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ABSTRACT

Abnormal metabolism is an emerging hallmark of cancer. Cancer cells utilize both 
aerobic glycolysis and oxidative phosphorylation (OXPHOS) for energy production and 
biomass synthesis. Understanding the metabolic reprogramming in cancer can help 
design therapies to target metabolism and thereby to improve prognosis. We have 
previously argued that more malignant tumors are usually characterized by a more 
modular expression pattern of cancer-associated genes. In this work, we analyzed the 
expression patterns of metabolism genes in terms of modularity for 371 hepatocellular 
carcinoma (HCC) samples from the Cancer Genome Atlas (TCGA). We found that 
higher modularity significantly correlated with glycolytic phenotype, later tumor 
stages, higher metastatic potential, and cancer recurrence, all of which contributed 
to poorer prognosis. Among patients with recurred tumors, we found the correlation of 
higher modularity with worse prognosis during early to mid-progression. Furthermore, 
we developed metrics to calculate individual modularity, which was shown to be 
predictive of cancer recurrence and patients’ survival and therefore may serve as a 
prognostic biomarker. Our overall conclusion is that more aggressive HCC tumors, as 
judged by decreased host survival probability, had more modular expression patterns 
of metabolic genes. These results may be used to identify cancer driver genes and 
for drug design. 
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INTRODUCTION

Hepatocellular carcinoma (HCC) is a primary 
malignancy of the liver, with average survival time between 
6 to 20 months without any intervention [1]. It is also the 
third leading cause of cancer mortality worldwide [2]. The 
prognosis for HCC patients remains poor [3]. Diagnosis of 
HCC is usually based on biomarkers, such as AFP (alpha-

fetoprotein) and miR-21 [4]. However, HCC can result from a 
variety of risk factors, such as hepatitis B/C virus or alcoholic 
liver disease [5], which makes it difficult to characterize 
HCC with single gene biomarkers. One key to a further 
breakthrough in HCC therapy lies in better understanding the 
underlying mechanism of HCC progression.

In recent years, a significant amount of research 
has gone into analyzing cancer-associated pathways and 
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networks to gain insight into the complex biological 
systems underlying tumor progression [6, 7]. One 
promising approach for breast cancer and leukemia 
patients has been to identify the varying patterns of 
cancer-associated gene expression to predict prognosis 
[8, 9]. In both examples, the level of organization of 
the cancer-associated gene network, as measured by the 
cophenetic correlation coefficient (CCC), was shown to 
be correlated with cancer risk, progression and prognosis. 
Inspired by these works, we here aim to characterize HCC 
progression and patient survival by analyzing the structure 
of the cancer-associated gene network in HCC.

Liver is an organ in which metabolism plays a key 
role. And abnormal metabolism is a hallmark of cancer [10, 
11]. Therefore, we chose to analyze the expression patterns 
of metabolic genes in HCC patients. Unlike normal 
cells, cancer cells use glycolysis for energy production 
irrespective of the availability of oxygen, a process that is 
referred to as the Warburg effect or aerobic glycolysis [12, 
13]. Interestingly, although aerobic glycolysis has been 
regarded as the dominant metabolism phenotype in cancer, 
recent experimental evidence shows that mitochondria are 
actively functional in cancer cells [14–16], and oxidative 
phosphorylation (OXPHOS) can enhance metastasis in 
certain scenarios [17–19]. Study of the interplay between 
glycolysis and OXPHOS will deepen our understanding of 
cancer metabolism and metastasis.

To quantify the activities of the two main metabolism 
phenotypes in HCC, OXPHOS and glycolysis, Yu  
et al. [20] developed the AMPK and HIF-1 signatures 
by evaluating the expression of the downstream genes 
of AMPK (5′ AMP-activated protein kinase) and HIF-
1 (hypoxia-inducible factor 1), in total 33 AMPK 
downstream genes and 23 HIF-1 downstream genes. The 
AMPK and HIF-1 signatures have been shown to capture 
the highly significant metabolic features of HCC samples 
[20]. In addition, the AMPK and HIF-1 signatures can 
associate the metabolism phenotypes of HCC samples 
with oncogene activities, such as MYC, c-SRC and RAS, 
which further validates the use of the AMPK and HIF-1 
signatures in characterizing the metabolic activity of HCC 
samples [20]. Based on these arguments, the AMPK and 
HIF-1 downstream genes were chosen for the present study 
as a relevant set of cancer-associated genes for HCC. The 
strong anti-correlation between AMPK and HIF-1 activities 
in HCC [20] suggests the expression of these metabolic 
genes is modular, with the AMPK and HIF-1 downstream 
gene subsets as two likely modules (Figure 1A). 

Community structure of a gene network conveys 
information regarding the interaction between genes. In 
particular, genes within the same community cooperate 
much more with each other than with those in other 
communities. Here we utilize modularity to quantify 
the community structure of the metabolic gene network 
in HCC. Modularity is a measure of intracommunity 
connection strength compared to what is expected 

from randomly distributed connections [21, 22]. In 
the current context, it quantifies the ability of tumor 
cells to organize individual cancer-associated genes 
so as to maximize network efficiency. Modularity is 
present in almost all biological systems, from molecular 
interactions to macroscopic food webs [23, 24]. A general 
theory regarding modularity shows that high modularity 
systems afford greater evolutionary fitness in high stress 
environments or over shorter time scales, whereas low 
modularity systems afford greater fitness in low stress 
environments or over longer time scales [25, 26]. This 
general principle can be applied to understand the relation 
between modularity of cancer-related gene networks and 
the aggressiveness of cancer [8, 9]. Using this theory, 
we predict that tumors with a more modular expression 
pattern of cancer-associated genes, organized to counteract 
host defenses, are more fit and aggressive. At longer time 
scales, tumor growth overcomes host defenses and loses 
its sensitivity to host actions, and modularity is predicted 
to decline. 

In this work, we analyzed the change of the modular 
expression pattern of the AMPK and HIF-1 downstream 
genes in HCC samples as a function of metabolism 
phenotypes, tumor stages, metastatic potentials and 
tumor recurrence. We found that (i) HCC samples with a 
glycolysis phenotype show significantly higher modularity 
than samples with an OXPHOS phenotype; (ii) HCC 
samples at tumor stages II-IV have significantly higher 
modularity than samples at stage I; (iii) HCC samples 
with higher metastatic potential maintain significantly 
higher modularity than samples with lower metastatic 
potential; and (iv) patients that have recurrence within 
12, 24 or 36 months have significantly higher modularity 
than those with no recurrence within the same amount 
of time. These results confirm the theoretical prediction 
that more aggressive tumors correspond to a more 
modular interaction pattern of the cancer-associated gene 
network. We also found that modularity increases with 
tumor progression up to 8 months before recurrence, but 
then decreases. This result is examined in detail in the 
‘Discussion’ section, and indicates that modularity is no 
longer selected for at very late stages of tumor progression. 
This result is also in accord with the aforementioned 
theoretical expectations. We further developed metrics 
to calculate individual modularity, which proved to be 
predictive of recurrence and survival for individual HCC 
patients. Possible applications of modularity in terms of 
drug design and identifying cancer-related genes will be 
discussed in the ‘Discussion’ section.

RESULTS

To construct our HCC cancer-associated gene 
network, we took the 33 AMPK downstream genes and 
23 HIF-1 downstream genes identified by Yu et al. [20] 
as nodes in the network. For each group of patients, 
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the interaction patterns between genes were calculated 
using Pearson correlation. Simply put, two genes have 
a strong interaction if they show a similar trend of gene 
expression changing across patients. That is, if one gene 
expression increases and another gene expression also 
increases, then these genes are cooperating and strongly 
interacting with each other. After nodes and links were 
established, we applied the Newman algorithm [22] to 
obtain the community structure of the gene network and 
the corresponding modularity value. 

Modular expression pattern of the AMPK and 
HIF-1 downstream genes 

There exists a strong anti-correlation between the 
AMPK activity and HIF-1 activity across all 371 HCC 
samples (Figure 1A). In addition, expression of individual 
AMPK downstream genes was highly positively 
correlated within the AMPK gene group and negatively 
correlated with the HIF-1 downstream genes, and vice 
versa (Figure 1B). The expression pattern of these genes 
was highly modular and consisted of two modules, one 
containing mainly AMPK downstream genes and the other 
HIF-1 downstream genes, as identified by the Newman 
algorithm (Figure 1C). 

Modularity and metabolism phenotypes

To evaluate the modular gene expression pattern 
of different metabolism phenotypes of HCC samples, we 
performed principal component analysis (PCA) on the 
RNA-Seq data of 33 AMPK downstream genes and 23 HIF 
downstream genes. Since AMPK and HIF-1 are master 
regulators of OXPHOS and glycolysis, respectively [20], 
the resulting first principal components (PC1s) for AMPK 
and HIF-1 downstream genes were assigned as the axes 
to quantify the activities of OXPHOS and glycolysis. 
After projecting all 371 HCC samples to the AMPK and 

HIF-1 axes, each HCC sample was assigned a metabolic 
state of glycolysis (HIF-1high/AMPKlow), hybrid (HIF-1high/
AMPKhigh) or OXPHOS (HIF-1low/AMPKhigh) through 
k-means clustering using the sum of absolute differences 
(Figure 2A). Group modularity calculation showed that the 
OXPHOS group had the lowest mean modularity and the 
glycolysis group had the highest mean modularity (Figure 
2B). Combined with survival curves of the three groups 
(Figure 2C), it is clear that the glycolysis group had the 
worst survival and OXPHOS the best, with hybrid in the 
middle, indicating that higher modularity corresponded to 
a more aggressive tumor. In Figure 2B and for all bar plots 
below, the error bars are obtained through the bootstrapping 
method. To obtain the significance levels, we used the 
method described in the ‘Materials and Methods’ section.

HCC samples at later tumor stage have higher 
modularity 

To analyze the change of modularity with respect 
to tumor stage, we classified the 348 of the 371 HCC 
samples that have neoplasm disease stage information into 
two groups, stage I (171 samples) and stage II-IV (177 
samples). This was done to ensure that each group has 
similar number of samples. Group modularity calculations 
show that the HCC samples in the stage II-IV group had 
a significantly higher mean modularity than the HCC 
samples in the stage I group (Figure 3A). HCC samples at 
stage II-IV had a significantly worse survival than samples 
at stage I (Figure 3B), which further confirmed that higher 
modularity corresponded to worse survival, i.e. a more 
aggressive tumor.

HCC samples with higher metastatic potential 
have greater modularity

Metastasis accounts for more than 90% of cancer-
related deaths [27]. To evaluate the correspondence of 

Figure 1: Modular gene expression pattern of the metabolic genes. (A) Evaluation of the AMPK and HIF-1 activities in HCC 
patients’ samples (n = 371, r = –0.59, p < 0.0001). Each point represents the AMPK and HIF-1 activities of one sample. (B) Correlation 
matrix of the 33 AMPK downstream genes and 23 HIF-1 downstream genes. (C) Rearranged correlation matrix calculated from the 
complete dataset of 371 HCC patients by the Newman algorithm. The Newman algorithm obtained a partition into two modules. Modules 
are labeled by black dashed lines. The red dashed lines in (B) and (C) are the diagonal elements of the correlation matrix. The red color 
corresponds to a correlation coefficient of 1, as each gene is fully correlated with itself. In modularity calculation, the diagonal elements 
were set to 0, as it was assumed that there were no self-loops.
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modularity to metastatic potential of HCC samples, we 
grouped the samples based on their metastatic potential 
and calculated the group modularity. Genes SNRPF, 
EIF4EL3, HNRPAB, DHPS, PTTG1, COL1A1, COL1A2, 
LMNB1 (comprising the eight-gene signature) have 
been shown to be upregulated in metastases compared 
to primary tumor sites [28]. Expression levels of these 
genes has been used to evaluate the metastatic potential 
of primary tumors [28]. We here used the sum of log2-
transformed expression levels of these eight genes to 
represent the metastatic potential of primary HCC samples. 
The 123 samples with the lowest metastatic potential were 
classified as the low potential group, and the 123 samples 
with the highest metastatic potential as the high potential 
group. Group modularity calculation results show that the 
high metastatic potential group had higher modularity and 
worse prognosis (Figure 4A). We also used the expression 
of gene SPP1 to quantify the metastatic potential of HCC 
samples since the single SPP1 gene has been shown to be a 
diagnostic marker for metastatic HCC [29]. The grouping 
of HCC samples by expression of SPP1 show consistent 
results to that observed from the eight-gene signature 

(Figure 4B). This result indicated that a highly modular 
pattern of cancer-associated gene interactions may serve 
as a sign of metastasis.

Modularity and tumor recurrence 

Tumor relapse is a supreme clinical challenge 
[30]. To analyze how tumor relapse is connected to the 
modularity of metabolic genes in HCC samples, we 
classified the 319 of 371 HCC samples that have tumor 
recurrence information – ‘recurred’ or ‘disease free’. Here 
the 319 samples were classified into non-recurrence and 
recurrence groups within 12 months, 24 months, or 36 
months respectively. For example, the recurrence group 
within 12 months includes HCC samples whose disease-
free status was ‘recurred’ and the ‘disease free time’ was 
shorter than 12 months. The non-recurrence group within 
12 months includes HCC samples whose ‘disease free 
time’ was longer than 12 months, with either ‘recurred’ or 
‘disease free’ status. 

In all three cases, we observed that the group of 
HCC patients with recurred tumors had a higher mean 

Figure 2: Modularity and metabolism phenotypes. (A) The 371 patients’ samples are clustered into three metabolism phenotypes: 
OXPHOS (blue), hybrid (magenta), and glycolysis (red). (B) Group modularity of three metabolism phenotypes. Here, ʻ*’represents 0.01 
< p ≤0.05, and ʻ**’represents 0.001 < p ≤0.01 If there is no labeling of the significance level, it means the difference is not significant. (C) 
Kaplan-Meier overall survival curves of HCC patients in OXPHOS, hybrid and glycolysis. 

Figure 3: Modularity and tumor stages. (A) Bar plot of the group modularity of HCC patients at stage I and that at stage II–IV. Here 
ʻ***’ represents p ≤ 0.001. (B) Kaplan-Meier overall survival curves of HCC patients at stage I and stage II–IV.
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modularity than the group of patients without recurred 
tumors (Figure 5A). The difference between the recurrence 
and no-recurrence groups became more significant as time 
increased from 12 to 24 to 36 months. The survival curves 
confirmed that the recurrence group, which was also the 
high modularity group, had poor survival (Figure 5A).

To understand the origin of the correlation between 
higher modularity and worse survival, we examined the 
relation between modularity and tumor recurrence time 
among recurred patients. Among the 319 samples, 174 
have disease-free status as ‘recurred’. After discarding 
the 4 patients with the longest disease free time, the rest 
were sorted based on the disease-free time and classified 
into 5 groups – group 1, 2, 3, 4 and 5 with decreasing 
disease-free time. That is, group 1 had the longest disease 
free time before recurrence shortest disease free time 
before recurrence. The result is shown in Figure 5B, 
and the corresponding survival curves for each group 
are shown in Figure 5C. Modularity first increased with 
tumor progression, and then decreased. Even though 
the differences between each group were not always 
significant, the significant difference between group 1 
and group 3 and between group 3 and group 5 strongly 
supported this non-monotonic trend. It is also worth noting 
that modularity correlated with worse survival for the first 
3 groups, but the correlation is reversed for groups 4 and 

5. This result is similar to the trend observed in a study 
of acute myeloid leukemia [9]. At early stages, increased 
modularity correlates with decreased survival as cancer 
cells organize their gene expression against the host. At 
later stages, cancer has overcome the host defenses, and 
a high value of modularity is no longer selected for. Host 
survival, while low, becomes independent of modularity. 
We note that this crossover occurs rather late: recurrence 
times for groups 1, 2, 3 were 90–22 months, 22–13 
months, and 13–8 months; the recurrence times for groups 
4 and 5 were 8–4 and 4–1 months, respectively. Note that 
Figure 5B and 5C are based on patients with recurred 
tumors only, whereas Figure 5A contains both recurred 
patients and disease-free patients. 

Clinical application of modularity: Individual 
modularity and prediction

Calculation of group modularity is useful for 
understanding the group differences of metabolic gene 
expression patterns and the general relation between 
modularity and malignancy. However, for clinical 
application, individual modularity is required in order to 
make predictions regarding individual prognosis.

The detailed definition and calculation procedure of 
individual modularity can be found in the ‘Materials and 

Figure 4: Modularity and metastatic potential. Left panel: Group modularity of HCC samples with low and high metastatic 
potential evaluated by eight-gene signature (A) and SPP1 (B). Right panel: Kaplan-Meier overall survival curves of HCC patients with low 
and high metastatic potential evaluated by eight-gene signature (A) and SPP1 expression (B). Here ʻ***’ represents p ≤ 0.001.
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Methods’ section. Simply put, we applied the Newman 
algorithm to an individual cancer-associated gene network, 
with a new method to define links and with an additional 
de-noising step. 

Individual modularity for all 371 samples ranged 
from 0.248 to 0.652, with mean 0.453 and standard 
deviation 0.079. These numbers appeared to be consistent 
with modularity values found in other functional human 
biological networks [31]. Modularity at the individual 
level largely confirmed the above group-level trends of 
modularity for HCC patients classified by metabolism 
phenotypes, stage information, recurrence status and 
metastatic potential. Higher individual modularity 
corresponded to the glycolysis phenotype, Figure 6A, later 
tumor stage, Figure 6B, tumor recurrence, Supplementary 
Figure 2A–2C, and higher metastatic potential, as 
determined by the eight-gene signature, Figure 6C, and 
SPP1 expression, Supplementary Figure 2D and worse 
patient survival, Supplementary Figure 3. Together, 
these results validate the use of the metric of individual 

modularity to evaluate the aggressiveness of individual 
HCC patients.

To make prognostic predictions with individual 
modularity, we focus on patients’ survival and tumor 
recurrence. We attempted to predict the probability of 
survival longer than 24 months and no recurrence in 12 
months, so that each group has a comparable amount of 
samples: survived longer than 24 months, 140 samples; 
shorter than 24 months, 91 samples; no recurrence in 12 
months, 176 samples; and recurrence within 12 months, 104 
samples. We then divided patients into 6 groups based on 
their individual modularity values: 0.24–0.31, 0.31–0.38, 
0.38–0.45, 0.45–0.52, 0.52–0.59, and 0.59–0.66. For each 
group, we counted the number of patients that survived 
longer than 24 months and that remained disease-free for 
more than 12 months. We then calculated the proportion 
of these patients in each group, Figure 6D–6E, left panel. 
Overall, the higher the modularity, the lower the survival 
and disease-free probability. The only exception is the first 
bar in Figure 6D left panel, which could be potentially due 
to the very small number of 7 patients in the group. 

Figure 5: Modularity and tumor recurrence. (A) Modularity (left panels) and Kaplan-Meier overall survival curves (right panels) 
of patients that were stratified into recurrence and non-recurrence within 12, 24 and 36 months. (B) Non-monotonic change of modularity 
with tumor recurrence time. Samples in group 1 have the longest recurrence time and samples in group 5 have the shortest recurrence time. 
(C) Kaplan–Meier overall survival curves of group 1–5. Here ʻ*’ represents 0.01 < p ≤ 0.05, and ʻ**’ represents 0.001 < p ≤ 0.01. If there is 
no labeling of the significance level, it means the difference is not significant. Significant p-values in (C) are as follows: p(G1,G2) < 0.01, 
p(G1,G3) < 0.0001, p(G1,G4) < 0.0001, p(G1,G5) < 0.01, p(G2,G3) < 0.05, p(G2,G4) < 0.01.
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We then captured these results by a Gaussian 
model of the modularity distribution of each group, with 
mean and standard deviation computed from individual 
modularity of each group, Figure 6D and 6E, middle 
panel. Based on (eq.4) and (eq.5) defined in the ‘Materials 
and Methods’ section, the probability of survival over 24 
months and the probability of no recurrence in 12 months 
was calculated, Figure 6D and 6E, right panel. This simple 
model was able to recapitulate the trend observed in the 
clinical data, Figure 6D and 6E, left panel. The modularity 
range in these two plots was selected as 0.248 – 0.652 
to match with the observed individual modularity values. 
Individual modularity showed significant potential as a 
predictor of patients’ survival or tumor recurrence. A high 
value of individual modularity was predictive of poor 
prognosis, with values of M > 0.6 correlated to survival 
and non-recurrence probabilities less than 0.4. 

DISCUSSION

Metabolic reprogramming is an emerging hallmark 
of cancer [10, 11]. Both aerobic glycolysis and oxidative 

phosphorylation (OXPHOS) play important roles in 
orchestrating cancer metabolism [12–15, 17, 18, 32]. 
Previously, Yu et al. developed the AMPK and HIF-
1 signatures to quantify the activities of metabolism 
phenotypes in hepatocellular carcinoma (HCC) [20]. 
There was a visually apparent modular pattern of gene 
expression due to the strong anti-correlation between 
AMPK and HIF-1 activities in HCC. In this work, we 
analyzed the gene expression pattern of metabolic genes 
in HCC in term of modularity and studied its correlation 
with metabolism phenotypes, tumor stages, metastatic 
potentials and tumor recurrence. 

The analyses of modularity in the glycolysis, 
hybrid and OXPHOS metabolism phenotypes; stage 
I and stage II–IV tumor stages; and varying tumor 
metastatic potentials and recurrence status consistently 
showed that a higher modularity of the AMPK and HIF-1 
downstream gene network corresponded to worse overall 
survival results of HCC patients. For example, a group 
of samples characterized by high glycolytic activity 
showed significantly higher modularity than a group 
of samples characterized by high OXPHOS activity, 

Figure 6: Individual modularity. (A–C) Individual modularity results show the same trend of modularity with metabolism types, stages, 
and metastatic potential. Pearson correlation between individual modularity and eight-gene metastatic potential r = 0.46, p < 0.0001 (C). (D) Left: 
probability of survival longer than 24 months derived from data. Middle: Gaussian distribution of modularity values for the two groups. Right: 
same probability based on Gaussian model. (E) Left: probability of no recurrence in 12 months derived from data. Middle: Gaussian distribution 
of modularity values for the two groups. Right: same probability based on Gaussian model. Here ʻ*’ represents 0.01 < p ≤ 0.05, ʻ**’ represents 
0.001 < p ≤ 0.01, and ʻ***’ represents p ≤ 0.001. If there is no labeling of the significance level, it means the difference is not significant.
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and worse prognosis. The result is consistent with the 
experimental observation that hepatocarcinogenesis 
initiates with a switch of metabolism from OXPHOS to 
glycolysis, and glycolysis is maintained to facilitate the 
aggressive features of advanced HCCs [33, 34]. Similarly, 
comparison of HCC samples at stage I to that at stage 
II–IV showed that HCC samples at stage II–IV have a 
more modular expression pattern of metabolic genes and 
worse survival prognosis. Additionally, HCC patients 
with a higher metastatic potential had a more modular 
expression pattern of metabolic genes and worse survival 
prognosis. Finally, patients with tumor recurrence within a 
given time had a higher modularity of the metabolic gene 
network and worse prognosis than patients with no tumor 
recurrence. 

One interesting phenomena in this work is the 
non-monotonic relation between modularity and tumor 
progression as shown in Figure 5B. Modularity increased 
first and then decreased. This result is similar to the trend 
observed in a previous study of acute myeloid leukemia 
[9]. We argue that at early stages of tumor progression, a 
modular pattern of cancer-associated gene interactions is 
organized by tumor cells, so that they can counteract the 
host defense systems. At later stages of tumor progression, 
cancer has overcome the host defenses, and a high value 
of modularity is no longer selected for. The results here 
suggest that the relation between modularity and tumor 
aggressiveness is mediated by tumor progression. For 
most of the patient’s history, a higher modularity indicates 
higher risk. Only when tumor progression has reached a 
very late stage, may a lower modularity indicate higher 
risk. Therefore, an accurate interpretation of modularity 
should take progression stage into consideration. 

We further investigated the relation between 
modularity and tumor recurrence time in three subsets: 
HCC samples with glycolysis phenotype, at stage II–IV, 
and with high metastatic potential determined by the eight-
gene signature (Supplementary Figure 4). These groups 
were chosen as they tend to be under highly stressful 
conditions such as hypoxia due to rapid proliferation 
of tumor and response from the host immune systems 
during metastasis. The glycolysis group had 37 patients 
that recurred. After discarding 2 samples with the shortest 
recurrence time, the rest were distributed into 5 equal 
size groups. A similar procedure was taken for the other 
two groups. Again, HCC samples in group 1 had the 
longest recurrence time and HCC samples in group 5 had 
the shortest recurrence time. Survival curves for each 
group were also plotted. We found that the correlation 
of higher modularity with worse prognosis exists for the 
roughly ~60% (top 3 groups) of patients with the longest 
recurrence time in all three cases. Interestingly, a reversal 
of this correlation occurs at about the same recurrence 
time: 9.1 months for the glycolysis group, 6.4 months 
for the stage II-IV group, and 7.9 months for the high 
metastatic potential group. These times are consistent with 

the reversal of the correlation at 8 months found among all 
recurred patients (Figure 5B). 

Taken together, these results show that modularity 
is selected for under the stressful conditions of early to 
mid-progression. That is, more aggressive early and mid-
progression tumors, as judged by decreased host survival 
probability, have higher modularity of metabolic genes. 
These results confirm our previous hypothesis that more 
malignant tumors are usually characterized by a more 
modular expression pattern of cancer-associated genes  
[8, 9]. We predict that higher modularity increases 
the fitness of tumors because metabolic networks are 
typically under increased stress in HCC tumor cells 
[35]. Thus, tumors with a more modular metabolic gene 
network typically are more fit and are more likely to 
overcome the body’s defenses. Once the transition to 
imminent recurrence is achieved, the selection strength for 
modularity is no longer present, and the observed values 
of modularity decrease.

Notably, modularity is predictive of prognosis 
independent of metastatic status of HCC samples. We 
analyzed the association of modularity with different 
metabolism phenotypes, varying stages, and tumor 
recurrence for the HCC patients with no distant metastasis, 
cancer staging ‘M0’, i.e. no spread of tumor to other parts 
of the body, Supplementary Figures 5–8. More modular 
gene expression patterns of metabolic genes were observed 
for HCC samples in the glycolysis phenotype than in the 
OXPHOS phenotype, Supplementary Figure 6, at stage II–
IV than that at stage I, Supplementary Figure 7, and with 
tumor recurrence than without recurrence, Supplementary 
Figure 8. These results support the conclusion that 
modularity is a fundamental order parameter correlated 
with tumor aggressiveness.

To the best of our knowledge, this is the first effort 
to evaluate aggressiveness of HCC samples by evaluating 
the expression pattern of metabolic genes in terms of 
modularity. Further work can extend the modularity 
concept to different types of tumors. There are at least two 
avenues for the improvement of the present study. First, a 
different set of parameters used in calculating individual 
modularity might affect the predictive efficiency. We list 
in Supplementary Table 2 the parameters for calculating 
individual modularity using iterative sparse principal 
components analysis (ITSPCA). Varying values of these 
standard parameter gave similar results, but with a weaker 
signal. We therefore believe that the chosen parameter 
set works well and keeps most of the signal. Future work 
could quantify the signal as a function of the parameter set 
to improve the predictive power of individual modularity. 
Second, temporal expression profiles of the metabolic 
genes in HCC samples from individual patients may 
further power the personalized prognosis. 

In summary, modular interactions between 
metabolic genes in HCC play a key role in HCC prognosis. 
HCC patients with higher individual modularity have a 
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higher risk of tumor recurrence and poorer prognosis. 
There are several possible clinical applications from 
the individual modularity. First, prediction of patient 
survival and recurrence probabilities with individual 
modularity can adjust the choice of appropriate therapies. 
Second, key driver genes promoting HCC progression 
could be potentially identified, e.g. a hub node gene that 
strengthens intracommunity interactions and increases 
modularity. Third, drug treatment efficacy could be 
evaluated by testing the ability of drugs to disrupt the 
modular interactions between cancer-associated genes. 
A novel approach for drug design could target genes that 
significantly contribute to the increase of modularity of the 
cancer-associated gene network.

MATERIALS AND METHODS

371 primary HCC samples

RNA-Seq data for 373 hepatocellular carcinoma 
(HCC) samples, which contain the gene expression of 
33 AMPK downstream genes and 23 HIF-1 downstream 
genes, were obtained from TCGA at cBioPortal [36, 37].  
A full list of the AMPK and HIF-1 downstream genes can 
be found in Supplementary Materials Section 1. Among 
the 373 HCC samples, 371 primary tumor samples were 
used for subsequent analysis, and 2 recurrent tumor 
samples were excluded. 

Calculation of group modularity

Modularity of a given graph Aij was defined as 

.   
 

1  
2 2

i j
G ij

modules i j within
this module

a a
M A

e e
 

= −  
∑ ∑  (1)

where Aij is 1 if there is an edge between nodes i 
and j and 0 otherwise, the value of ai = Σj Aij is the degree 
of node i, and e = ½ Σi ai is the total number of edges. 
This definition can be extended to unsigned weighted 
graphs, where Aij is the weight of the edge between nodes 
i and j and where Aij > 0. Here the subscript ‘G’ denotes 
group modularity. We applied Newman’s algorithm [22] 
to graph Aij to calculate modularity. This algorithm found 
the partition of 56 genes into modules that maximized 
modularity. This maximized modularity was used as the 
final modularity value for data analysis. 

To calculate modularity of HCC samples grouped by 
metabolism phenotypes, tumor stages, metastatic potential, 
or recurrence status, the RNA-seq data of each of the 56 
AMPK and HIF-1 downstream genes were transformed by 
log2 and normalized, i.e.

( )2 2

2

1 ( 1)
( ( 1))

log x log x
x

log x
+ − +

→
σ +

where x represents the expression of each gene, 

2 ( 1)log x +  is the mean of the log2 transformed values 
across all patients’ expression of this gene, and ( )2( 1 )log xσ +  
is the standard deviation of the log2 transformed values. 

The metabolic gene network for each group was 
defined by setting the 56 genes as the nodes and the 
Pearson correlation coefficient between genes as the link 
weights. The resulting network was represented by a 
56*56 correlation matrix C. Since the above definition of 
modularity is for an unsigned graph, and since we regard 
negative correlations as weak links between genes, the 
whole matrix was shifted as C′ = (C+1)/2. We then set the 
diagonal elements of C′ to 0 to eliminate self-loops and 
used the Newman algorithm to calculate the modularity 
of this matrix C′. 

To compare modularity between different 
patient groups, e.g. glycolysis versus OXPHOS, the 
bootstrapping method was used. This method takes the 
observed individual gene expression values as the most 
representative measure of the underlying distribution of 
expression values. That is, the distribution of expression 
values is taken as a sum over δ functions at the observed 
values. Predictions are computed from samples taken 
from this estimated distribution. For example, for the 
glycolysis group of 75 patients, the gene expression 
correlation matrix was calculated by randomly taking 
expression values from the 75 patients with replacement. 
The modularity of this correlation matrix was computed 
as described above. This sampling process was repeated 
10 000 times to obtain 10 000 modularity values for the 
glycolysis group. Mean modularity and standard error 
were then obtained. This same procedure was used 
to compute modularity for each of the other groups. 
Calculation of p-values is described in subsection ʻp-value 
calculation’.

Calculation of individual modularity

Typically, for each patient there is one expression 
value for each gene, and no correlation between genes 
based upon only a single patient’s data can be computed. 
We propose, therefore, to define the link between gene i 
and gene j of patient α as

( ), , , /  i j i jl exp X Xα
α α= − − σ  (2)

where , iXα  is the expression of gene i of patient ⍺, 
and σ is the standard deviation of , , i jX Xα α−  averaged 
across all pairs of genes and all patients, with σ = 57 887 
in our case. This definition considers the link between 
gene i and gene j weak if the distance between them, 
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i.e., 
, , i jX Xα α− is large. The scaling by σ ensures that 

, , /i jX Xα α− σ  remains within a reasonable order of 
magnitude.

Unlike the group modularity case, having only 56 
expression values for each individual means the noise in 
the data has a greater impact on the calculated modularity 
values. Thus, a better way of filtering noise is needed. A 
standard approach is to reconstruct the data based only 
on cleaned leading eigenvectors. We utilized the iterative 
thresholding sparse PCA (ITSPCA) algorithm for this 
purpose [38]. The algorithm starts by keeping only the top 
eigenvectors. To separate signal and noise, such that signal 
is defined as above a threshold, a wavelet transformation 
is used, see Supplementary Materials section ʻdiscrete 
wavelet transform’, Supplementary Figure 1 and 
Supplementary Table 1. Data that were dense in real 
space became sparse in wavelet space, and a cutoff was 
then applied in wavelet space to eliminate the noise. The 
standard wavelet transformation algorithm requires that 
the number of entries be a power of two. Zero-padding 
was applied to the input data matrix so that it became 
a 371 × 64 matrix, with the last 8 columns containing 
only zeros. The ITSPCA algorithm output the cleaned 
56 × n matrix version of the leading eigenvectors Pn ,  
which is used to reconstruct the raw data as

 
' T

n nX XP P=  (3)

where X is the original raw data matrix, and X’ is 
the reconstructed matrix that has the same dimension 
as X. The cleaned data X’ should contain mostly signal 
and much less noise than X, and therefore X’ was used 
in calculation of links (eq.2). Note that, unlike the 
group modularity calculation, X is based on the raw data 
without taking a logarithm. This is because we believe 
that noise had already been filtered out by ITSPCA, and 
taking the logarithm would only weaken the signal. See 
Supplementary Table 2 for chosen input parameters of the 
ITSPCA algorithm.

After determining X’, we computed the individual 
gene network linkage based on (eq.2). We then applied 
the binarization step where the top 5.6% edges (178 
edges) were set to 1 and the rest set to zero. According 
to our previous work [31], this binarization step increases 
the signal-to-noise ratio without discarding important 
information. The Newman algorithm was used to compute 
modularity for each patient, Mi. We computed 10, 000 
bootstrap samples of the individual modularities of each 
group, calculating the mean of the individual modularities 
in each sample. For the glycolysis group, for example, 
there are 75 individual modularities in each bootstrap 
sample. The average and standard deviation of the means 
were plotted in the bar plots. Note that this average is the 
same as the one directly calculated from the vector of Mi, 
and this standard deviation is the same as the standard 
error of the mean directly calculated from the vector of 

Mi. P-values were calculated using the method described 
in subsection ʻp-value calculation’.

Definition of probability of surviving longer than 
24 months based on individual modularity

( ) ( )
( ) ( )

survived,24 survived, 24
survival,24

survived,24 survived, 24 deceased,24 deceased, 24

  i
i

i i

N f M
p M

N f M N f M
=

+  (4)

where Nsurvived,24 and Ndeceased,24 are the numbers of patients 
that lived longer than 24 months and deceased within 24 
months, respectively. Here fsurvived,24 and fdeceased,24 are the 
probability density functions of the modularity distribution 
of survived and deceased group, respectively. Given 
modularity Mi, we calculated psurvival, 24 and thus obtained 
the probability curve of surviving more than 24 months. 

Definition of probability of no recurrence in 12 
months based on individual modularity

( ) ( )
( ) ( )

no recurrence,12 no recurrence, 12
no recurrence,12

no recurrence,12 no recurrence, 12 recurrence,12 recurrence, 12

 i
i

i i

N f M
p M

N f M N f M
=

+  (5)

where Nno recurrence,12 and Nrecurrence,12 are the numbers of 
patients that remained disease free for more than 12 
months and those that recurred within 12 months, 
respectively. Here fno recurrence,12 and frecurrence,12 are the 
probability density functions of the modularity distribution 
of disease-free and recurred group, respectively. Given 
modularity Mi, we calculated pno recurrence,12 and thus obtained 
the probability curve of no recurrence within 12 months.

P-value calculation

Given two samples x1 and x2, a standard way to test 
for equal means is a two-sample t test. However, in the 
current research, it is often the case that we do not have 
direct access to x1 and x2, or that the original x1 and x2 are of 
no interest. For example, in the case of comparing group 
modularity, e.g. Figures 2B, 3A, the only available values 
are vectors of the bootstrapped modularity of each group. 
The original x1 and x2 , which are the gene expression of 
samples in the group, were of no interest.

We therefore perform a standard Monte Carlo test of 
p-values. Given input data x1, x2, and function of interest 
F, we perform B bootstrap samples of the function with 
replacement, obtaining vectors F1 and F2. Each element of 
Fi was obtained by calculating F( ibx ), where ibx  is the 
bootstrapped sample of ix  in bootstrap b (b = 1,2, …, B). 
We assume the average of F1 is greater than F2. We define

obs 1 2F Fu = −  
and shift the bootstrap samples as
z = (F̅1 + F̅2)/2

*
1 1 1F  F F z= − +
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*
2 2 2F  F F z= − +

We define for each bootstrap sample b
ub=F1

*(b) – F2
*(b)

Then the p-value is defined as

    
value- b b obsnumber of u whereu u

p
B

>
=

The bootstrapping process gives the distribution 
of F1 and F2. Note that z is the mean of the concatenated 
vector of F1 and F2, and B is set to 10 000 in all cases. 
The null hypothesis H0 is that F1 and F2 have equal means, 
and the alternative hypothesis H1 is that the mean of F1 is 
larger than that of F2. We have confirmed that for function 
F(x) = x  the Monte Carlo test gave the same p-values as 
one-tailed t test on (x1,  x2).

For bar plots involving group modularity, x1 and  x2 
are gene expressions of group 1 and group 2, and F is the 
modularity. For bar plots involving individual modularity, 
x1 and x2 are individual modularity of group 1 and group 
2, and F is the mean. For bar plots involving proportion 
of patients, x1 and x2 are disease free time or survival 
time of group 1 and group 2, and F is the proportion of 
patients that were disease-free for more than 12 months, 
of survived longer than 24 months.
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