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ABSTRACT

In normal tissue, p53 protein has a wide range of functions involving cell 
homeostasis; its mutation, however, permits a carcinogenic acquisition of function. 
TP53 gene mutation is a major genomic aberration in various human cancers and is 
a critical event in the multi-step carcinogenesis process. TP53 mutation is clinically 
relevant for the molecular classification of carcinogenesis, as most recently described 
rigorously by the Cancer Genome Atlas Research Network. TP53 gene mutation has been 
considered to work as a tumor suppressor gene through the loss of its transcriptional 
activity, which is designated as a canonical function. However, in cancer patients 
with mutant TP53, mutated p53 protein is frequently overexpressed, suggesting the 
activation of an oncogenic process through a gain of function (GOF). As part of this GOF, 
molecular mechanisms explaining the non-canonical function of TP53 gene abnormality 
have been reported, in which mutant p53 unconventionally binds with various critical 
molecules suppressing oncogenic properties, such as p63 and p73. Moreover, mutant 
TP53 gene-targeted therapy has been rigorously developed, and promising clinical trials 
have been started. In this study, we summarize the novel aspects of mutant p53 and 
describe its prominent therapeutic potentials in human cancer.

INTRODUCTION

The TP53 gene has 11 exons and produces an 
mRNA of 2.2-2.5 kb. The wild-type (WT) p53 protein has 
a wide range of functions involved in cell homeostasis, 
including the cell cycle, DNA maintenance, and apoptosis, 
while mutant p53 protein is seen in most cancers. 
Therefore, the TP53 gene has been referred to as the 
“Guardian of the Genome” [1] or the “Death Star” [2]. In 
1981, it was discovered that the p53 protein, which is a 
53,000-dalton protein, accumulates along with proto-virus 
protein [3]. The TP53 gene was initially thought to be an 
oncogene, since mutant p53 protein was overexpressed in 
cancer cells. However, it was subsequently confirmed that 
the TP53 gene is located on the short arm of chromosome 
17, which is frequently deleted in human cancer [4, 5]. 

In addition, mutation of the TP53 gene was confirmed 
to cause Li-Fraumeni syndrome, which leads to the 
development of various primary cancers at a young age 
[6]. Thus, research on the function of p53 protein tended 
to focus on its role as a tumor suppressor gene.

The canonical functions of the TP53 gene are based 
on its transcriptional activity [7] and its promotion of the 
transactivation of the p21WAF1 gene, which is involved 
in cell cycle arrest [8]. After crystal structure analyses 
became possible, the DNA binding region of p53 protein 
was found to be the location of many point mutations 
associated with tumorigenesis. Therefore, mutation of 
the DNA binding region of p53 protein was considered 
to lead to a dysfunction in the transactivation of normal 
p53 protein [9]. Distinctive functional abnormalities 
occur depending on the type and locations of TP53 gene 
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mutation. TP53 gene alterations often consist of missense 
mutations, but infrequent nonsense or frameshift mutations 
do occur. Missense mutations are usually observed in 
exons 5-8, while nonsense and frameshift mutations are 
more frequent in exons 4, 9, and 10 [10]. Single point 
mutations are located in the TP53 DNA-binding domain 
for more than 95% of all reported carcinogenic mutations 
[11]. Mutations at these residues can be categorized 
as contact (R273H, R248Q and R248W) or structural 
(R175H, G245S, R249S and R282H) mutants, depending 
on whether the residues have a role in direct DNA contact 
or in the maintenance of the p53 structure. Reportedly, 
contact mutant proteins are destabilizing and often exhibit 
a nuclear distribution in response to genotoxic stress, 
while structural mutant proteins are typically distributed 
around the nucleus of protein aggregates [12].

A detailed sequence analysis revealed the domains 
that are involved in protein modifications of p53 protein, 
including a transactivation domain, an apoptosis-related 
domain within a proline-rich domain, a tetramerization-

related domain, and a basic domain [13]. Moreover, the 
C-terminus contains a nuclear localization signal (NLS) 
and a nuclear export signal (NES), which are involved in 
the regulation of the appropriate subcellular localization 
of p53 function (Figure 1a) [14]. WT p53 protein forms a 
tetramer and performs transcriptional control by binding 
to specific sequence sites of genomic DNA (Figure 1b, 
1c) [15]. Cross-linking of various post-transcriptional 
modifications (PTMs) have been reported to affect both 
the stability and activation of p53, including tetramer 
formation and localization [16–18], and these PTMs 
can be functionally divided into two groups: ones that 
stabilize and activate p53 (phosphorylation, acetylation, 
and methylation of K372), and ones that, in contrast, lead 
to the degradation and inactivation of p53 (ubiquitination, 
neddylation, sumoylation, and methylation of certain 
lysines). Although the functional analysis of PTMs has 
been much discussed, the significance of many PTMs, 
including ubiquitination and acetylation, has largely 
remained unclear.

Figure 1: Structure of the tetramer formation domain in p53 protein. (a) Domain structure of p53. Human p53 is composed 
of 393 amino acid residues and has a transactivation domain, proline-rich domain, DNA-binding domain, nuclear localization signal area, 
tetramerization domain, nuclear export signal area, and basic domain. Modified from Ref. 10. (b) Transcriptional activation mechanisms 
of target genes by p53 protein. Various stresses activate p53, which then recognizes the sequence RRRCWWGYYY (R: purine base, Y: 
pyrimidine base, W: adenine or thymine) in the nucleus and combines with the sequence to form a tetramer. (c) NMR (nuclear magnetic 
resonance) structure of tetramerization domains. The tetramerization domain contains a [β strand-turn-α helix] structure and forms a 
tetramer from 2 antiparallel b sheets and 4 helix bundles. Citation from Ref. 15.
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In this review article, we would like to provide the 
rationale for a review on mutant p53 from a clinical point 
of view, including its clinical relevance and potential 
therapeutic targets of the TP53 gene in the context of its 
classically canonical functions and its latest non-canonical 
functions in human cancer.

Canonical functions of WT p53 protein and its 
transcriptional target genes

Although normal cells retain only a small amount 
of p53 protein, levels are increased during times of stress 
[19]. Under basal conditions, the dysfunctionality of p53 
protein occurs mainly by binding to MDM2 and MDM4 
[20, 21]. Heterodimers of MDM2 and MDM4 bind to p53 
through their N-terminus and activate the E3 ligase activity 
of MDM2 to induce proteasomal degradation of the p53 
protein [22–24]. MDM4 inhibits both the degradation 
and transactivity of p53, thereby becoming a target of the 
stress signal to disengage the p53/MDM2 feedback loop 
for appropriate p53 responses to stresses [23, 25–27]. 
The balance of p53 activation-related genes can have a 
very important role in the mechanism of carcinogenesis, 
since MDM2 gene amplification has been recognized in 
tumors like sarcoma, in which TP53 alterations are less 
frequent [28].

The major canonical functions of WT p53 involve 
growth arrest, apoptosis, and DNA repair. Cell cycle 
arrest by WT p53 is mediated through transcriptional 
target genes such as p21, 14-3-3σ and reprimo. p21 
suppresses both the G1/S and the G2/M phases [8, 29], 
while 14-3-3σ and reprimo suppress the G2/M phase [30, 
31]. During apoptosis, the Bax gene is directly induced 
by the p53 protein. [32, 33]. Bax promotes the release 
of cytochrome c in mitochondria and causes apoptosis 
through the activation of multiple caspases. Moreover, 
p53 can directly induce the expression of the PUMA gene, 
the protein of which can bind to Bcl-2 or Bcl-xL through 
the Bcl-2 homology 3 (BH3) domain to induce Bax [34]. 
Noxa also encodes a BH3 domain and causes apoptosis 
through the same mechanism [35]. In addition, p53 can 
induce the KILLER/DR5 gene, with the resulting DR5 
protein activating Bax through FADD [36]. Apoptosis is 
strictly controlled by the numerous overlapping layers of 
p53 functions. DNA repair genes are also strictly increased 
in the p53 canonical pathway through the induction of 
the expressions of the GADD45, XPC, and p53 R2 genes 
[37–39]. When the cells suffer minor DNA damage, the 
aberrations are repaired during cell cycle arrest, enabling 
the cells to survive while destroying cancer cells that have 
received major DNA damage.

On the other hand, several recent reports have 
indicated that WT and mutant p53 protein have many non-
canonical functions, the detailed mechanisms of which are 
not all clear. The targets of the WT p53 protein that are 
involved in non-canonical functions are the BAI1 gene 
(brain-specific angiogenesis inhibitor 1) [40, 41], which is 

associated with the inhibition of angiogenesis; the TIGAR 
gene (TP53-induced glycolysis and apoptosis regulator), 
which is associated with the inhibition of glycolysis and 
protection against oxidative stress [42]; the SCO2 gene 
(synthesis of cytochrome C oxidase 2), which is associated 
with mitochondrial respiration [43, 44]; the DRAM gene 
(damage-regulated autophagy modulator), which is 
associated with the positive regulation of autophagy [45]; 
and miR-34s associated with the production of cell-cycle 
arrest and an increase in apoptosis [46]. A summary of 
the molecular mechanisms of p53 functions is shown in 
Figure 2.

“Gain of function” associated with TP53 
mutation explains a novel p53 non-canonical 
function

Mutant p53 protein is frequently overexpressed in 
cancer cells [47], and thus the mutation of the TP53 gene 
results in not only a loss of function of WT p53, but also 
a gain of function (GOF). Overexpression of the mutant 
p53 protein has been presumed to be related to the new 
acquisition of oncogenic functions.

The R175H and R273H mutations, which are 
mutation hot spots for the TP53 gene, were confirmed to 
accelerate metastasis via a GOF in various mouse models. 
Liu et al. reported that mice with the R175H mutation 
exhibit increased tumor formation and metastasis and a 
simultaneous loss of WT p53 functions [48]. Lang et al. 
also reported that embryonic fibroblasts from p53R175H 
mutant mice showed enhanced cell proliferation, DNA 
synthesis, and a metastatic status [49]. Similarly, mice 
with the R273H mutation exhibited tumor growth [50], 
and Heinlein et al. revealed that genomic instability was 
not accompanied by such tumorigenic changes [51]. It has 
become obvious that TP53 mutation elicits GOF effects.

Mutant p53 has been demonstrated to facilitate non-
canonical GOF effects, such as the epithelial mesenchymal 
transition (EMT) [52, 53], the activation of NF-kβ [54], 
increases in chemo-resistance [55] and radio-resistance 
[56], assistance in the resolution of the proteasome [57], 
an increase in the MDM2 isoform [58], the stimulation 
of aerobic glycolysis [59], the inhibition of anabolic 
metabolism [60], the promotion of DNA synthesis [61, 
62], histone modification [63], and the enhancement of 
integrin and Rho GTPase signaling [64]. Therefore, some 
of these non-canonical functions can be explained, at least 
in part, by a GOF of mutant p53 (Figure 3a).

The precise molecular mechanisms of mutant p53 
have been lately studied more deeply. Mutant p53, but not 
WT p53, can directly bind to isoforms of p63, which is a 
p53 family protein [65, 66]. Muller et al. reported that the 
direct inhibition of p63 by mutant p53 is involved in cell 
proliferation and invasion via the enhanced expression of 
α5β1-integrin and EGFR signals in tumor cells [67]. To 
identify the mechanism involved in such non-canonical 
functions accurately, we need to determine the direct 
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binding partner, such as p63, with mutant p53 protein 
to explain the GOF. p73, a p53 family member other 
than p63, is also a direct binding partner of mutant p53 
[68]. Although p63 and p73 are not directly associated 
with tumorigenesis in normal cells, in the presence of 
mutant p53, they can become a transcription target and 
are related to the progression of tumors. Indeed, there 
is a report that mutant p53 induces PDGFRb (platelet 
derived growth factor receptor beta) through a cell-
autonomous mechanism involving the inhibition of a p73/
NF-Y complex that represses PDGFRb expression in p53-
deficient, noninvasive cells [69].

Direct potential candidate partners with mutant p53 
have been recently and rigorously reported, as shown 
in Figure 3b. PTEN enhances mutant p53 protein levels 
via the inhibition of mutant p53 degradation by Mdm2, 
and this is considered to be mediated through direct 
protein binding between mutant p53 and PTEN [70]. 
The Rab11 effector protein, a Rab-coupling protein, 
was also reported to be mediated through a mechanism 
independent of p63 and to result in the enhancement 
of α5β1-integrin and EGFR in tumor cells [67]. Coffill 
et al. proposed a different mechanism for mutant p53-
driven invasion: the interaction of p53 R273H with 
nardilysin (NRD1) promotes an invasive response to 

heparin binding-epidermal growth factor-like growth 
factor that is p53R273H-dependant but that does not 
require Rab coupling protein or p63 [71]. Mutant p53 also 
reportedly exerts oncogenic functions and promotes EMT 
in endometrial cancer by binding directly to the promoter 
of miR-130b, a negative regulator of ZEB1, and inhibiting 
its transcription [53]. Moreover, mutant p53 protein 
prevents Smad3/N-CoR complex formation on the REGγ 
promoter, which enhances the activity of the REGγ-20S 
proteasome pathway and contributes to mutant p53 GOF 
[57]. In addition, mutant p53 protein binds the miR-223 
promoter and reduces its transcriptional activity, resulting 
in chemo-resistance via the upregulation of STMN-1 [55]. 
Furthermore, some reports have indicated that mutant 53 
protein, but not WT p53 protein, preferentially binds to 
the AMPKα subunit and inhibits AMPK activation under 
conditions of energy stress [60].

p53 mutants also bind to and upregulate chromatin 
regulatory genes, including the methyltransferases 
MLL1 (also known as KMT2A), MLL2 (also known as 
KMT2D), and the acetyltransferase MOZ (also known as 
KAT6A or MYST3), resulting in genome-wide increases 
in histone methylation and acetylation [63]. Mutant p53 
also binds and sequesters RNA helicases p72/82 from the 
microprocessor complex, interfering with the Drosha-

Figure 2: Scheme of the p53 pathway. p53 is activated by a variety of stressors and p53 suppressor genes, such as MDM2. In the 
nucleus, activated p53 induces the transcriptional activation of many target genes. Moreover, in the cytoplasm, activated p53 has been 
reported to localize directly in mitochondria and to induce non-transferable dependent apoptosis.
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pri-miRNAs association [72]. Recently, mutant p53 was 
reported to cooperate with Nrf2 (NFE2L2) to activate 
proteasome gene transcription, resulting in resistance to 
the proteasome inhibitor carfilzomib in cancer cells [73]. 
In addition, the p53 mutant protein physically interacts 
with Yes-associated protein (YAP), a key transcriptional 
regulator controlling organ growth, tissue homeostasis, 
and cancer [74].

Clinical relevance of the TP53 gene mutation 
during molecular carcinogenesis

Vogelstein et al. proposed that genetic aberrations 
accumulate in accordance with the precancerous-cancer 
sequence [75]. Genetic aberration occurs in a multi-
step carcinogenesis process that includes genomic 
mutations as well as other somatic changes such as 
chromosomal instability (CIN), microsatellite instability 
(MSI), and a CpG island methylation phenotype (CIMP) 
[76]. The mutation of the TP53 gene is induced by 
activation-induced cytidine deaminase (AID) through 
chronic inflammation in gastric cancer (GC), liver 
cancer, and colorectal cancer (CRC) [77–82]. Thus, a 
common molecular mechanism explaining TP53 gene 
mutagenesis in the context of chronic inflammation is 
assumed to exist.

Molecular multi-step carcinogenesis has been 
commonly recognized in CRC. The mutation of the 
TP53 gene is thought to occur during the latter half of 
carcinogenesis (highly atypical polyp) and to cause 
malignant transformation in CRC [75]. Actually, the 
TP53 mutation was found in 58% of CRC and was 
accompanied by a high frequency of APC gene mutation 
(82%) and KRAS gene mutation (46%) [83]. The CIN 
phenotype includes chromosomal amplification or 
deletion and has been observed in about 80% of CRCs 
[84]. The amplification of chromosome 8q, 13q, or 20q 
and the deletion of chromosome 8p, 15q, 17p, or 18q are 
correlated with carcinogenesis in high-grade adenoma 
[85]. Although the TP53 gene mutation coexists with 
CIN in many cases of CRC and was thought to elicit CIN, 
experiments with knockout WT TP53 show no change in 
CIN [86]. Therefore, the loss of p53 function has recently 
been considered to result from CIN. On the other hand, 
an inverse correlation between the frequency of the 
occurrence of CIN and MSI/CIMP has been reported [87]. 
In other words, the mutation of the TP53 gene is rarely 
detected in lesions with CIMP, while the mutation of the 
TP53 gene and CIN are common changes associated with 
carcinogenesis in CIMP-negative tumors.

This inverse correlation has also been observed in 
GC, especially intestinal-type cancer [88]. In GC, diffuse 

Figure 3: Molecular mechanisms of gain of function. (a) Non-canonical functions whose direct interactions with mutant p53 have 
not been elucidated. (b) Mutant p53s promote the transcriptional activation of various genes. The molecules reported to bind directly to 
mutant p53 are listed.



Oncotarget16239www.oncotarget.com

type and intestinal type cancers are mixed, and the latter 
is often triggered by chronic inflammation associated with 
Helicobacter pylori infection. For this reason, GC has a 
lower frequency of TP53 gene mutation than CRC [88]. 
Recently, the comprehensive molecular characteristics of 
GC have been clarified, a GC can now be classified into 
four types according to its molecular features (Figure 4a) 
[89]. These subgroups consist of CIN, genomic stable 
(GS), MSI, and EBV infection, and TP53 gene mutations 
are concentrated in the CIN group, which are often 
intestinal-type cancers. Intestinal-type GC has a similar 
oncogenic process to CRC and can be triggered by chronic 
inflammation. In contrast, diffuse-type tumor, the major 
phenotype of GC, has been reported to occur because of 
E-cadherin mutation, with only a few tumors carrying 
TP53 gene mutations.

Chronic inflammation induced by H. pylori 
infection has been demonstrated to be related to the 

DNA methylation of tumor suppressor genes in GC [90]. 
Moreover, it has been suggested that epigenetic control is 
associated with the malignant conversion of tumors, and 
the “super high methylation (SHM)” of 3 tumor suppressor 
genes (PGP9.5, NMDAR2B, and CCNA1), which are 
related to the TP53 pathways (Figure 4b), was identified 
[88]. The SHM of these genes was only recognized in GC 
patients with WT TP53, which is reminiscent of the inverse 
correlation between TP53 mutation/CIN and MSI/CIMP 
in GC, similar to CRC. In this study, the p53 pathway-
aberration group, including TP53 mutation and the SHM of 
the 3 genes, was frequently observed in intestinal-type GC.

Breast cancer is known to have different TP53 
mutation rates according to the basic therapeutic subtypes, 
such as the luminal A, luminal B, HER2-enriched (HER2E) 
and triple-negative (TN) subtypes [91]. TP53 mutations in TN 
tumors were the most frequent among the subtypes (80%), 
while a few mutations of other cancer-related genes including 

Figure 4: Classification and features of carcinogenic mechanisms through a comprehensive molecular search in GC. 
(a) Comprehensive molecular search of 295 gastric adenocarcinoma cases. In the EBV-infected group, PI3K mutation and p16 silencing 
are characteristic genomic features, while the MSI group has low-level gene expressions of MLH1. TP53 gene mutations are concentrated 
in the CIN group, which are often intestinal-type cancer. Modified from Ref. 88. (b) Epigenetic control of cancer suppressor genes related 
to the TP53 pathway in GC. The super high methylation of PGP9.5, NMDAR2B, and CCNA1 genes is only seen in GC patients with WT 
TP53. The TP53 pathway-aberration group, including mutant TP53 and SHM of the 3 genes, is frequently observed in intestinal-type GC. 
Modified from Ref. 87.
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PIK3CA were also present. The luminal A subtype had fewer 
TP53 mutations (12%), compared with the TN subtype, but 
had numerous PIK3CA mutations (45%). The luminal B 
subtype had mutations of TP53 and PIK3CA (29% each), 
whereas the HER2E subtype had a hybrid pattern with a high 
frequency of TP53 (72%) and PIK3CA (39%) mutations.

The genome profiles of TN breast cancer and high-
grade serous ovarian cancer (HGS-OvCa) were recently 
reported [91]. HGS-OvCa has a high TP53 mutation rate 
(96%), but a few somatic mutations of BRCA1/2 are 
present in an additional 3% of cases [92]. On the other 
hand, clear-cell OvCa has a low rate of TP53 mutations but 
exhibits recurrent PIK3CA and ARID1A mutations [93–95]. 
Endometrioid OvCa has a lower rate of TP53 and more 
frequent CTTNB1, ARID1A, and PIK3CA mutations, while 
KRAS mutations are prevalent in mucinous OvCa [94–96].

Similar to TN breast cancer and HGS-OvCa, 
almost all lung squamous cell carcinoma (lung SqCC) 
exhibited frequent somatic mutations of TP53 (81%), 
while both EGFR and KRAS mutations were almost absent 
[97]. Lung SqCC also had frequent alterations in the 
CDKN2A/RB1, NFE2L2/KEAP1/CUL3, PI3K/AKT and 
SOX2/TP63/NOTCH1 pathways and shared many gene 
mutations in common with head and neck squamous cell 
carcinomas without evidence of human papilloma virus 
infection, including PIK3CA, PTEN, TP53, CDKN2A, 
NOTCH1, and HRAS [98, 99].

In esophageal adenocarcinoma (EAC), significant 
mutations of TP53 (71%) and CDKN2A (14%) have been 
reported [100], and these results were consistent with the 
prominence of TP53 and CDKN2A mutations in Barrett’s 

esophagus, a precancerous condition of EAC. Likewise, 
the prominence of TP53 mutation was observed (91%) in 
esophageal squamous cell carcinoma (ESCC). In the latest 
detailed molecular classification, ESCC was classified 
into a high TP53 mutation group, which possess similar 
somatic alterations to lung SqCC and head-and-neck 
SCC, and a low TP53 mutation group, which has a higher 
mutation rate of PIK3CA and SMARCA4 [100].

Nearly half (49%) of urothelial bladder cancers 
had TP53 mutations, and 76% of the cancers had inactive 
TP53 functions [101] because their relationship with the 
amplification (9%) and overexpression (29%) of MDM2 
was mutually exclusive.

Treatment strategy for TP53 mutant cancer

Mutant TP53 could therefore be a therapeutic 
target. Molecular target drugs often exert their effects by 
suppressing oncogenes that are overexpressed in cancer 
cells, and oncogenes tend to be the therapeutic targets. In 
terms of TP53-targeted therapy, however, both WT and 
mutant TP53 gene-targeted treatments have been proposed 
[102]. When grouping these treatments according to 
therapeutic strategy, they can be classified according to 4 
objectives: 1) restoration of the normal p53 function lost by 
genomic mutation [103]; 2) direct attack on p53-deficient 
cells [104]; 3) enhancement of normal p53 function [105]; 
and 4) mimicking DNA damage with a virus [106] (Table 
1). Many studies examining these possibilities and problems 
are ongoing, and some interesting studies have successfully 
achieved their objectives. The major mutant p53 target 
strategies are shown in Figure 5.

Figure 5: Mutant p53s targeted therapies. Treatment strategies for mutant p53s have been developed, such as the restoration of 
normal p53 function, through the modification of proteasome and autophagy, the enhancement of normal p53 function, and virus-mediated 
mechanisms.
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PRIMA-1 has been identified as a small molecule 
that restores transcriptional activity, DNA binding ability, 
and the structure of WT p53 and that induces mutant p53-
dependent apoptosis [107]. PRIMA-1MET, or methylated 
PRIMA-1, contributes to the restoration of WT p53 
function through a variety of mechanisms [108]. Currently, 
there is an ongoing phase II trial examining PRIMA-1, 
and anti-tumor effects against various cancers have 
been reported [73, 109–117]. Surprisingly, PRIMA-1MET 
exerts tumor suppressive effects in various cancers and 
showed a synergistic effect when combined with existing 
chemotherapy.

Research on p53 activation in cancer cells with 
normal p53 has led to the generation of Nutlin-3a and 
RITA (reactivation of p53 and induction of tumor cell 
apoptosis) [118, 119]. Nutlin-3a inhibits the binding site 
of MDM2-p53, promotes p53 function, and increases 
chemotherapy-induced apoptosis in cancer cells lacking 
functional p53 by activating E2F2, while RITA avoids 
MDM2-induced p53 repression by binding to p53 [119]. 
A phase I trial of Nutlin has been started [120].

Other studies have identified factors that restore 
normal p53 function [121], such as MIRA-1 [122], JNJ-
26854165 [123], Calcein AM [124], and NSC59984 [125]; 
thus, various clinical trials are expected in the future. 
MIRA-1 induces apoptosis via the restoration of p53-
dependent transcriptional transactivation, such as p21, 
MDM2, and PUMA, by shifting the equilibrium between the 
native and unfolded conformation of p53 toward the native 
conformation [122]. JNJ-26854165 induces p53-mediated 
apoptosis in leukemia cells and has the potential to be an 
attractive chemotherapeutic as either a single agent or in 
combination with AraC or anthracyclines [123]. Calcein 
AM blocks the oligomerization of TopBP, a key mediator 
for the oncogenic GOF activity of mutant p53, and blocks 
p53 binding, resulting in the reactivation of E2F1-dependent 
apoptosis and a GOF of mutant p53 [124]. Especially, 
NSC59984 has been reported to exert interesting functions 
that not only restore normal p53 function through p73 
activation, but also deplete the non-canonical functions of 
mutant p53 via MDM2 and ubiquitin-proteasome activation. 
On the other hand, the Hsp90 inhibitor ganetespib showed 
a therapeutic effect only for mutant p53 in the context of 
an HSP90/HDAC6 chaperone mechanism related to the 
stability of mutant p53 [126]. Genomic therapy using a 

recombinant oncolytic adenovirus incorporating WT p53 
has been attempted in clinical studies in China [127]. Hence, 
various studies targeting mutant p53 and its correlation with 
a poor prognosis have been progressing.

Future prospects

The functions and mechanisms of the TP53 gene 
have gradually become clear over a period of more than 
30 years. However, there are still many areas that lack 
clarity. The next strategy for cancer treatment is expected 
to become the “Precision Medicine Initiative” announced 
by the President of the United States, Barack Obama, 
in 2015. This strategy aims to establish optimal cancer 
prevention and treatment by grouping patients according 
to not only genomic phenotypes, but also environments 
and lifestyles based on information obtained from a cohort 
study of more than 100 million people. Even using this 
new approach, the TP53 gene and its mutations will never 
be excluded from the interest of cancer researchers, since 
they have a deep impact on molecular carcinogenesis and 
the potential for new cancer treatments. We have high 
expectations that research on the TP53 gene will continue 
to advance steadily.
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