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ABSTRACT

Background: To evaluate risk of severe breast fibrosis occurrence in patients 
treated by breast-conserving surgery, adjuvant radiotherapy and hormonotherapy 
(HT) according to individual radiosensitivity (RILA assay). 

Results: HT– and RILAhigh were the two independent factors associated with 
improved breast-fibrosis free survival (BFFS). BFFS rate at 36 months was lower in 
patients with RILAlow and HT+ than in patients with RILAhigh and HT– (75.8% and 100%, 
respectively; p = 0.004, hazard ratio 5.84 [95% confidence interval (CI) 1.8–19.1]). 
Conversely, BFFS at 36 months was comparable in patients with RILAhigh and HT+ and in 
patients with RILAlow and HT– (89.8% and 93.5%, respectively; p = 0.39, hazard ratio 1.7  
[95% CI 0.51–5.65]), showing that these two parameters influenced independently 
the occurrence of severe breast fibrosis. BFFS rate was not affected by the HT type 
(tamoxifen or aromatase inhibitor) and timing (concomitant or sequential with 
radiotherapy). 

Conclusions: HT and RILA score independently influenced BFFS rate at 36 months. 
Patients with RILAhigh and HT– presented an excellent BFFS at 36 months (100%). 

Materials and methods: Breast Fibrosis-Free Survival (BFFS) rate was assessed 
relative to RILA categories and to adjuvant HT use (HT+ and HT–, respectively) in 
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a prospective multicentre study (NCT00893035) which enrolled 502 breast cancer 
patients (456 evaluable patients). Breast fibrosis was recorded according to CTCAE 
v3.0 grading scale; RILA score was defined according to two categories (<12%: 
RILAlow; ≥12%: RILAhigh). 

INTRODUCTION

The efficacy of adjuvant breast cancer radiotherapy 
after breast-conserving surgery is now well established. 
The Early Breast Cancer Trialists’ Collaborative Group 
(EBCTCG) meta-analysis showed that the addition of 
radiotherapy significantly reduces breast cancer recurrence 
and death [1]. In addition to radiotherapy, endocrine 
treatment (tamoxifen, TAM, and/or aromatase inhibitors, 
AI) also significantly decreases all recurrences and the 10-
year mortality rate for breast cancer [2]. 

However, late side effects have been reported in 
long-term survivor patients with better breast cancer 
outcome. These toxicities, such as radio-induced 
cardiotoxicity or poor cosmetic outcome, could impair 
the quality of life and affect the clinical benefit over time 
[3, 4]. The risk factors of normal tissue radiosensitivity 
are related to the personal medical history and/or 
directly to the treatment [5]. It has been hypothesized 
that severe fibrosis occurs mostly in patients with 
micro-vascularization diseases (e.g., diabetes mellitus, 
hypertension, etc.) or with diseases related to excess 
collagen deposition (e.g., scleroderma). Other risk factors 
are related to the radiotherapy modalities (high total 
dose, high dose per fraction, large irradiated volume) and 
to the treatment combinations (e.g., endocrine therapy, 
chemotherapy, history of surgery) (reviewed in [6]). 

Ionizing radiation blocks cells in the G0/G1 
and G2/M phases of the cell cycle, and this effect is 
inhibited by estradiol [7, 8]. Incubation of breast cancer 
cells with TAM or AIs, such as letrozole, promotes their 
accumulation in the G0/G1 phase [9, 10]. Moreover, TAM 
and radiotherapy increase the secretion of pro-fibrotic 
cytokines and transforming growth factor-beta (TGF-β), a 
key mediator of fibrogenesis [11, 12]. On the basis of these 
preclinical observations, a clinical study assessed TAM 
pro-fibrotic properties in patients with breast cancer and 
showed that TAM increases the risk of lung fibrosis when 
given concomitantly with radiotherapy [13]. Similarly, an 
increased risk of lung fibrosis was also observed in animal 
models treated concomitantly with TAM and ionizing 
radiation [14]. However, other preclinical results suggest 
that TAM could have anti-fibrotic effects by inhibiting TGF-
β1-mediated activation of fibroblasts through modulation of 
SMAD [15] and non-SMAD signaling pathways [16].

Patients- and treatments-related risk factors give a 
general trend of the probability to develop late radio-induced 
toxicities. A rapid and non-invasive predictive assay to 
identify hyper-reactive patients (i.e., patients at high risk 
of developing late radio-induced toxicity) is now available. 
This test is based on the evaluation by flow cytometry of 

radiation-induced CD8+ T-lymphocyte apoptosis (RILA). We 
previously demonstrated that patients with low RILA scores 
have a higher risk of severe breast fibrosis [17]. Moreover, in 
a longitudinal data repository study, we showed that RILA 
and treatment with TAM are two independent predictive 
factors of subcutaneous fibrosis in patients with breast cancer 
[18]. Specifically, in patients with low RILA scores or treated 
with TAM, the complication (grade 2 or more fibrosis)-free 
survival rate at 2 years was lower than in patients who did not 
receive TAM or with high RILA scores.

Therefore, here, we used data we collected during 
a prospective, multicenter French trial [17] to assess the 
risk of severe breast fibrosis occurrence in patients with 
breast cancer who underwent breast-conserving surgery, in 
function of the adjuvant hormonotherapy (TAM or AI) and 
individual radiosensitivity, monitored by RILA. 

RESULTS

Patients’ characteristics

As reported in 2015 [17], 456 patients with breast 
cancer received radiotherapy and had an evaluable 
blood sample. All patients underwent breast-conserving 
surgery followed by whole-breast radiotherapy (n = 456), 
tumor bed boost irradiation (n = 449), and lymph node 
radiotherapy (n = 108). Moreover, 143 patients (31.4%) 
received adjuvant chemotherapy, and 349 (76.5%) were 
treated with HT (TAM: n = 135; AI: n = 214) (Table 1). 

The incidence of grade ≥2 fibrosis was significantly 
higher in HT+ than in HT–patients (15.6% and 15.9% for 
TAM and AI, respectively, versus 5.6% for HT– patients; 
p = 0.018) (Table 1). RILA score, tobacco smoking and 
breast volume were not significantly different in the HT 
subgroups (HT–, TAM or AI). No difference was also 
observed concerning the surgery type/margins and adjuvant 
systemic therapies (chemotherapy ± trastuzumab). As nodal 
involvement was significantly higher in the HT+ than in 
HT– group (p = 0.01), more patients in the TAM and AI 
subgroups underwent lymph node irradiation than in the 
HT– group (p = 0.03). The tumor bed boost irradiation 
techniques were significantly different in the HT+ and HT– 

subgroups: electron beams were more frequently used in the 
TAM than in the AI group (p = 0.03) (Table 1).

Risk of breast fibrosis according to RILA and HT

This prospective and multicenter French trial 
reported a 3-year BFFS rate of 87.8% [95% CI 84.4–90.5] 
[17]. Adjuvant HT and RILA were the two independent 
factors for breast fibrosis relapse-free survival when 
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Table 1: Characteristics and treatments of patients divided according to the use or not of hormonotherapy (tamoxifen, 
aromatase inhibitors, or none)

  
No 

hormonotherapy Tamoxifen
Aromatase 
inhibitors

 N = 107 (%) N = 135 (%) N = 214 (%) P-value*

Median age (years, range) 56 (29–77) 49 (32–77) 62 (42–88) <0.001
Fibrosis

No 101 (94.4) 114 (84.4) 180 (84.1) 0.02
Yes 6 (5.6) 21 (15.6) 34 (15.9)

RILA
<12% 47 (43.9) 49 (36.3) 73 (34.1) 0.13

12–20% 35 (32.7) 44 (32.6) 61 (28.5)
≥20% 25 (23.4) 42 (31.1) 80 (37.4)

Tobacco smoking
Non smoker 76 (71.0) 77 (57.0) 136 (63.5) 0.15

Active/former smoker 29 (27.1) 52 (38.5) 66 (30.8)
NA 2 (1.9) 6 (4.4) 12 (5.6)

Menopausal status
Premenopausal 33 (30.8) 92 (68.1) 14 (6.5) <0.001
Postmenopausal 71 (66.4) 41 (30.4) 200 (93.5)

NA 3 (2.8) 2 (1.5) 0
Breast volume

Small 40 (37.4) 45 (33.3) 50 (23.4) 0.06
Large 53 (49.5) 68 (50.4) 120 (56.1)
NA 14 (13.1) 22 (16.3) 44 (20.5)

T stage
0 0 1 (0.7) 4 (1.9) 0.09
1 96 (89.7) 112 (83.0) 182 (85.1)
2 9 (8.4) 22 (16.3) 28 (13.1)

NA 2 (1.9) 0 0
N stage 

0 100 (93.5) 109 (80.7) 180 (84.1) 0.01
1 6 (5.6) 25 (18.5) 28 (13.1)
2 0 1 (0.7) 5 (2.3)
3 0 0 1 (0.5)

NA 1 (0.9) 0 0 
Type of initial surgery

Tumorectomy 93 (86.9) 108 (80.0) 180 (84.1) 0.35
Quadrantectomy 14 (13.1) 27 (20.0) 34 (15.9)

Margins
Negative 105 (98.1) 129 (95.6) 207 (96.7) 0.37
Positive 1 (0.9) 6 (4.4) 6 (2.8)

NA 1 (0.9) 0 1 (0.5)
Surgical area

<50 cm3 57 (53.3) 72 (53.3) 104 (48.6) 0.68
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adjusted for tobacco smoking (HR = 3.17 [95% CI  
1.36–7.39], p = 0.008 for HT; and HR = 0.45 [95% CI 
0.27–0.74] (p = 0.002) for RILA). 

Here, we further studied the relationship between 
RILA and adjuvant HT in grade ≥2 breast fibrosis 
occurrence (Figure 1). Compared with the reference 
category (RILAhigh/HT–: BFFS=100%), the 36-month 
BFFS rate was lower in patients with RILAlow/HT+ (75.8%, 
HR = 5.85 [95% CI 1.79–19.13], p = 0.04), with RILAlow/
HT– (93.5%, HR = 1.31 [95% CI 0.26–6.49], P = NS) 
and with RILAhigh/HT+ (89.8%, HR = 2.23 [95% CI  
0.67–7.40], p = NS).

Risk of grade ≥ 2 breast fibrosis in the TAM and 
AI groups 

Compared with the reference category (RILAhigh/
HT–), in RILAlow patients, adjuvant TAM or AI significantly 
increased the risk of severe breast fibrosis (HR = 3.81 
[95% CI 1.06–13.66], p = 0.04; and HR = 5.02 [95% CI 
1.49–16.92], p = 0.009, respectively), without significant 
difference between TAM and AI (p = 0.46) (Figure 2). The 
36-month BFFS rates were 81.2% and 72.2% in the TAM 
and AI groups, respectively. 

In RILAhigh patients, adjuvant HT slightly increased 
the risk of severe breast fibrosis (HR = 2.43 for TAM 
[95% CI 0.67–8.88, p = 0.177] and HR = 2.12 for AI [95% 
CI 0.61–7.40, p = 0.236], without significant differences 
(Figure 2). The 36-month BFFS was 89.5% (TAM) and 
90% (AI) for HT+ patients compared with the reference 
category (RILAhigh/HT–).

Risk of breast fibrosis according to HT timing 
(co-HT or sq-HT) 

Compared with the reference category (RILAhigh/HT–), 
in RILAlow patients, the 36-month BFFS rate was 73.9% in 
the co-HT and 76.9% in the sq-HT group without significant 
differences between groups (Figure 3). Both co-HT and sq-
HT increased the risk of severe fibrosis (HR = 4.47 [95% CI 
1.32–15.12], p = 0.016 and HR = 4.58 [95% CI 1.29–16.25], 
p = 0.018, for the co-HT and sq-HT group, respectively).

Similar results were obtained for RILAhigh/HT+ patients 
(Figure 3). The 36-month BFFS rates were 89.9% and 89.7% 
in the co-HT and sq-HT group, respectively. However, HT 
timing did not increase the risk of severe fibrosis (HR = 2.05  
[95% CI 0.54–7.76], p = 0.288 and HR = 2.35 [95% CI  
0.69–8.07], p = 0.174, for co-HT and sq-HT, respectively).

≥50 cm3 49 (45.8) 60 (44.4) 108 (50.5)
NA 1 (0.9) 3 (2.2) 2 (0.9)

Adjuvant 
chemotherapy

No 71 (66.4) 86 (63.7) 156 (72.9) 0.16
Yes 36 (33.6) 49 (36.3) 58 (27.1)

Adjuvant 
trastuzumab

No 100 (93.5) 130 (96.3) 209 (97.7) 0.17
Yes 7 (6.5) 5 (3.7) 5 (2.3)

Node irradiation
Mammary gland only 90 (84.1) 94 (69.6) 164 (76.6) 0.03

Supraclavicular ± internal 
mammary chain 17 (15.9) 41 (30.4) 50 (23.4)

Boost
No 3 (2.8) 2 (1.5) 2 (0.9) 0.43
Yes 104 (97.2) 133 (98.5) 212 (99.1)

Boost technique
Photon 78 (72.9) 90 (66.7) 172 (80.4) 0.03

Electron 13 (12.2) 25 (18.5) 17 (7.9)
Brachytherapy 0 1 (0.7) 0

Photon + electron 13 (12.1) 14 (10.4) 23 (10.7)
NA 3 (2.8) 5 (3.7) 2 (0.9)

*Kruskal–Wallis and Fisher’s Exact tests, NA: non-available.
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DISCUSSION 

In the present study, data on late toxicities from a 
prospective and multicenter French study on patients with 
breast cancer were used to assess the interactions between 
HT and radiotherapy in breast fibrosis occurrence. Our results 
showed that patients with low RILA score and treated with 
HT had the highest risk of severe late side effects. 

A large and exhaustive literature review was recently 
published and reported no difference in esthetic outcome 
and toxicities in patients with breast cancer who underwent 
sequential or concomitant endocrine treatments [19]. TAM 
use and timing, relative to radiotherapy, were studied in 
three retrospective studies with a very long follow-up (>8 
years) [20–22]. Pierce and colleagues reported a subgroup 
analysis of the Intergroup 0102 phase III randomized trial. 
Only grade 3 or more late toxicities were reviewed and 
no difference of lung toxicity was observed in patients 
who received concurrent and sequential TAM use [22]. 
The monocentric and retrospective study by Harris and 
colleagues also did not observe any difference in terms of 
late side effects (breast edema, arm edema, rib fractures, 
pneumonitis, 3- and 5-year cosmesis) between concurrent 
and sequential TAM use [21]. Similar findings were 
reported for concurrent and sequential AI use in two 
retrospective cohorts [23, 24] and in a randomized phase II 
clinical trial (Concomitant HOrmono-RadioTherapy, CO-

HO-RT, NCT00208273) that investigated the timing of 
endocrine therapy and radiotherapy in patients with breast 
cancer [25]. The long-term follow-up of the CO-HO-RT 
trial did not report any statistical difference regarding 
HT timing, but its translational sub-studies showed that 
low RILA values (used as a stratification factor) were 
associated with a higher risk of breast fibrosis [26]. Our 
present results confirm that HT timing does not affect the 
risk of breast fibrosis. In line with the CO-HO-RT results, 
we also observed that low RILA values were associated 
with higher risk of breast fibrosis, regardless of HT timing. 
More precisely, the association of low RILA score and HT 
significantly increased the risk of breast fibrosis by 5- to 
6-fold. These results confirm our previous finding that 
TAM enhances breast fibrosis risk only in hypersensitive 
patients (i.e., patients with low RILA scores) [18].

While no data has been published on the molecular 
mechanisms involved in AI-related fibrosis, conflicting 
results have been reported about TAM role in fibrosis 
occurrence. Recent in vitro results showed that TAM 
prevents fibroblast activation by TGF-β as effectively 
as a TGF-β receptor kinase inhibitor (GW6604) [16]. 
Similarly, in another in vivo model (renal tubulointerstitial 
fibrosis), TAM could reduce renal fibrosis by decreasing 
the expression of extracellular matrix proteins and tissue 
TGF-β [15]. On the other hand, Bese and Yavas [14, 27] 
observed that the concomitant use of TAM, but not AI 

Figure 1: Breast fibrosis-free survival (BFFS) according to the RILA score (<12%, RILALOW and ≥12%, RILAHIGH) 
and hormonotherapy (with HT, HT; or without, no HT).
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Figure 2: BFFS according to the RILA score (RILALOW or RILAHIGH) and the HT sub-categories: “TAM/no TAM”, 
“AI/no AI”, and “no HT”.

Figure 3: BFFS according to the RILA score (RILALOW or RILAHIGH) and HT timing relative to radiotherapy: 
concomitant “co-HT”, sequential “sq-HT”, or none “no HT”.



Oncotarget15763www.oncotarget.com

with radiotherapy increased radiation-induced pulmonary 
toxicity. However, they did not study the underlying 
mechanism of action. Other authors reported that the 
blood plasma level of TGF-β-1 was comparable between 
patients with breast cancer who developed or not lung 
fibrosis [28]. Moreover, they did not find any difference 
in lung fibrosis occurrence in patients who received TAM 
before or concomitantly with radiotherapy. Finally, Ryu 
and colleagues [29] showed that in a liver fibrosis rat 
model, TAM decreases both plasma and tissue TGF β-1 
expression. 

In conclusion, we showed that patients with low 
RILA scores are at higher risk of developing radiation-
induced fibrosis [17]. Moreover, in these patients, HT 
further increased this risk, although preclinical data reported 
that TAM has an anti-fibrotic effect. Therefore, it is now 
important to study the molecular mechanisms to understand 
why HT significantly increases the risk of fibrosis only in 
patients identified as hypersensitive to radiotherapy.

On the basis of these results, a patent was filed for 
determining the risk of developing fibrosis in the clinical 
practice (patent No. PCT/EP2017/071887).

MATERIALS AND METHODS

Study design, patients’ selection and treatment 

This French prospective multicenter study 
(NCT00893035) enrolled 502 patients to assess RILA as 
a predictive tool of breast fibrosis after adjuvant breast 
radiotherapy [17]. Two treatment groups were characterized: 
patients who received adjuvant hormonotherapy (HT+) and 
patients who did not (HT–). HT+ patients were then divided 
in two subcategories (treated with TAM or AI) to study the 
effect of each pharmacological class on the risk of grade ≥2 
fibrosis. Moreover, hormonotherapy (HT) was defined as 
concomitant (co-HT) with radiotherapy when started before 
or the same day as radiotherapy, and sequential (sq-HT) 
when started after the last day of radiotherapy. 

Toxicity assessment 

Toxicities were prospectively evaluated at baseline, 
every week during radiotherapy, one, three and six months 
after radiotherapy completion and then every six months 
up to month 36. Cutaneous and subcutaneous toxicities 
were assessed using all the possible definitions described 
in the CTCAE v3.0 grading scale for the Dermatology/
Skin category. Grade ≥2 breast fibrosis (primary endpoint) 
was blindly scored by at least two physicians.

Radiation-induced lymphocyte apoptosis 
(RILA) [30]

Briefly, 200 µl of heparinized whole blood was 
cultured for 24 hours and then irradiated with 8 Gy or not 

(control samples). After 24 hours, CD8+ lymphocytes were 
separated from the other blood cells and their apoptosis 
percentage was assessed by flow cytometry. RILA was 
defined as the population of CD8+ lymphocytes with 
reduced DNA fluorescence and calculated as the percentage 
of total T-lymphocyte death induced by irradiation (8 Gy) 
minus the spontaneous cell death (0 Gy) [17]. 

Statistical analyses 

Categorical variables were described as frequencies 
and percentages and continuous variables as medians and 
ranges. Comparisons between groups were performed with 
the Fisher’s Exact and Kruskal–Wallis tests, respectively. 
Absolute changes in RILA scores before and after 
irradiation were evaluated as categorical variables. Three 
categories were constructed around the 33% quantile (<12, 
12–20, and ≥20) and then merged in two categories, leading 
to two main subcategories: RILA low (RILAlow) and RILA 
high (RILAhigh) for values lower and higher than 12%, 
respectively. Breast Fibrosis-Free Survival (BFFS) was 
defined as the interval between the radiotherapy start and 
the occurrence of a grade ≥2 breast fibrosis. Patients alive 
who never experienced a grade ≥2 breast fibrosis at the last 
follow-up were censored. BFFS rates were estimated using 
the Kaplan–Meier method. Ninety-five percent confidence 
intervals (95%CI) were also determined.

The effect size was estimated by univariate analysis 
using the Cox proportional hazard regression model. 
Overall comparisons were performed using the log-rank 
test, and subgroup effect size comparisons with the Wald 
test. The median follow-up was estimated with the inverse 
Kaplan–Meier method. A P-value < 0.05 was considered 
as significant. All statistical tests were two-sided. Analyses 
were carried out with the Stata software, v13.

Abbreviations

TAM: tamoxifen; AI: aromatase inhibitors; 
RILA: radiation-induced CD8+ T-lymphocyte apoptosis 
assay; HT+: patients group who was treated by adjuvant 
hormonotherapy; HT–: patients group who was not 
treated by adjuvant hormonotherapy; co-HT: concomitant 
hormonotherapy; sq-HT: sequential hormonotherapy; 
RILAlow: RILA value lower than 12%; RILAhigh: RILA value 
higher than 12%; BFFS: Breast Fibrosis-Free Survival; 95% 
CI: ninety-five percent confidence intervals.
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