treatment and actual AUC after axitinib treatment in 
the linear regression analysis (R2 = 0.493, P = 0.0024) 
as well as in the Kruskal–Wallis analysis (P = 0.0077) 
(Figure 4A). 

Figure 1: Actual AUC significantly correlated with objective response rate (ORR) and adverse events (AEs). 
Representative axitinib plasma pharmacokinetics. (A1) Representative case with low AUC and C-max and high total clearance. (A2) 
Representative case with high AUC and C-max and low total clearance. (A3) Representative case with high C-0 hr but with low trough. 
(B) Patients with higher actual AUC had significantly higher ORR than those with lower actual AUC (P = 0.0002). (C) Actual AUC 
significantly correlated with grade 2–3 hand-foot syndrome (P = 0.0055) and grade 2 hypothyroidism (P = 0.0381), but did not correlate 
with hypertension (P = 0.6300) in AEs.
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DISCUSSION

Previous studies have demonstrated that higher 
AUC for axitinib is closely associated with better ORR 
as well as a more favorable prognosis in metastatic RCC 
[11, 12]. These reports support our findings that 

higher AUC is directly associated with better ORR. 
We demonstrated a close association between higher 
AUC and higher grade AEs (hypothyroidism and hand-
foot syndrome), supporting the reliability of our PK 
data as these AEs have been reported to be on-target 
AEs [15]. Beyond our expectations, concentrations of 

Figure 2: A model to predict clinical efficacy and adverse events was established using gene polymorphisms, including 
ABC transporters (ABCB1 and ABCG2), UGT1A, and OR2B11. (A) OR2B11 polymorphism identified by whole-exome 
sequencing significantly correlated with actual AUC in Kruskal–Wallis analysis (P = 0.0005). (B) Prediction model for AUC using 
exponential regression with gene polymorphisms and dosage as covariates. (C) Positive correlation between calculated AUC and actual 
AUC was observed in linear regression analysis (R2 = 0.784, P < 0.0001) and Kruskal–Wallis analysis (P < 0.0001). 
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axitinib differed greatly between individuals, up to 100-
fold. Wide variations in PK data and our finding that 
hypertension was associated neither with ORR nor AUC 
strongly indicate that optimal dosing of axitinib should 
be determined based on PK data, although 8-point blood 
sampling (as in our study protocol) for PK data is not 
realistic in the clinical setting. Our pharmacogenetics-
based AUC model, comprising data from several gene 
polymorphisms, is unique because previous models were 
based only on a single gene polymorphism associated with 
drug metabolism and efflux with poor prediction ability 
[3, 16]. In our model, we selected six polymorphisms, 
five of which are reportedly associated with axitinib 
pharmacokinetics and one newly discovered from 

comprehensive sequencing, and constructed a prediction 
model of AUC. OR2B11, Olfactory Receptor Family 
2 Subfamily B Member 11, is related to the olfactory 
signaling pathway via G-protein-coupled receptors 
[17]. Although no association has been reported to date 
between OR2B11 and drug efflux or metabolism, OR2B11 
polymorphism may affect drug efflux through NLRP3 
inflammasome-mediated changes in the configuration of 
the gut microbiota [18]. The inclusion of this gene in our 
model can be justified by the close association observed 
between OR2B11 polymorphism and actual AUC in the 
validation study (P = 0.0060, Figure 4B). 

Unexpectedly, hypertension was not associated 
with ORR. One reason may be the different patient 

Figure 3: Calculated AUC predicted clinical efficacy and adverse events (AEs). (A) Calculated AUC significantly correlated 
with objective response rate (P = 0.0044). (B) Calculated AUC significantly correlated with grade 2–3 hand-foot syndrome (P = 0.0191) 
and grade 2 hypothyroidism (P = 0.0085), but did not correlate with hypertension (P = 0.3232) in AEs.
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backgrounds, since many patients suffered hypertension 
and received antihypertensive treatment before axitinib 
therapy in our study. Concerning other AE, higher 
AUC was significantly correlated with hypothyroidism. 
A previous report showed hypothyroidism causes 
decreasing CYP3A involved in axitinib metabolism [19]. 
Hypothyroidism derived from axitinib may induce high 
axitinib AUC. In our study, all (100%) of actual AUC was 
not consistent with calculated AUC determined by gene 
polymorphisms. Such mismatched cases may be explained 
by the fact that the plasma axitinib concentration was also 
influenced by several factors including age, body weight, 
smoking, prior systemic therapy, interaction of other drugs 
[12].

With respect to benefits for patient outcomes, our 
model is likely to predict the best ORR and several AEs. 
Best ORR is used as a surrogate biomarker for overall 
survival in advanced and metastatic RCC [20, 21], 
while higher AUC did not reach significance to predict 
progression-free survival (PFS) and overall survival (OS) 
in a titration study [22, 23]. The lack of an association 
with PFS and OS in the titration study may be explained 
by the wide variation in individual AUC values for axitinib 
treatment, indicating that optimal initial dosing should be 
determined based on PK data. As our model is based on 
six gene polymorphisms, optimal initial dosing could be 
determined prior to axitinib treatment. Dose modification 
should be considered if the calculated AUC value is at the 
25th percentile and less, or at the 75th percentile and more 
(Figure 4C).

An advantage of DNA microarray technology is that 
multiple gene polymorphisms can be quickly determined 
in a single experiment with high accuracy. Therefore, 
we recommend examining these gene polymorphisms in 
clinical settings using DNA microarrays to determine the 
optimal initial dose of axitinib.

In conclusion, our pharmacogenetics-based AUC 
prediction model may allow the optimal initial axitinib 
dose to be determined prior to treatment, and might 
contribute to more precise treatment of individuals with 
advanced RCC, thus preventing severe AEs.

MATERIALS AND METHODS

Study design and patients

A total of 60 patients with histologically diagnosed 
metastatic or locally-advanced RCC who were treated 
with axitinib between 2013 and 2017 at Yamaguchi 
University Hospital were consecutively enrolled in 
this prospective phase II study (registered to UMIN-
CTR; UMIN000011147). To investigate the correlation 
between PK data and clinical data, plasma concentrations 
of axitinib were measured and the resulting PK data 
compared with ORR and AEs reported for the initial 44 
consecutive patients. To construct the prediction model 

for axitinib AUC, we used an exponential regression 
model with gene polymorphisms and axitinib dosage 
as covariates. To further validate this prediction model, 
the calculated AUC was prospectively compared with 
actual AUC in 16 additional consecutive patients. The 
characteristics of all 60 patients are summarized in Table 
1. This study was approved by the ethical committee of 
Yamaguchi University Hospital and informed consent was 
obtained from all patients prior to participation. Axitinib 
was administered orally at a starting dose of 5 mg twice 
daily, while dose modification (range: 2–20 mg/day) was 
conducted based on AEs. Computed tomography was 
performed every 8 weeks after axitinib initiation. Best 
ORR and AEs were assessed according to RECIST version 
1.1 and CTCAE version 4.0, respectively.

Plasma concentration of axitinib

Blood samples were collected at 0, 1, 2, 3, 4, 8, and 
12 hr after administration of axitinib on day 8. Plasma 
was separated by centrifugation, stored at −30° C prior 
to analysis, and analyzed by liquid chromatography with 
tandem mass spectrometry. The axitinib AUC from 0 to 
12 hr was calculated by the trapezoidal method. Total 
clearance (dose/AUC), maximal plasma concentration 
(C-max), plasma concentration immediately prior to 
administration (C-0 hr), and trough plasma concentration 
(Trough) were also examined. Chromatographic 
conditions and Mass spectrometric conditions were 
previously described [24–26].

Chromatographic conditions

A high-performance liquid chromatography (HPLC) 
system consisting of an LPG-3400 pump (Thermo 
Scientific, Tokyo, Japan) with flow control valve, 
auto sampler (WPS-3000), and temperature controller 
compartment for the column (TCC-3000) was utilized in 
this study. Separation was performed in gradient mode 
with a flow rate of 0.5 ml min-1 over a 5-min run time 
through a reversed phase C18 column. A CAPCELL PAK 
C18MG II (250 mm × 4.6 mm i.d., Shiseido, Tokyo, 
Japan) HPLC column was used. The temperature for the 
auto sampler and column oven was maintained at 10° C 
and 30° C, respectively. The chromatographic run was 
performed with a gradient, and the mobile phase consisted 
of solvent A (HPLC grade water + 0.05% formic acid) 
and solvent B (HPLC grade acetonitrile + 0.05% formic 
acid) with a “T” switch tube only 200 µl/min of total flow 
(0.5 ml/min) introduced into the mass spectrometry (MS) 
detector. 

Mass spectrometry conditions

MS detection was performed on a Thermo Scientific 
TSQ Endura system equipped with a heated electrospray 
ionization (ESI) probe as the ionization source and a triple 



Oncotarget17167www.oncotarget.com

quadrupole analyzer with positive ionization mode. In the 
mass spectrometer, nitrogen gas was used as an Aux gas, 
and sheath gas and ion sweep gas were constantly supplied 
from a gas generator (System Instruments, Japan). Argon 

gas was used as a collision-activated dissociation (CAD) 
gas and was constantly supplied from an argon gas cylinder. 
MS and MS/MS conditions for pure standards of axitinib 
were optimized by continuous infusion at 0.5 ml min-1  

Figure 4: Calculated AUC before axitinib treatment predicted actual AUC after axitinib treatment in the validation 
study. (A) In the validation study, a positive correlation between calculated AUC before axitinib treatment and actual AUC after axitinib 
treatment was found in the linear regression analysis (R2 = 0.493, P = 0.0024) and Kruskal–Wallis analysis (P = 0.0077). (B) In the 
validation study, OR2B11 polymorphism before axitinib treatment significantly correlated with actual AUC after axitinib treatment in 
Kruskal–Wallis analysis (P = 0.0060). (C) Axitinib pharmacogenetics-based AUC model to determine optimal initial axitinib doses.
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using a syringe pump (Model 11, Harvard Apparatus, 
Inc., Holliston, MA, USA). The most abundant product 
ion of each component was selected for the construction 
of a multiple reaction-monitoring (MRM) method. 
The transitions monitored were 387.12/356.05 and 
488.17/401.12 for AXI and DST, respectively. Aux gas, 
sheath gas, ion sweep gas, ion spray voltage, and vaporizer 
temperature were set at 15 psi, 50 psi, 2 psi, 3500 V and 
400° C, respectively. The collision energy was set at 
22 and 31 eV for AXI and DST, respectively. The mass 
spectrometer was operated in unit resolution mode for 
both Q1 and Q3 in the MRM mode. All data were acquired 
with auto tuning using Quantum tune software (Thermo 
Scientific). 

Whole-exome sequencing

Lymphocyte DNA was extracted using a QIAamp 
DNA Mini Kit (Qiagen, Valencia, CA, USA). Whole-
exome sequencing was performed in the initial 44 
consecutive patients to comprehensively analyze germline 
DNA variants in the entire exome. DNA quantity was 
determined with using fluorometric quantitation with 
a Qubit 3.0 Fluorometer (Thermo Scientific, Tokyo, 
Japan) as well as by spectrophotometric quantitation 
using a NanoDrop (Thermo Scientific). DNA quality was 
examined by agarose gel electrophoresis. A total of 50 ng 
of genomic DNA for each sample was used to prepare in 
vitro DNA libraries with a Nextera Rapid Capture Exome 
Kit (Illumina, Tokyo, Japan), producing a total target size 
of 45 Mb. Sequencing of paired-end fragments (75 bp × 2)  
was conducted on an Illumina NextSeq 500 sequencing 
platform (Illumina).

Data analysis of whole-exome sequencing

The obtained next-generation sequencing data were 
subjected to reads cleaning with cutadapt (version 1.2.1) 
(http://cutadapt.readthedocs.io/en/stable/guide.html) and 
cmpfastq_pe.pl software (http://compbio.brc.iop.kcl.
ac.uk/software/cmpfastq_pe.php). After a quality control 
step, the filtered short reads were mapped to the reference 
genome (hg19) with BWA (version 0.7.12). The Genome 
Analysis Tool Kit (GATK; version 3.5) was used to 
perform local realignment and for the detection of single-
nucleotide and insertion/deletion (InDel) polymorphisms. 
Furthermore, each detected variant was annotated with 
information such as the genome position and functional 
effect using SnpEff (version 4.1 k). Annotation of all 
variants filtered by quality control was then conducted 
using the Variant Effect Predictor, including annotation 
with dbSNP146. Following the identification of damaging 
variants predicted by SnpEff, Sorting Intolerant From 
Tolerant (SIFT), Polyphen-2, or PROVEAN as damaging, 
a case-control association analysis was conducted 
between AUC high and low patients using a trend model 

(Cochran–Armitage test) in PLINK (version 1.902b3w). 
The concordance rate between whole-exome sequencing 
and Sanger sequencing was 99.3%.

Sanger sequencing 

Gene polymorphisms of ABCB1, ABCG2, CYP3A, 
UGT1A, and OR2B11 were examined by Sanger 
sequencing. PCR conditions were 95° C for 5 minutes; 
40 cycles of 95° C for 30 seconds, 60° C for 30 seconds, 
and 72° C for 30 seconds; and 72° C for 10 minutes. PCR 
products were purified using a QIAquick PCR purification 
kit (Qiagen, Hilden, Germany), cycle-sequenced using 
a BigDye Terminator version 3.1 cycle sequencing kit 
(Applied Biosystems; Thermo Fisher Scientific, Inc., 
Waltham, MA, USA) according to the manufacturer’s 
protocol, and resolved on an ABI 3500 × L sequencer 
(Applied Biosystems). Sequences were analyzed using 
Sequence Scanner Software v2.0 (Applied Biosystems). 
The primers used are shown in Supplementary Table 1.

DNA microarray

Gene polymorphisms of ABCB1, ABCG2, CYP3A, 
UGT1A, and OR2B11 were examined by DNA microarray 
(Gene Chip, Toyo Kohan Co., Kudamatsu, Japan) in 
parallel with sequencing. A focused DNA microarray 
was developed on a small chip measuring 3 mm2 in size. 
Primers were labeled with IC5-OSu (N-ethyl-N′-[5-(N′′-
succinimidyloxycarbonyl) pentyl]-3,3,30,30-tetramethyl-
2,20-indodicarbocyanine iodide; kex = 640 nm and kem 
= 660 nm; Dojindo Laboratories, Kumamoto, Japan). 
Multiplex PCR was performed in a 20 μl volume using 
0.05 U FastStart Taq DNA polymerase (Roche Diagnostics, 
Indianapolis, IN, USA) and 20 ng genomic DNA and the 
following cycle procedure: 40 cycles of denaturation at 95° 
C for 30 s, annealing at 60° C for 30 s, and elongation at 
72° C for 30 s. IC5-labeled DNA was hybridized to probes 
on the microarray at 55° C for 60 min. The fluorescence 
intensity (FI) was measured using a Bioshot charge-
coupled device camera (Toyo Kohan, Tokyo, Japan). The 
primers and probes used are shown in Supplementary 
Table 2. The concordance rate between Sanger sequencing 
and DNA microarray analysis was 99.7%.

Pharmacogenetics-based AUC model

We constructed a prediction model of the standard 
AUC using axitinib dosage data from the initial 44 patients 
and the following six genotypes: UGT1A7 (387T>G, 
rs17868323), UGT1A9*1b (-118T9>T10, rs3832043), 
ABCG2 (421C>A, rs2231142), ABCB1 (2677G>T/A, 
rs2032582), ABCB1 (3435C>T, rs1045642), and OR2B11 
(23delT, rs35305980). Genotypes were categorized 
into three groups: wild-type, hetero, and variant. In 
our prediction model, the genotypes were expressed as 
(0, 0), (1, 0), or (0, 1) using two variables (xi, xi+1) and 
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dosage was expressed as xj. We used 8 variables out of 
13 candidates to construct the regression model, where 

exp{ }i i i oy b x b= Σ +  represents the predicted standard 
AUC (AUC/dose, mg/day). We trained the regression 
model by minimizing the squared error between the 
logarithm of the standard AUC and i i i ob x bΣ +  for 44 
patients, where  is the actual standard AUC. 

Statistical analysis

Statistical analysis was performed using JMP 
(version 13) statistical software (SAS Institute, Cary, NC, 
USA). PK data and ORR as continuous values were tested 
using linear regression analysis, and categorized data were 
tested using the Mann–Whitney U test or Kruskal–Wallis 
test. Levels of statistical significance were set at P < 0.05. 
The prediction model was constructed using R freeware 
(version 2.3.2, R Core Team, Vienna, Austria; https://
www.R-project.org).
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