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ABSTRACT

The detrimental health effects associated with tobacco use constitute a major 
public health concern. The addiction associated with nicotine found in tobacco 
products has led to difficulty in quitting among users. Nicotinic acetylcholine receptors 
(nAChRs) are the targets of nicotine and are responsible for addiction to tobacco 
products. However, it is unknown if the other >8000 tobacco constituents are 
addictive. Since it is time-consuming and costly to experimentally assess addictive 
potential of such larger number of chemicals, computationally predicting human 
nAChRs binding is important for in silico evaluation of addiction potential of tobacco 
constituents and needs structures of human nAChRs. Therefore, we constructed three-
dimensional structures of the ligand binding domain of human nAChR α7 subtype and 
then developed a predictive model based on the constructed structures to predict 
human nAChR α7 binding activity of tobacco constituents. The predictive model 
correctly predicted 11 out of 12 test compounds to be binders of nAChR α7. The 
model is a useful tool for high-throughput screening of potential addictive tobacco 
constituents. These results could inform regulatory science research by providing a 
new validated predictive tool using cutting-edge computational methodology to high-
throughput screen tobacco additives and constituents for their binding interaction 
with the human α7 nicotinic receptor. The tool represents a prediction model capable 
of screening thousands of chemicals found in tobacco products for addiction potential, 
which improves the understanding of the potential effects of additives.

INTRODUCTION

Continuing to smoke increases the risk of diseases 
that are caused by the toxicants in tobacco smoke to 
smokers themselves [1, 2]. Furthermore, exposure to 
tobacco smoke in the environment leads to adverse health 
effects such as respiratory symptoms, impaired lung 
function, coronary heart disease, nasal irritation, stroke 
and lung cancer in nonsmokers as is seen in smokers 

[3–6]. The Third National Health Survey showed that a 
large fraction of the US population has detectable serum 
cotinine levels due to environmental tobacco smoke 
exposure [7]. The Surgeon General’s Report and recent 
studies indicate that children exposed to tobacco smoke 
in the environment have a high likelihood of ear disease, 
respiratory symptoms, lower respiratory illness, and 
sudden infant death syndrome [8]. A longitudinal study 
of a large cohort of middle-aged and older adults found 
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that many individuals, especially women, were passively 
exposed to tobacco smoke at home, public transport 
stations, workplaces, and recreational places [9]. Thus, 
tobacco smoke has detrimental effects for nonsmokers as 
well as smokers and is a public health issue.

Nicotinic acetylcholine receptors (nAChRs) 
belong to the superfamily of ligand-gated ion channels. 
Pentameric in nature, nAChRs consist of an extracellular 
domain approximately 200 amino acids in length 
(where the ligand binding domain [LBD] resides), a 
transmembrane region (consisting of four transmembrane 
helices), and an intracellular domain that connects the 
third and fourth transmembrane helices [10]. There are two 
major types of nAChRs: the neuronal and the muscle-type 
nAChRs; the former have been a major target in studies of 
addiction arising from tobacco use. The neuronal nAChRs 
formed by 12 known subunits, α2-α10 (n.b. α8 found in 
avian family and not mammals) and β2-β4 [10, 11]. The 
α7-α10 subunits can form functional homopentamers, 
while the α2-α6 require other α or β subunits to form a 
functional heteropentamer [11–14]. The α7 nAChR has 
been found to play a role in reinforcing and inducing 
nicotine dependence [15–19].

Various studies have identified thousands of 
chemicals in tobacco smoke, with the highest estimate at 
over 9,500 chemicals [20]. While the harmful effects of 
some tobacco constituents, such as the list of 93 harmful 
and potentially harmful constituents (HPHCs) established 
by the FDA, have been well studied, the biological effects 
of the majority of tobacco constituents remain unknown. 
Accordingly, understanding the effects of these chemicals 
on the body may be useful for strategies to reduce tobacco 
product harm.

The biological effects of tobacco constituents are 
typically tested with a battery of laboratory experiments. 
However, acquiring experimental data on the biological 
actions of these chemicals is both time-consuming and 
costly. In silico techniques offer a rapid approach to study 
and prioritize laboratory experiments needed to study 
tobacco constituents. Among available computational 
methods such as pharmacophore modeling [21–24], 
comparative molecular field analysis [25], decision tree 
[26], decision forest [27–33], support vector machine 
[34, 35], and other machine learning methods [36–38], 
molecular docking is one of the most established and 
widely-used approaches to assess the binding activity of 
chemicals. Molecular docking involves the prediction of 
how chemicals interact with proteins [39–42]. Knowing 
the binding potential of a chemical is important as 
receptor binding often initiates a cascade of chemical-
induced biological actions. Apart from predicting how a 
chemical binds to the active site of a receptor, the inherent 
flexibility of proteins in ligand-receptor recognition is 
another important factor that needs to be considered 
as the conformation of a protein is closely linked to its 
function. Many times, upon binding to a ligand, a protein 

changes its conformation to perform different functions 
in complex biological processes [43]. However, majority 
of docking studies are still performed under the “fully 
flexible chemical vs. rigid protein” condition due to 
the high computational cost required to allow modeling 
flexibility. Indeed, even limited flexibility introduced to 
the protein (i.e., only on a few key residues in the active 
site) considerably increases the calculation time in the 
docking of a given chemical. Therefore, assessing a large 
library of compounds with molecular docking using fully 
flexible proteins is impractical.

Our previous study investigated the interactions 
of chemicals with the ligand binding domain of the 
α4β2 nAChR [44]. A similar study was conducted for 
the LBD of the α7 nAChR (α7 nAChR-LBD), not only 
to investigate how chemicals interact with the receptor 
but also to develop a model to predict the potential 
binding of chemicals to α7 nAChR-LBD. To date, the 
three dimensional (3D) structure of human α7 nAChR-
LBD has not been elucidated experimentally. The closest 
available 3D structure to human α7 nAChR-LBD is α7 
nAChR chimera (Protein Data Bank (PDB) ID: 3SQ6). 
Therefore, it would be useful to construct a 3D structure 
of human α7 nAChR-LBD, but also for a prediction 
model that incorporates the protein flexibility involved 
in the ligand-receptor recognition process. Here, we 
describe the development of a competitive docking model 
(CDM) based on an approach similar with our previously 
published model [40] for predicting estrogen receptor 
binding activity [32, 45] to help mitigate the shortcoming 
of rigid-protein docking by favoring the more energetically 
favorable receptor-ligand complex. The ability of CDM 
to predict the binding of chemicals to human α7 nAChR-
LBD was assessed with a set of compounds whose human 
α7 nAChR-LBD binding had been experimentally tested. 
Finally, the important interactions that occurred when 
the receptor was bound by different chemicals were also 
investigated with molecular dynamics (MD) simulations 
[32, 46–48]. We elucidated the potential key residues 
in human α7 nAChR-LBD that take part in chemical 
binding, and revealed good performance of the model in 
chemical binding prediction. This model focuses on the 
interaction of these molecules with the receptor’s ligand 
binding domain, but does not account for interactions at 
other receptor sites that may modulate receptor activity. 
This α7 nAChR binding activity prediction model may be 
useful for screening tobacco constituents that may have 
addiction potential as well as for regulatory priority setting 
for laboratory testing these compounds.

Figure 1 gives the overview of this study. The CDM, 
which accounts for protein flexibility, was developed to 
predict the binding potential of chemicals to the human α7 
nAChR-LBD. Developed using a training set of ligands 
obtained from the PDB, the CDM was used to predict, 
with good accuracy, the binding potential for a set of test 
compounds whose binding activity was experimentally 
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validated. The potential key ligand binding interactions of 
human α7 nAChR were elucidated using MD simulations. 
These interactions include non-polar interactions (e.g., 
hydrophobic contacts, pi-pi interactions), as well as polar 
interactions (e.g., hydrogen bonding, pi-cation interactions). 
Key residues involved in these binding interactions have 
been identified. The elucidated binding interactions clarified 
the understanding of chemical binding potential to human 
α7 nAChR. The developed CDM shows applicability 
in computational high-throughput screening of tobacco 
constituents with addiction potential and may play a role in 
efforts to protect and improve public health.

RESULTS

Analysis of ligand binding pockets and selection 
of templates for homology modeling

The PDB complexes (PDB IDs and the associated 
ligands) that were chosen as potential templates for 

constructing human α7 nAChR-LBD are listed in Table 
1. The receptors in these PDB structures were in complex 
with ligands (Figure 2) that were found to have human 
α7 nAChR binding data (with the exception of AN4 and 
AN5 bound to 2WNL, which had rat α7 nAChR binding 
data). Among these, 16 complexes were acetylcholine 
binding proteins (AChBP), while the remaining complex 
was a chimeric nAChR-LBD. Apart from the latter, which 
shared the highest percent sequence identity (63%) with 
human nAChR-LBD, all other templates were found to 
share approximately 24-26% sequence identity with the 
target. While three of these complexes were resolved at a 
resolution below 2 Å (2WNJ, 2WN9, 2XYS), the majority 
of the structures had a resolution of 2 to 3 Å.

Figure 3 depicts the results of the clustering 
analysis performed on the ligand binding pockets 
of the 17 PDB complexes. These complexes were 
clustered based on the RMSD of the residues lining 
their ligand binding pockets. Two distinct groups of 
protein conformations were observed; one representative 

Figure 1: Overall modeling scheme. The 3D structures of complexes of nAChBPs with different ligands were retrieved from the PDB. 
Ligands and proteins were separated. Binding pocket similarity was analyzed, resulting two groups. One template structure was selected 
from each group based on sequence similarity with human nAChR. Two 3D structures of the human α7 nAChR-LBD were constructed 
using homology modeling based on the selected templates. Using these two structures, the CDM was developed with the training set 
ligands. The CDM was used to predict the binding activities of the test set compounds. The prediction results were validated through 
experimental determination of the binding activities of the test set ligands.
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complex was selected from each of the two groups (3SQ6 
and 2XYT) as templates for construction of human 
α7 nAChR-LBD structures. The complex structure 
3SQ6 had the highest sequence identity with human α7 
nAChR-LBD and thus was selected as a template for the 
homology modeling; the complex structure 2XYT was 
selected as another template for the homology modeling 

mainly due to its good resolution (2 Å) combined with 
the relatively rigid and large ligand (TC9). The main 
difference between the two complexes was that the 
receptor conformation of the complex 3SQ6 had a more 
enclosed/smaller ligand binding pocket compared to the 
receptor conformation of the complex 2XYT, which had 
a more open/larger ligand binding pocket.

Figure 2: Structures of the compounds. The training (A) and test (B) compounds identifications that were used in this paper are 
noted below the structures.
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3D human α7 nAChR-LBD structures

Figure 4 shows the structures 3SQ6 and 2XYT and 
alignments of their protein sequences with the primary 
sequence of human α7 nAChR. The colored sections 
indicate the regions containing identical residues between 
the templates and human α7 nAChR. The protein in 
3SQ6 shared a high sequence identity (63%) with human 
α7 nAChR-LBD (Figure 4A and 4C), while the protein 
in 2XYT shared 26% sequence identity with human 
α7 nAChR-LBD (Figure 4B and 4D). It was noted that 
the loop sections and the secondary structure regions 
(α-helices and β-sheets) of the protein in 3SQ6 aligned 
better with human α7 nAChR-LBD than those of the 
protein in 2XYT.

Figure 5 displays the initial 3D human α7 nAChR-
LBD structures constructed by homology modeling 
using 3SQ6 (Figure 5A) and 2XYT (Figure 5B) as the 
templates. The Ramachandran plot of the initial 3D 
structure constructed from 3SQ6 (Figure 5C) shows that 
92.2% of residues were placed in the favored zone (the 

red regions) and 99.1% of residues were placed in the 
allowed zone (the red and yellow regions), indicating 
that the 3D structure is of good quality and at a stable 
state. In the same way, the Ramachandran plot depicted in 
Figure 5D shows that 92.4% of residues were placed in the 
favored zone (the red regions) and 99.2% of residues were 
placed in the allowed zone (the red and yellow regions), 
indicating the initial homology structure based on 2XYT 
is of good quality and at a stable state.

The initial 3D structures were optimized through 
MD simulations. The optimized 3D structures of human 
α7 nAChR-LBD constructed from 3SQ6 and 2XYT 
were superimposed with the initial 3D structures from 
the homology modeling as shown in Figure 6A and 6B, 
respectively. Comparison of the optimized structures with 
their initial structures indicates that the MD simulations 
led to relatively larger changes in the conformation of the 
loops, while the helixes had very small changes in the 
optimizations. The Ramachandran plot of the optimized 
3D structure from 3SQ6 (Figure 6C) shows that 93.1% 
and 99.4% of residues were placed in the favored zone 

Table 1: The PDB complexes shortlisted as potential templates to construct the human α7 nAChR-LBD, with 
associated details and available experimental α7 nAChR binding data

PDB ID Ligand ID Protein Species α7 binding data* Sequence identity (%) Resolution (Å)

Ki(nM) Ref.

3SQ6 EPJ α7-nrc* HS, LS 18 47 63.24 2.80

1UW6 NCT AChBP LS 170±65 47 24.75 2.20

3U8J 09O AChBP LS 136 47 23.88 2.35

3U8L 09Q AChBP LS >10000 47 23.88 2.32

3U8M 09R AChBP LS 190 47 23.88 2.70

3U8K 09P AChBP LS 9970 47 23.88 2.47

3U8N 09S AChBP LS 847 47 23.88 2.35

2W8G BS2 AChBP AC 79.4 48 26.24 2.60

2W8F BS1 AChBP AC 79.4 48 26.24 2.70

2XYT TC9 AChBP AC 2975 49 26.24 2.05

2WN9 ZY5 AChBP AC 235& 50 25.24 1.75

2XYS SY9 AChBP AC 4854 49 26.24 1.91

2WNL AN5 AChBP AC 200& 50 25.24 2.70

2WNL AN4 AChBP AC 200& 50 25.24 2.70

2WNJ ZY7 AChBP AC 130 50 25.24 1.80

4AFT QMR AChBP AC 322 51 26.24 3.2

4BQT C5E AChBP AC 4200 51 26.24 2.88

Legends: * α7 nAChR binding data from human except AN4 and AN5 from rat; & Kd (nM).
Abbreviations: α7-nrc: α7-nicotinic receptor chimera; AChBP: Acetylcholine Binding Protein; HS: Homo sapiens; LS: 
Lymnaea stagnalis; AC: Aplysia Californica.
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(the red regions) and the allowed zone (the red and yellow 
regions), respectively, higher than the percentages of 
residues (92.2% in the favored zone and 99.1% in the 
allowed zone) for the initial structure, indicating the 
optimized 3D structure is of a higher quality and at a more 
stable state. The Ramachandran plot of the optimized 3D 
structure from 2XYT (Figure 6D) shows that 93.7% and 
99.6% of residues were placed in the favored zone (the 
red regions) and the allowed zone (the red and yellow 
regions), respectively, higher than the percentages of 
residues (92.4% in the favored zone and 99.4% in the 
allowed zone) for the initial structure, revealing the 
optimized 3D structure is of a higher quality and at a more 
stable state.

Competitive docking model

The results of docking the 17 ligands in the training 
set to the two human α7 nAChR-LBD structures are 
presented in Table 2. Three ligands (ID: TC9, BS1, BS2) 
were only docked in the human α7 nAChR-LBD structure 
constructed from 2XYT, and their docking scores were 
used in the development of the CDM. The other 14 ligands 
were successfully docked to both human α7 nAChR-LBD 
structures. According to the CDM rules, the lower docking 
scores were used for training the CDM. It was noted that 
the lower of the two docking scores for most of the ligands 
came from docking to the 3SQ6-based human α7 nAChR-
LBD, except for SY9, which was the only ligand that 
obtained a lower docking score in the 2XYT-based human 
α7 nAChR-LBD structure than in the 3SQ6-based human 
α7 nAChR-LBD structure.

With the 17 winning docking scores listed in the 
last column of Table 2  as the training data, the predictive 
CDM was constructed using and is expressed by 
equation (1).

( )= − +scoreCDM 1 8.725
4.507

1

Key ligand binding interactions

The 17 human α7 nAChR-LBD-ligand complexes 
from the CDM were subjected to 20 ns MD simulations 
to investigate potential key ligand binding interactions. 
The RMSD plots of the MD simulations are shown in 
Supplementary Figure 1. These plots indicate that the 17 
human α7 nAChR-LBD-ligand complexes reached a more 
or less stable state throughout the 20 ns MD simulations, 
following the sharp increase in the initial stage.

The key binding interactions and the residue 
fluctuations of human α7 nAChR-LBD were investigated 
using the frames from the last ns of the MD simulations. 
Supplementary Figure 2 shows the RMSF values that 
depict the fluctuations of residues of human α7 nAChR 
in the MD simulations. In general, the fluctuations for the 
residues remained between 0.5-2Å. Larger fluctuations 
were observed in the loop regions compared to the 
α-helices and β-sheets, as expected; human α7 nAChR 
complexes bound with ligands AN4, AN5, BS2 and 09R 
showed slightly more restricted movement compared to 
the complexes bound with other ligands, which may be 
due to the small size and rigid structures.

The key binding interaction fractions calculated 
over the last 1 ns are shown in Supplementary Figures 3 

Figure 3: The hierarchical clustering of the binding pockets of 17 complex structures. The similarity (y-axis) was measured 
using the RMSDs between the pocket conformations. The PDB ID (x-axis) was used to indicate the complex.
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for hydrophobic contact, S4 for pi-pi interactions, and 5 
for hydrogen bonds and pi-cation (See Supplementary 
Figures 6–22 for the diagrams of interactions for the 
individual ligands). Table 3  summarizes the important 
residues involved in the ligand binding of human α7 
nAChR. The residues involved in hydrophobic contacts 
were Tyr93, Phe104, Val108, Leu109, Tyr118, Leu119, 
Pro121, Trp149, Tyr188 and Tyr 195 in chain A, and 
Trp55, Tyr93, Leu109, Leu119, Trp149, Ile169, Pro170, 
Tyr188, Cys190 and Tyr195 in chain B. Among these 
residues, the most important residue was Trp149 of 
chain B, which was involved in hydrophobic contact for 
most of the ligands. The other hydrophobic interaction 
residues were Tyr195 of chain B and Leu119 of chains 
A and B. The residues involved in pi-pi interactions 

were Phe104, Trp149, Tyr195 and Tyr188 in chain A and 
Trp55, His115, Trp149, Tyr195 and Tyr188 in chain B. 
The residues involved in hydrogen bonding interactions 
were Arg79, Asn107, and Leu119 in chain A and Arg79, 
Gln117, Trp149, Asp164, Ser166, Tyr188, and Tyr195 
in chain B. Hydrogen bonding with the backbone of 
Leu119 of chain A was particularly important – eight of 
the 17 ligands formed hydrogen bonds with this residue. 
Interestingly, hydrogen bonding interactions were not 
found for BS1, BS2, EPJ, and QMR. In addition to 
hydrogen bonding, another polar interaction type (i.e., 
pi-cation) was observed between some ligands (BS1, 
ZY5, ZY7 and AN4) and human α7 nAChR-LBD. While 
the pi-cation interaction between human α7 nAChR-LBD 
and BS1 arose from the interactions between the positive 

Figure 4: The template structures used in homology modeling of human α7 nAChR-LBD structures. 3D structures are 
shown for 3SQ6 (A) and 2XYT (B). The alignment results of the sequence of the human α7 nAChR with the template proteins in 3SQ6 
(C) and 2XYT (D) are shown. The colored regions in a-d indicate the regions that were well-aligned between the human α7 nAChR and 
3SQ6 or 2XYT.
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charge found in the quaternary nitrogen of the ligand and 
the two tyrosine residues (Tyr188 and Tyr195) in chain A 
of the receptor, the pi-cation interactions between human 
α7 nAChR-LBD and ZY5, ZY7 and AN4 arose from the 
interactions between the aromatic rings in these residues 
with the positive charge of Arg79.

CDM predictions of test compounds

Human α7 nAChR binding activity was predicted 
for the 12 test compounds with the CDM expressed by 
equation (1). MG624 and hexamethonium were docked 
only to the 2XYT-based human α7 nAChR-LBD and the 
docking scores were used in the CDM predictions. The 
remaining 10 compounds were successful in molecular 
docking to both structures and, thus, the lower docking 

scores were used in the CDM predictions as listed in 
Table 4. The CDM prediction value for hexamethonium 
was -0.318 and, thus, hexamethonium was predicted as 
a non-binder. Hexamethonium exhibited binding affinity 
for nicotine binding sites, but did not show inhibition 
in methyllycaconitine binding, demonstrating that 
hexamethonium interacts with ɑ4β2 but not ɑ7 receptor 
subtypes, respectively [49]. The CDM prediction values 
for the remaining 11 compounds were positive (see the 
last column of Table 4 ) and, thus, these compounds were 
predicted as binders of human α7 nAChR. Out of these 
11 predicted α7 binders, acetylcholine [50], epibatidine 
[51], nicotine [52], PNU282987 [53], methyllycaconitine 
[54], NS1738 [55], PNU120596 [56], and SB206553 [57] 
were confirmed by the experimental data reported in the 
literature.

Figure 5: Homology modeling results. The initial structures of the human α7 nAChR-LBD constructed using homology modeling 
based on the template structures 3SQ6 (A) and 2XYT (B). The proteins were drawn in ribbon models and the ligands were plotted in stick 
models. The Ramachandran plots are given for the corresponding initial structures based on 3SQ6 (C) and 2XYT (D). The x-axis and y-axis 
indicate the two dihedral angles of amino acid residues in the homology model structures. Each point represents an amino acid residue. The 
favored regions are color-coded in red, the allowed regions in yellow, and the not allowed regions in white.
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DISCUSSION

Computational works such as MD simulations 
on nAChR α7 receptor of nonhuman species were 
reported [58, 59]. To date, the structure of a human α7 
nAChR-LBD has yet to be elucidated. In order to inform 
the assessment of the addiction potential of tobacco 
constituents, 3D structures of human α7 nAChR-LBD are 
of great value, especially in the identification of tobacco 
constituents that have potential to bind human α7 nAChR. 
Knowledge of human α7 nAChR binding potential of 
tobacco constituents would be useful, as binding human 
α7 nAChR is a biological process that involves a cascade 
of biological responses in addiction and can be used for 

screening tobacco constituents with addiction potential. 
Therefore, the results could potentially be used to model 
a reduction in addiction potential of tobacco products by 
decreasing the amount of tobacco constituents that bind 
human α7 nAChR.

Homology modeling was used to generate the 
3D structure of human α7. The template was selected 
based on the size of the ligand binding pocket of AChBP 
from different species. The 17 crystal structures were 
classified into two group. One template was selected 
from each group (3SQ6 and 2XYT) to model the human 
α7 nAChR. The size of the binding pocket of 2XYT 
was larger than 3SQ6 due to the binding of large ligand 
(TC9). The sequence alignments between the human 

Figure 6: Optimized structures. The optimized structures of the human α7 nAChR-LBD based on the template structures 3SQ6 (A, 
purple) and 2XYT (B, red). The initial homology structures are shown in grey. The Ramachandran plots are given for the corresponding 
optimized structures based on 3SQ6 (C) and 2XYT (D). The favored regions are color-coded in red, the allowed regions in yellow, and the 
not allowed regions in white.
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α7 nAChR and the templates were performed using 
ClustalW from Maestro. The 3SN6 template had shown a 
higher sequence identity than 2XYT. Prime module from 
Maestro was used to build the 3D structure of human 
a7 nAChR. The generated models were assessed using 
Ramachandran plot. The 3SN6 and 2XYT based model 
structures had shown 99.1% and 99.2% residues in the 
allowed and favored regions in the Ramachandran plots. 
The initial models were subject to 100 ns molecular 
dynamics simulations to refine the side chain orientations 
and to relax the loop regions. The final frame from the 
trajectory file was selected as a representative structure. 
The refined models were better than the initial models in 
the Ramachandran plots and were used for subsequent 
molecular docking studies. Docking is a well-established 
method for assessing the binding potential of chemicals 
to the target receptor in the body. This technique has been 
used for predicting potential binders of nAChRs [60–
64]. However, protein conformation flexibility remains 
an issue due to the rigid-body treatment of the protein 
structure during the rigid docking process, the most 
common docking protocol. A flexible docking protocol 
that allows changes in protein conformation is very 

expensive to implement. Application of flexible docking 
in a big number of molecules such as high-throughput 
screening is difficult, if not impossible, and currently is 
not a popular docking protocol due to the challenges of 
conformational sampling and energy weighting. Different 
methods have been developed to incorporate protein 
flexibility into molecular docking through balancing 
the computational cost and the conformational sampling 
space; for example, the flexible docking protocol uses 
experimentally-determined conformations to reduce 
conformation sampling space and to guide weighting 
energy of protein conformations. The CDM developed 
in this study was constructed in a similar way, taking 
into consideration the conformational flexibility inherent 
in proteins by incorporating the different protein (or 
more importantly, pocket) conformations most likely 
to be adopted. It is worth noting that issues related to 
potential false positive predictions are often found when 
using models based on the docking scores of CDM. 
These models utilize homology model structures based 
on docking scores used to measure the fitness of ligands 
in a binding pocket. Homology model structure are also 
determined by the orientation, shape, and energetic 

Table 2: Docking scores for the training set ligands obtained from docking to both 3SQ6-based and 2XYT-based α7 
nAChR-LBD structures as well as the winning score

ID XPGscore* Winning score

3SQ6-based α7 nAChR-
LBD

2XYT-based α7 nAChR-
LBD

EPJ -8.725 -5.2 -8.725

ZY5 -8.082 -5.601 -8.082

ZY7 -8.047 -5.537 -8.047

09S -8.016 -4.093 -8.016

09Q -7.704 -5.072 -7.704

AN5 -7.673 -4.681 -7.673

09R -7.666 -5.109 -7.666

NCT -7.512 -3.1 -7.512

09O -7.439 -3.656 -7.439

QMR -7.353 -4.135 -7.353

09P -7.257 -3.616 -7.257

AN4 -6.982 -4.674 -6.982

C5E -6.362 -3.65 -6.362

TC9 ND -5.583 -5.583

BS1 ND -5.015 -5.015

BS2 ND -4.36 -4.36

SY9 -3.596 -4.218 -4.218

Abbreviations: * XPGscore: Extra-precision Glide docking score.
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interactions of small molecules with the receptor with an 
approximation method for binding energy.

Clustering analysis of the templates shortlisted from 
the PDB was a key step in constructing 3D structures of 
human α7 nAChR in accounting for the protein flexibility 
in CDM. While structure 3SQ6 in PDB appeared to be 
the obvious template of choice for constructing human 
α7 nAChR-LBD, a second human α7 nAChR-LBD 
constructed based on structure 2XYT (despite the lower 
percentage sequence identity) demonstrated its usefulness 
during the docking of TC9, BS1 and BS2 (i.e., ligands that 
failed to dock to the 3SQ6-based human α7 nAChR-LBD 
but were known to bind to human α7 nAChR). This clearly 
showed the merit of using the CDM in the assessment of 
chemical binding potential to human α7 nAChR-LBD. 
More favorable scores were often observed in the 3SQ6-
based rather than the 2XYT-based human α7 nAChR-
LBD structures for majority of the ligands. This was not 
surprising, as the narrower binding pocket of the 3SQ6-

based human α7 nAChR-LBD allowed the ligands to fit 
more snugly to the pocket (thus forming more interactions) 
compared to the 2XYT-based structure, which had a wider 
binding pocket opening.

Comparison of the residues in the active site 
of the human α7 nAChR structures that involved 
interactions with ligands revealed that 14 and 23 
residues from Chain A and B interacted with the 
ligands. The interacting residues in Chain A and B are 
148S, 149W, 150S, 151Y, 152G, 186R, 187F, 188Y, 
190C, 191C, 192K, 193E, 194P, 195Y and 32Y, 33F, 
34S, 55W, 56L, 57Q, 58M, 59S, 60W, 77T, 79R, 107W, 
108V, 109L, 110V, 111N, 115H, 116C, 117Q, 118Y, 
119L, 120P, 121P, respectively.

Binding interaction between nAChRs and some 
ligands were investigated experimentally [65, 72]. Apart 
from developing the CDM, this study also investigated 
potential key binding interactions between human α7 
nAChR-LBD and the ligands in the training set. It was 

Table 3: Potential key binding interactions obtained from MD simulations performed on the docked complexes of 
the training set ligands

Interactions Protein Residues

Hydrophobic contact
A Chain Leu119

B Chain Leu119, Trp149, Tyr195

Pi-pi B Chain Trp149, Tyr188

H-bonding A Chain Leu119

Pi-cation A Chain Arg79, Tyr188, Tyr195

Table 4: Binding activity prediction results of the test set ligands. A positive CDM prediction score indicates that the 
ligand is a human α7 nAChR-LBD binder while a negative score indicates otherwise

Ligands XPGScore Winning score CDM

2XYT-based α7 nAChR-
LBD

3SQ6-based α7 nAChR-
LBD

Acetylcholine -4.68 -4.812 -4.812 0.132

epibatidine -5.2 -8.725 -8.725 1.000

nicotine -3.1 -7.512 -7.512 0.731

cytisine -3.65 -6.362 -6.362 0.476

PNU282987 -4.518 -5.878 -5.878 0.368

mecamylamine -3.564 -4.873 -4.873 0.145

MG624 -4.954 failed to dock -4.954 0.163

methyllycaconitine -5.829 failed to dock -5.829 0.357

Hexamethonium -2.786 -1.001 -2.786 -0.318

NS1738 -7.108 -8.513 -8.513 0.953

PNU120596 -4.992 -6.188 -6.188 0.437

SB206553 -4.373 -6.671 -6.671 0.544
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found that most ligands were anchored in the binding 
pocket of human α7 nAChR-LBD through rather non-
specific hydrophobic contacts with a range of hydrophobic 
residues in the binding pocket. Residues Trp149 and 
Tyr195 in the B chain were found to interact strongly 
(i.e., observed through most of the frames extracted from 
the MD trajectories) with many of these ligands. Trp149 
has been found to interact with ligands through hydrogen 
bonding and cation–π interactions in literature [66]. Leu119 
in chain A was also found to interact with many of these 
ligands but with apparent weaker contacts. Considering 
that aromatic rings were contained in many residues of 
the binding pocket and most of the ligands, the formation 
of pi-pi interactions between human α7 nAChR-LBD and 
the ligands was expected. Experimental data confirmed 
binding interaction of Leu119 with large agonists of α7 
[67]. Trp149 and Tyr188 in chain B were found to form 
rather stable pi-pi interactions with the ligands which were 
confirmed with the findings in the literature [68, 69, 71]. 
Similarly, polar interactions such as hydrogen bonding 
and pi-cation interactions were found to play an important 
role in receptor-ligand binding. In general, the hydrogen 
bonds observed were strong and were maintained in most 
of the trajectories. Similar with the hydrogen bonding 
interactions, the pi-cation interactions observed between 
the receptor (Arg79, Tyr188 and Tyr195 of chain A) and 
the ligands (BS1, ZY5, ZY7, and AN4) were also fair 
strong. While in the case of BS1, the positive charge 
originated from the ligand, the opposite was true for AN4, 
ZY5 and ZY7 (i.e., the aromatic rings from these ligands 
interacted with the positive charge from Arg79). With 
ZY5 and ZY7, the pi-cation interaction with Arg79 could 
be attributable to the electron-donating double hydroxyl/
methoxy substituents of one of the aromatic rings. The 
mutation study demonstrated that Arg79 involved binding 
interaction with ligands of α7 [70].

MATERIALS AND METHODS

Overall modeling scheme

The overall modeling scheme of this study is 
depicted in Figure 1. First, the PDB was searched for 
suitable protein-ligand complexes to be used as potential 
templates to construct the 3D human α7 nAChR-LBD 
structures. During the search, only complexes containing 
ligands with known human α7 nAChR binding data 
were selected (see Table 1 ). These complexes were 
then subjected to a binding pocket analysis to examine 
the similarity or difference among the ligand binding 
pockets. Based on this analysis, two homology structures 
of human α7 nAChR-LBD were constructed. The CDM 
was developed using these 3D structures and the crystal-
bound ligands (training set; see Figure 2A). The key 
binding interactions between the ligands and the 3D 
human α7 nAChR-LBD structures were examined with 

MD simulations. The model was then used to predict the 
binding activity of a series of test compounds (see Figure 
2B) and the model prediction results were compared with 
the experimentally-obtained findings to assess model 
performance.

Binding pocket analysis

Seventeen receptor-ligand complexes were obtained 
through the PDB search. The residues lining these ligand 
binding pockets were identified. Taking the PDB crystal 
structure 1UW6 as an example, the residues of its ligand 
binding pocket are: Asp86, Ala88, Tyr90, Lys140, Gly142, 
Ser143, Trp144, Thr145, His146, His147, Val184, Thr185, 
Tyr186, Ser187, Cys188, Cys189, Glu191, Ala192, Tyr193, 
Glu194, Lys241, Ile243, Trp260, Gln261, Gln262, Thr263, 
Gln280, Ser282, Thr306, Pro307, Leu309, Ala310, Arg311, 
Val312, Val318, Leu319, Tyr320, Met321, Pro322, Ser323, 
and Tyr371. Based on these residues, 17 3D structures of 
the α7 nAChR complexes with ligands were aligned and the 
root-mean-squared deviations (RMSDs) of these residues 
among the 17 ligand binding pockets were calculated 
using Pymol (https://www.pymol.org/). The receptor-
ligand complexes were clustered according to their binding 
pocket residue RMSDs using the hclust tool (method: ward) 
in R (https://www.rdocumentation.org/packages/stats/
versions/3.4.3/topics/hcl).

Homology modeling of human α7 nAChR-LBD

The clustering results from the binding pocket 
analysis identified two distinct groups of binding pocket 
conformations among the 17 receptor-ligand complexes. 
One structure was selected from each of the two clusters 
(i.e., PDB IDs: 3SQ6 and 2XYT) as a template to construct 
the 3D structures of human α7 nAChR-LBD.

A series of homology modeling steps were performed 
using the Prime structure prediction wizard (http://www.
schrodinger.com/Prime/) within Maestro (http://www.
schrodinger.com/Maestro/) as follows. First, the primary 
sequences of the target protein and the template structure 
were compared. Sequence alignment was performed using 
ClustalW (http://www.ch.embnet.org/software/ClustalW.
html) between the primary sequences of the two subunits 
(chain A and chain B) of human α7 nAChR (UniProt ID: 
P36544) and the template proteins 3SQ6 and 2XYT. The 
model was built based on the alignment between the target 
and template sequence with the ligands (EPJ from 3SQ6 
and TC9 from 2XYT), through the knowledge-based and 
heteromultimer methods. The heteromultimer helps to 
build the model with more than one chains at a single run. 
There are four steps in the homology model construction. 
Initially the PRIME module copied the backbone atoms 
of the aligned region and the side chains of the conserved 
residues. Subsequently, the side chain was optimized and 
the non-template residues were minimized. Finally, the 

https://www.pymol.org/
http://www.inside-r.org/r-doc/stats/hclust
http://www.inside-r.org/r-doc/stats/hclust
http://www.schrodinger.com/Prime/
http://www.schrodinger.com/Prime/
http://www.schrodinger.com/Maestro/
http://www.schrodinger.com/Maestro/
http://www.ch.embnet.org/software/ClustalW.html
http://www.ch.embnet.org/software/ClustalW.html
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missing residues in the alignment file were inserted. The 
constructed human α7 nAChR-LBD structures based on 
3SQ6 and 2XYT were minimized using the OPLS2005 
force field. The minimized models were assessed using 
Ramachandran plots for the structural integrity and steric 
hindrance of the resulting.

Structure refinement through MD simulations

The two 3D human α7 nAChR-LBD structures from 
homology modeling were subjected to MD simulations 
for structural optimization to remove any potential 
atomic clashes that might arise during construction. 
MD simulations were performed using Desmond from 
DE Shaw (https://www.deshawresearch.com/resources_
desmond.html). OPLS2005 force field was used for both 
the proteins and ligands. In DESMOND, OPLS2005 
has enough parameters to parametrize the ligands. 
The complex structures with OPLS force field and the 
DESMOND configuration file (parameter file) were used 
to run the molecular dynamics simulations. His residues 
in the modelled human α7 were single protonated. MD 
simulation system—consisting of an orthorhombic box 
with borders of 10Å from the receptor-ligand complex, 
containing simple point charge water molecules, and 
having a Na+ and Cl- salt concentration of 0.15M—was 
constructed using System Builder. Prior to production 
simulations, both receptor-ligand systems were subjected 
to a relaxation stage using the default setting as follows: 
two steps of energy minimization of the protein–ligand 
complexes with and without restraint on the solute; 
12 picosecond (ps) of constant number, volume, and 
temperature ensemble simulation carried out at 10 kelvin 
(K) with a Berendsen barostat and a fast temperature 
relaxation constant, velocity resampling set at every 1 ps, 
and restraints applied on all heavy atoms of the protein-
ligand complex; 12 ps of constant number, pressure, and 
temperature (NPT) ensemble simulation carried out at 
10 K, 1 atmospheric pressure (atm) using a Berendsen 
thermostat and barostat with a fast temperature relaxation 
constant to heat the system from 10 K to 300 K, and a 
slow pressure relaxation constant, velocity resampling 
set at every 1 ps, and restraints applied on all heavy 
atoms of the protein–ligand complexes; 12 ps of NPT 
simulation carried out at 300 K, 1 atm using the same 
thermostat, barostat, temperature relaxation constants, 
pressure relaxation constants, velocity resampling steps, 
and restraints; and finally, 24 ps of NPT simulation 
at 300 K, 1 atm using a fast temperature, and normal 
pressure relaxation constants. After this, production MD 
simulations were performed under NPT condition, 300 
K, and pressure of 1 atm for 100 nanoseconds (ns) with 
energy being recorded at every 5 ps and trajectory at 
every 20 ps. The structural integrity of the final receptor 
structures obtained at the end of the MD simulations was 
checked using the Ramachandran plot.

Preparation of ligands for docking

Two sets of ligands—training and test sets—were 
used in this study. The training set consisted of ligands 
extracted from the 17 receptor-ligand complexes obtained 
from the PDB. The ligands were imported to Maestro and 
checked for correct bond order and type before hydrogen 
atoms were added. The ligands in the test set were 
downloaded from PubChem (https://pubchem.ncbi.nlm.
nih.gov/) in 3D SDF format. All ligands were protonated 
at pH 7.

Preparation of human α7 nAChR-LBD 
structures for docking

A docking grid was generated around the binding 
pocket for the two human α7 nAChR-LBD structures 
constructed from homology modeling and refined by MD 
simulations. For the 3SQ6-based human α7 nAChR-LBD, 
the centroid of the ligand (EPJ) was set as the center of 
the grid and the size of the grid box was set to be suitable 
for ligands with a length of 10 Å. For the 2XYT-based 
human α7 nAChR-LBD, the centroid of the ligand (TC9) 
was set as the center of the grid, while the size of the grid 
box was set to be suitable for ligands with a length of 17 
Å. Compared the residues in the active site between the 
two human α7 homology modeled protein to identify the 
conformation of the residues due to the ligand binding.

Competitive docking model (CDM)

The ligands in the training set were docked to 
the grid boxes of the two 3D human α7 nAChR-LBD 
structures using Glide [72–74] in Maestro (http://www.
schrodinger.com/Glide). The extra precision docking 
method was used while the rest of the docking parameters 
were maintained as default: van der Waals radii scaling 
factor of 0.80, partial charge cutoff of 0.15, flexible ligand 
sampling with regard to nitrogen inversions and ring 
conformations, and Epik state penalties applied to the 
docking scores. The number of ligand poses to include for 
post-docking minimization was set at five, and only one 
pose per ligand was written out. Three possible scenarios 
were anticipated from the docking of a ligand to the two 
human α7 nAChR-LBD structures: (1) the ligand was 
successfully docked to only one of the two structures: the 
3SQ6-based or the 2XYT-based human α7 nAChR-LBD 
structure; (2) the ligand was successfully docked to both 
structures; and (3) the ligand could not be docked to either 
structure. In scenario (1), the ligand would be considered 
to bind human α7 nAChR in the conformation similar to 
the 3SQ6-based or 2XYT-based human α7 nAChR-LBD 
structure; therefore, the associated docking score would 
be used for the CDM development. In scenario (2), the 
ligand would be considered to bind the human α7 nAChR-
LBD structure whose docking score was the lower of the 

https://www.deshawresearch.com/resources_desmond.html
https://www.deshawresearch.com/resources_desmond.html
https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
http://www.schrodinger.com/Glide
http://www.schrodinger.com/Glide
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two (more favorable), as obtained from the ligand docking 
to the 3SQ6-based and 2XYT-based human α7 nAChR-
LBD structures, and the lower docking score would be 
used in the CDM. In scenario (3), the ligand would be 
considered as a non-binder of human α7 nAChR. Based 
on this rule, each ligand from the training set would be 
associated with a favored docked complex and docking 
score (or none if it was a non-binder). The predictive 
CDM was developed using these docking scores according 
to equation (2), below:

( )= − −
−

score score lowest
score highest score lowest

CDM 1  
  

2

"Score" indicates the winning docking score (the 
lower docking score between the two human α7 nAChR 
for the same chemical), while "score highest" and "score 
lowest" are the highest and lowest winning scores among 
the 17 scores. When the CDM value calculated from 
docking is less than zero, the chemical is predicted to be a 
non-binder of human α7 nAChR; the chemical is predicted 
to be a binder if its CDM value is greater than or equal 
to zero.

Elucidation of key binding interactions through 
MD simulations

In order to define the potential key binding 
interactions between human α7 nAChR-LBD and its 
binding ligands, the 17 complexes obtained from the CMD 
were subjected to MD simulations. The MD simulations 
were performed for each complex in a manner similar to 
the human α7 nAChR-LBD structure-refinement step. 
First, a relaxation stage identical to what was described 
in 3D structure optimization was performed; next, a 
production of 20 ns of MD simulations was performed. 
All simulation parameters remained unchanged. To assess 
simulation stability, the RMSD of the 20 ns simulations 
was plotted against time. The key binding interactions 
(i.e., hydrophobic contact, pi-pi interactions, pi-cation and 
hydrogen bonds, root-mean-squared fluctuations [RMSFs] 
of the residues) were investigated using the frames 
obtained from the last ns of the MD simulations. These 
analyses were performed using the simulation interactions 
diagram tool in Maestro (http://www.schrodinger.com/
Maestro/).

Binding activity predictions of the compounds 
for experimental validation

After development of the CDM, the compounds 
in the test set were docked to the two 3D human α7 
nAChR-LBD structures, and their respective favored 
docking scores were used to make predictions, based 
on equation (1), of the binding activity of the respective 
compounds.

Experimental validation

The CDM performance in the prediction of ligand 
binding activity was assessed by comparing the prediction 
results with the findings obtained from experimental testing.

A Center for Tobacco Products (CTP) sent 12 
compounds for blind testing of the CDM. The 12 
compounds were assayed for their activity to the human 
α7 nAChRs subtype in a CTP-contracted project in which 
786 compounds were profiled in five human nicotinic 
subtypes including the α7 [75]. The results were sent to 
the CTP scientist for assessing CDM performance.
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