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Interleukin-26 (IL-26) is a novel anti-microbial peptide 
produced by T cells in response to staphylococcal enterotoxin
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ABSTRACT

Anti-microbial peptides are produced at outer and inner surfaces by epithelia and 
innate immune cells in response to bacterial infection. Staphylococcus aureus is an 
enterotoxin producing, Gram-positive pathogen, which is a major cause of soft tissue 
infections and life-threatening bacteremia and sepsis. Here we show that (i) skin T cells 
in chronic wounds infected with S. aureus express interleukin-26 (IL-26) in situ, (ii) 
staphylococcal enterotoxins (SE) trigger IL-26 expression in T cell lines and primary skin 
T cells, and (iii) IL-26 triggers death and inhibits biofilm formation and growth of S. aureus. 
Thus, we provide novel evidence that IL-26 is an anti-microbial peptide produced by T 
cells in response to SE. Accordingly, we propose that IL-26 producing T cells take part in 
the innate immune response to SE producing S. aureus and thus play a novel role in the 
primary innate immune defense in addition to their classical role in adaptive immunity.
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INTRODUCTION

Staphylococcus aureus is a major cause of life-
threatening infections such as bacteremia, sepsis, and 
endocarditis and account for approximately 19,000 deaths per 
year in the United States [1]. S. aureus can grow in biofilms 
and produces an array of proteins interfering directly- and 
in-directly with host immune responses and antibiotic 
therapy [2, 3]. These factors include staphylococcal protein 
A, staphylococcal binder of immunoglobulin, and a large 
family of staphylococcal enterotoxins (SE) (reviewed in 3). 
SE are known as super-antigens because they directly cross-
link MHC class II on antigen-presenting cells (APC) and the 
T cell receptor (TCR) on T cells (expressing the appropriate 

TCR- Vβ chain) without prior antigen-processing by the 
APC [4–6]. Thus, SE are able to elicit an aberrant immune 
response [4] while at the same time able to block specific 
T cell receptor and cytokine responses [7, 8]. Inversely, 
multiple host defense mechanisms against S. aureus have 
been identified including anti-microbial peptides, antibodies, 
neutrophils and IL-17 producing helper T (TH17) cells  
[9]. Anti-microbial peptides are produced at outer and inner 
surfaces by epithelia and innate immune cells in response 
to bacterial infection. Host responses to S. aureus involve 
cathelicidin peptides like LL-37 as well as α- and β-defensins 
[10, 11]. SE are among the most potent activators of T cells 
and as little as a few SE molecules are sufficient to trigger T 
cell activation [4] indicating that T cells may play a unique 
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role by sensing staphylococcal enterotoxins at extremely low 
concentrations [4]. In particular, TH17 cells are believed to be 
important in the host defense against S. aureus, partly through 
recruitment of neutrophils and partly through the production 
of the cytokines IL-17 and IL-22, which in turn stimulate 
the production of anti-bacterial substances including LL-37 
and defensins [10–14]. IL-26 is a newly described cytokine 
belonging to the IL-10 super-family [15], which has recently 
been implicated in autoimmune diseases such as rheumatoid 
arthritis, psoriasis, and colitis [16, 17]. However, the 
biological function of IL-26 is far from understood. Recently, 
IL-26 was shown to possess anti-bacterial activity against a 
wide range of bacteria including S. aureus [18] suggesting a 
broader role in host defenses against bacteria [19]. Here we 
show that SE triggers IL-26 expression in T cells and that IL-
26 inhibits S. aureus growth, survival and biofilm formation 
indicating that T cells sense and respond to enterotoxin-
producing S. aureus by expression of the newly described 
anti-microbial cytokine, IL-26.

RESULTS AND DISCUSSION

IL-26 has been implicated in chronic inflammation 
and autoimmunity whereas its role in infectious diseases is 
unclear. However, recent data indicated that IL-26 is an anti-
microbial peptide that kills extracellular bacteria such as S. 
aureus [18]. As S. aureus produce toxins that are extremely 
potent stimulators of T cells [4], we hypothesized that T 
cells may play a role in the early antimicrobial response 
to bacterial toxins by producing IL-26, which, in turn, 
inhibits bacterial growth and immune evasion. Accordingly, 
we examined whether staphylococcal toxins induced 
IL-26 expression in human T cells. As shown in Figure 
1, staphylococcal enterotoxin-A (SEA) induced IL-26 
expression in a concentration-dependent manner in human 
SEA-sensitive CD4+ T cell lines [20]. Thus, IL-26 mRNA 
was induced at SEA concentrations as low as 1-5 ng/ml, 
whereas optimal IL-26 induction was observed at a SEA 
concentration of 10 ng/ml (Figure 1A). Our observation 
that IL-26 induction was not further increased with higher 
concentrations of SEA (> 10 ng/ml) was in keeping with 
previous findings that SEA at high concentrations triggers 
apoptosis in CD4+ T cells [4]. The IL-26 response was 
highly specific for SEA and the closely related enterotoxin 
SEE (Figure 1B). In contrast, enterotoxins such as SEB 
and TSST did not trigger an IL-26 response in SEA/SEE- 
sensitive T cell lines (Figure 1B). Reversely, SEA and 
SEE did not induce IL-26 expression in T cell lines (data 
not shown), which did not express SEA/SEE- responsive 
TCR Vβ chains [20]. To address whether clinical infections 
with S. aureus were associated with expression of IL-26 
in situ, we examined for IL-26 expression in skin wounds 
chronically infected with S. aureus. Accordingly, we used 
a Texas Red (TxR)-labelled S. aureus specific probe in a 
FISH assay [21, 22] and a FITC- labeled IL-26 specific 
antibody to examine IL-26 expression in tissue sections. 

Staining for S. aureus (Figure 2A, 2B, red stain) and co-
staining for IL-26 (Figure 2C, 2D) showed the presence 
of S. aureus and expression of IL-26 in the same wounds 
(Figure 2). Accordingly, we addressed whether purified 
SEA induced IL-26 in skin-resident T cells from healthy 
individuals. To this end, primary skin T cells isolated from 
healthy skin specimens were stimulated ex vivo with SEA 
for 24 hours prior to cyto-histochemical analysis for IL-
26 expression using the FITC IL-26 conjugated antibody. 
As shown in Figure 3, IL-26 was expressed in a fraction 
of SEA responsive skin T cells following SEA exposure 
ex vivo (Figure 3B versus Figure 3A; green labeling as 
indicated by arrows). In contrast, IL-26 was not expressed 
ex vivo in SEA- non-responsive skin T cells from healthy, 
uninfected individuals (Figure 3A and data not shown). 

The outer walls of bacteria such as S. aureus are 
negatively charged and anti-microbial peptides like LL-37 
are characterized by an ability to bind to negatively charged 
membranes [11]. As IL-26 is a polycationic protein with 
a strong positive charge and anti-microbial properties [18, 
23], we addressed whether IL-26 functions as an anti-
bacterial peptide similar to LL-37. Accordingly, S. aureus 
were incubated in growth medium for 24 hours in the 
presence or absence of IL-26 and the number of colony 
forming units was measured by spread-plating in LB agar 
as described elsewhere [21, 22]. As shown in Figure 4A, IL-
26 significantly reduced the number of colony forming units 
in a concentration dependent manner. At a concentration of 
0.3 μM, IL-26 reduced the number of colony forming units 
(CFUs) to 50% (p < 0.05, Figure 4A, third column from 
the left). IL-22 and IL-26 are related cytokines belonging 
to the IL-10 superfamily and expressed in tandem by some 
TH17 and TH22 cells [16, 17]. Accordingly, we addressed 
whether IL-22 also inhibited S. aureus cultures in vitro. 
However, as shown in Figure 4A (middle rows), IL-22 had 
no effect on the number of CFUs indicating that the anti-
bacterial effect was specific for IL-26. Interesting, IL-22 
does not possess the physical/chemical characteristics of IL-
26 (such as a predicted basic isoelectric point above 24) and 
lacks its ability to bind to negatively charged membranes 
suggesting that these features play a key role of IL-26 to 
function as an anti-bacterial peptide [18]. As mentioned 
above, LL-37 also binds to negatively charged membranes 
and as expected, LL-37 profoundly inhibited growth of 
S. aureus cultures (Figure 4A, right columns). Notably, 
10 times higher concentrations of LL-37 were required to 
inhibit S. aureus (Figure 4A) indicating higher sensitivity to 
IL-26 than to LL-37. To address whether IL-26 bactericidal, 
we measured DNA release by fluorescent propidium iodide 
(PI) staining [22]. As shown in Figure 4B, 24 hours of 
incubation with IL-26 induced a significant increase in free 
DNA/PI in stationary bacterial cultures (Figure 4B, closed 
triangles), when compared to vehicle (Figure 4B, open 
triangles) indicating that IL-26 induced a time-dependent 
increase in bacterial death. 
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It has become increasingly acknowledged that 
biofilm formation by aggregating bacteria comprises a 
serious clinical problem [24]. Thus, generation of a biofilm 
creates a barrier, which shields the bacteria from antibiotics 
and the immune system [24]. Because LL-37 inhibits 
biofilm formation in a wide array of bacteria including 
S. aureus [10, 25], we investigated whether IL-26 had a 
similar effect on biofilm formation by S. aureus in vitro. As 
measured by crystal violet staining, biofilm formation was 
profoundly inhibited by IL-26 in a concentration-dependent 
manner (Figure 5A). Thus, crystal violet staining (amount 
of attached biofilm) was decreased by more than 50% by  
IL-26 at a concentration of 0.3 μM (Figure 5A, right). 
Even at IL-26 concentrations as low as 75 nM, a reduction 
in the amount of biofilm was observed (Figure 5A). As 
expected, LL-37 also inhibited biofilm formation by S. 
aureus (Figure 5B). Interestingly, IL-26 appeared to be 
a more potent inhibitor of biofilm formation than LL-37 
(Figure 5A versus Figure 5B), which is in line with the 

observation above that colony formation by S. aureus was 
more sensitive to IL-26 than to LL-37. Since the reduction 
in biofilm is paralleled by a decrease in bacterial viability 
(Figure 4B), it is most likely that the inhibition of biofilm 
formation is caused by the antibacterial activity of IL-26. 

Given the biophysical/chemical characteristics of  
IL-26 [16], it might be expected that the anti-bacterial 
capacity of IL-26 is not limited to S. aureus. Indeed, Meller 
et al. [18] reported that IL-26 inhibited growth of other 
bacteria including Pseudomonas aeruginosa. In accordance, 
we observed that IL-26 inhibited colony and biofilm 
formation by P. aeruginosa with a similar potency as was 
observed for S. aureus inhibition (Supplementary Figure 1).  
Accordingly, our data confirm [18] and extend the 
hypothesis that IL-26 inhibits a wider spectrum of bacteria 
and thus, has a general role as an anti-bacterial peptide. 

It is well known that infection with S. aureus plays 
a pathogenic role in disorders like impetigo, ecthyma, 
sepsis, and chronic wounds. However, it has become 

Figure 1: Staphylococcal enterotoxin triggers IL-26 expression in antigen specific CD4+ TH22 T cells. SEA- and SEE- 
responsive CD4+ human TH22 T cell lines (22 and data not shown) were cultured in a humidified atmosphere at 37 degrees Celsius and 
stimulated with increasing concentrations of SEA prior to analysis for IL-26 expression by RT-PCR (34) (A); or stimulated with or without 
recombinant SEA, SEB, SEE, and toxic shock syndrome toxoid (TSST) at 10 ng/ml for 24 hours prior analysis for IL-26 expression by 
RT-PCR (B).



Oncotarget19484www.oncotarget.com

Figure 2: IL-26 expression is Staphylococcus aureus infected chronic venous wounds. Representative CLSM images of 
S. aureus (A and B) and IL-26 (C and D) in chronic wounds. The bacteria were detected by PNA-FISH with an TxR-labeled S. aureus-
specific probe (red) (bars indicate 10 μm) and FITC labeled il-26 specific antibody (green) (bars indicate 20 μm). DAPI was used as blue 
counterstain (host cells).

Figure 3: Staphylococcal enterotoxin (SEA) triggers IL-26 expression in responsive primary skin T cells. Normal human 
skin-derived primary T-cells were stimulated for 24 h without (A) or with SEA (100 ng/ml) (B) and stained with IL26 (green). Nuclei 
stained with DAPI (blue). A subpopulation of T-cells produces IL26 when stimulated with SEA (arrows).
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clear that colonization with SE-producing S. aureus 
may also drive deregulation of signal transducers and 
activators of transcription (STAT), cytokine release, 
and/or disease progression of chronic skin diseases such 
as atopic dermatitis and cutaneous T cell lymphoma  
[26–30]. Interestingly, clinically infections with S. aureus 
and other bacteria generally occur after diagnosis [31], 

i.e. after skin lesions with compromised skin barriers have 
become evident supporting the notion that SE producing 
bacteria may aggravate CTCL without necessarily playing 
a primary etiological role triggering the disease in the first 
place [31]. As IL-26 expression is greatly enhanced in 
CTCL lesions [32], it may be speculated that an increased 
expression of IL-26 in situ reflects an increased burden 

Figure 4: IL-26 inhibits growth and triggered death in cultures of S. aureus. S. aureus were grown for 24 hours in the 
presence or absence of varying concentrations of IL-26, IL-22, and LL37. (A) The number of colony forming units was measured by 
spread-plating in LB agar following exposure to IL-26 (left), IL-22 (middle), and LL37 (right) and (B) cell death was measured following 
culture without (open triangles) or with IL-26 (0.3 uM) (closed triangles) as fluorescence intensity following propidium iodide uptake as 
described elsewhere [22, 23].

Figure 5: IL-26 inhibits formation of biofilms in cultures of S. aureus. S. aureus biofilm formation in cultures treated without 
or (A) with IL-26 at varying concentrations and (B) LL37 at varying concentrations for 24 hrs prior to biofilm quantification with crystal 
violet as described in materials and methods.
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of SE-producing S. aureus in CTCL skin lesions as 
previously reported by Jackow et al. [33]. Furthermore, 
SE have been proposed to play a role in autoimmune and 
chronic inflammatory diseases such as rheumatoid arthritis 
and Crohn’s disease [34–36]. As a series of recent studies 
implicated IL-26 as a potential key player in autoimmunity 
[37], we propose that IL-26 - in addition a putative 
intrinsic role in autoimmunity - may also be a marker of 
the involvement of bacterial superantigens in some cases 
of autoimmunity and chronic inflammation. 

In conclusion, the present study provides the first 
evidence that IL-26 functions as an antibacterial peptide in 
response to T cell exposure to SE. This finding makes sense 
since IL-26 is produced by specific T cell subsets (TH-17 
and TH-22), which play a key role in antibacterial responses 
by attracting and activating neutrophils and other innate 
immune cells through release of IL-17 family cytokines, 
chemokines, and other mediators [12]. As staphylococcal 
enterotoxins bind with very high affinity to T cells 
expressing the appropriate TCR-Vβ, these T cells can 
respond to enterotoxins are extremely low concentrations 
[4]. Importantly, previously activated human CD4 T cells 
express MHC class II molecules that are high-affinity 
receptors for staphylococcal enterotoxins [4, 20]. Notably, 
MHC class II ligation triggers a series of signaling events 
in human T cells involving PLCγ activation, enhanced 
cytokine expression, and augmented growth of CD4 T cells 
[38–42]. Moreover, simultaneous crosslinking of MHC 
class II and TCR act in synergy to trigger signal transduction 
in T cells [43] suggesting that previously activated CD4+ 
T cells expressing the relevant TCR-Vβ chains and MHC 
class II molecules are particularly prone to respond to low 
concentrations of staphylococcal enterotoxins. Because 
enterotoxin recognition is also independent of prior antigen 
processing by APCs and T cell priming, we propose that 
IL-26 producing T cells (in addition to their role in adaptive 
immunity) play a direct role in innate immunity against 
bacteria such as enterotoxin producing staphylococci.

MATERIALS AND METHODS

Cells

Staphylococcal enterotoxin (SE) responsive human 
CD4 TH22 (IL-22 positive, IL-17- negative) T cell lines 
and clones were specific for MHC class II alloantigens 
and SEA and SEE as described elsewhere (22,42, and 
unpublished data). Primary, skin-resident T cells were 
isolated from skin specimens as described [44]. T cells 
were incubated with or without SE for varying periods 
of times in RPMI-1640 supplemented with 2 mM 
L-glutamine, 100 mgml–1 penicillin/streptomycin (all 
from Sigma-Aldrich), 10% pooled human serum (Blood 
Bank, State University Hospital, Copenhagen, Denmark) 
in a humidified atmosphere at 370 as described [45–46].

Chronic venous leg ulcers 

4-mm punch biopsy specimens from chronic venous 
leg ulcers were obtained with the acceptance of the patients 
and in accordance with biomedical project protocols H-B-
2008-023 and KA-20051011, which were approved by the 
Danish Scientific Ethical Board. Wound biopsy material 
was collected from 8 patients by a surgical team before 
cleansing and surgical preparation of the wound. The 
material was immediately frozen to -80 degrees.

RNA isolation and reverse transcriptase-PCR

Total RNA was isolated using RNeasy Mini 
Kit (Qiagen, Ballerup, Denmark) according to the 
manufacturer’s instructions and reverse transcriptase-
PCR was performed as described elsewhere [47, 48] 
(all reagents were from Invitrogen, Paisley, UK; except 
Taq polymerase, which was from New England Biolabs, 
Danvers, MA, USA). Primers were designed with Primer3 
v 0.4.0 software (Duke-NUS Graduate Medical School, 
Singapore) and synthesized by Eurofins MWG GmbH 
(Ebersberg, Germany). Primer sequences for IL-26 
amplification, F: ATTGCAAGGCTGCAAGAAAA R: TC 
CAGTTCACTGATGGCTTTG, primer sequences for 
GAPDH amplification, F: CCATGGAGAAGGCTGGGG 
R: CAAAGTTGTCATGGATGACC.

PNA-FISH

The tissue sections were analyzed by FISH with 
PNA probes as described elsewhere [49, 50]. The PNA 
probe in hybridization solution (AdvanDx, Inc., Woburn, 
MA) was added dropwise to each tissue section, which 
was then covered with a coverslip and hybridized in a 
PNA-FISH workstation (AdvanDx, Inc.), which was 
covered with a lid, at 55° C for 90 min. PNA probe 
solutions were used: a Texas Red (TxR)-labeled S. 
aureus-specific probe. The slides with tissue sections 
were washed in a wash solution (AdvanDx, Inc.) at 55° C 
for 30 min, air dried, mounted with Vectashield mounting 
medium with 4′,6′-diamidino-2-phenylindole (DAPI; 
Vector Laboratories), and covered with a coverslip [49]. 
The tissue sections were examined as described below.

Immunofluorescence

For co-staining with bacteria. Frozen sections with 
labeled bacteria were incubated o.n. with mouse monoclonal 
anti-human IL26 (R&D systems, UK, MAB13751) diluted 
1:40 in PBS with 2,5% BSA. Detection with secondary 
Alexa 488, rabbit anti-mouse antibody (Alexa fluorocrome, 
Thermo Scientific, USA), and mounted with prolong Gold 
antifade (Vector Laboratories). The tissue sections were 
examined as described below.
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Bacterial strains

Staphylococcus aureus strain 8324 and Pseudomonas 
aeruginosa strain PAO1 were grown in TSB media 
supplemented with 1% glucose at 37° C as described [49, 50]. 

Bacterial culture

In a 96-well plate (BD Falcon 353072), 1 × 105 CFU 
per well bacteria were incubated with different peptide 
concentrations (in serial dilutions of 1:10 across the plate) 
in a solution of buffer containing sterile 10 mM sodium 
phosphate (pH 7.4) and incubated for 24 h at 37° C. 
Negative control wells contained bacteria with no peptide. 
Serial dilutions were then carried out in sterile 1x PBS 
(Fisher Scientific) (pH 7) and plated in triplicate on LB 
Agar plates, incubated (37° C, 24 h) and counted.

Biofilm formation assay

Biofilm attachment assays were performed in a 96-
well microtiter plate (BD Falcon 353072), as previously 
described. Overnight cultures of S. aureus were grown ON 
in TSB. The ON cultures were diluted to an optical density 
(600 nm) of ~0.05 in TSB + 1% glucose and the desired 
concentration of peptide or cytokine. 200 μl culture was 
added to the wells. The plates were incubated (24 h, 
37° C) for S. aureus to grow and adhere to the wells. After 
incubation, the medium was discarded, and plates were 
gently washed three times with 200 μl sterile phosphate 
buffered saline (PBS). Thereafter, plates were air dried and 
stained with 50 μl crystal violet (CV; 0.1%) for 15 min. 
Excess stain was decanted off and, plates were washed 
three times with sterile distilled water. The biofilms 
were dissolved in 200 μl of 95% ethanol and the OD590 
nm was measured in an automatic spectrophotometer. 
To compensate for background absorbance, values 
from the sterile medium and CV were averaged and  
subtracted [51, 52].

Image acquisition and analysis

Microscopic observations of the tissue sections 
were performed with a Zeiss Imager. Z2 microscope 
with LSM 710 CLSM and the accompanying software 
Zeiss Zen 2010 v. 6.0. (Zeiss, Germany) equipped with 
an argon laser and a helium-neon laser for excitation of 
the fluorophores. Multichannel simulated fluorescence 
projection images were generated by using the IMARIS 
software package (Bitplane AG, Zurich, Switzerland). 
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