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ABSTRACT

Purpose: TP53 signature has a robust predictive performance for prognosis in 
early-stage breast cancer, but the experiment that reported this relied on public 
microarray data and fresh-frozen samples. Before TP53 signature can be used in 
a clinical setting, a simple and low-cost diagnostic system using formalin-fixed 
paraffin-embedded (FFPE) samples is needed. New treatments based on the biological 
characteristics of TP53 signature are expected to follow.

Experimental Design: TP53 signature was evaluated in 174 FFPE early breast 
cancer specimens using digital quantification via the nCounter technique (NanoString). 
Patients were classified as TP53 signature mutant type (n = 64) or wild type  
(n = 110). Predictive power of TP53 signature was compared with those of other gene 
expression signatures in 153 fresh-frozen samples of the same cohort by RNA-seq. 
The molecular features of TP53 signature were elucidated using TCGA omics data and 
RNA-seq data to explore new therapeutic strategies for patients with TP53 signature 
mutant type.

Results: TP53 signature was a strong predictor of prognosis and was also 
more accurate than other gene expression signatures and independent of other 
clinicopathological factors. TCGA data analysis showed that risk score of TP53 
signature was an index of chromosomal and genomic instability and that TP53 
signature mutant type was associated with higher PD-L1 expression, variation in 
copy numbers, and numbers of somatic mutations. 

Conclusions: TP53 signature as diagnosed using the nCounter system is not only 
a robust predictor of prognosis but also a potential predictor of responsiveness to 
immune checkpoint inhibitors.
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 INTRODUCTION

The functional loss of p53 plays a very important 
role in oncogenesis [1, 2]. Reports have claimed that 
structural mutations in the TP53 gene were seen in 30 
percent of whole breast cancer patients and 80 percent 
of triple-negative breast cancer patients [3, 4]. There is 
some evidence that TP53 structural mutation status is 
associated with worse overall and disease-free survival, 
but its predictive value is still debated [5–7]. Many 
TP53 structural mutations are missense mutations, 
and the function of each mutation was verified using a 
yeast system [8]. There is a limitation associated with 
evaluating p53 function based only on TP53 missense 
mutations, however, and several comprehensive analyses 
by next-generation sequencing (NGS) have revealed 
other key genes associated with the p53 pathway, 
epigenetic abnormalities and copy number alternations 
without TP53 missense mutation [9]. Because of these 
findings, a comprehensive p53 functional pathway assay 
should be established considering these abnormalities 
[10]. Previously, we developed TP53 signature, a gene 
expression profile composed of 33 genes including two 
housekeeping genes to predict TP53 structure [11]. TP53 
signature can be used to classify breast cancer patients into 
wild type (TP53 signature WT type) or mutant type (TP53 
signature MT type) based on the expression pattern of 33 
genes. The TP53 status determined by TP53 signature 
does not completely match to the TP53 status defined by 
TP53 structural status. There were some samples without 
TP53 structural mutation in TP53 signature mutant type. 
Recent reports revealed TP53 signature could also predict 
prognosis of early-stage breast cancer more accurately 
than TP53 status determined by DNA sequencing or 
immunohistochemically examination. Uji et al. reported 
that TP53 signature was a powerful predictive prognostic 
indicator for ER-positive breast cancer rather than TP53 
structural mutation detected by NGS, Sanger sequence 
method, and immunohistochemistry [12]. In addition, 
Lehmann et al. performed a meta-analysis of 31 validation 
datasets to assess the usefulness of 351 different signatures 
to predict prognosis and therapeutic effect. In this report, 
TP53 signature had a robust capacity for predicting 
prognosis in early-stage breast cancer compared to other 
gene expression profiles including Mammaprint and 
Oncotype DX [13], which have previously been used as 
gene expression profile panels to predict early-stage breast 
cancer in clinical situations [14–18]. 

To date, diagnostic systems for TP53 signature have 
been based on microarrays. Before the robust predictive 
ability of TP53 signature can be used in an ordinary 
clinical situation, a simple and low-cost diagnostic 
system for TP53 signature using formalin-fixed paraffin-
embedded (FFPE) tissue samples is absolutely needed. 
The nCounter (Nanostring Technology, Washington, CA, 
USA) is a gene expression analysis machine which can 

analyze a maximum of 800 kinds of gene expression 
values at the same time without PCR reaction [19]. The 
Prosigna Assay, based on PAM50 gene signature, on the 
nCounter Analysis System has already been approved 
by the FDA. Developing a diagnostic system for TP53 
signature using the nCounter would provide us with more 
accurate prognostic predictive ability for early breast 
cancer in actual clinical situations. At the same time, it 
is necessary to develop new therapeutic strategies for 
patients with poor prognosis as diagnosed by TP53 
signature.

The first purpose of this study was to develop a 
diagnostic system for TP53 signature through an analysis 
of 223 FFPE breast cancer specimens using nCounter 
and to demonstrate the robust predictive ability of TP53 
signature compared to other expression profiles by 
analyzing RNA-seq data. The second purpose of this study 
was to clarify the molecular biological background of 
TP53 signature using RNA-seq data of 153 breast cancer 
patients and TCGA public data [3]. 

RESULTS

Patients and samples for analysis

Figure 1 shows patients’ backgrounds. Of the 
233 patients, 220 had FFPE samples and 153 had Fresh 
Frozen (FF) samples. All FFPE samples were analyzed 
by nCounter while FF samples were analyzed by RNA-
seq. Patients with FFPE samples consisted of 30 learning 
cohort patients and 190 nCounter validation cohort 
patients. Among the 190 nCounter cohort patients, 174 
patients had stage I or II cancer (nCounter validation 
cohort). Among the 153 FF patients (RNA-seq cohort), 
132 patients had stage I or II cancer (RNA-seq validation 
cohort). There were 120 patients in the nCounter RNA-
seq common cohort, with data analyzed by both nCounter 
and RNA-seq. We defined “nCounter learning cohort”, 
“nCounter validation cohort” and “nCounter RNA-seq 
common cohort”. (See materials and methods.)

Development of TP53 signature for clinical use

Correlation between expression values from FFPE 
and FF samples by nCounter system

The previous reports of TP53 signature data 
were derived from microarray data using FF samples. 
In order to evaluate whether the data acquired through 
nCounter analysis from FF and FFPE were comparable, 
we examined correlations between the expression levels 
of the 31 genes comprising the TP53 signature in FF and 
FFPE samples. The gene-set used in this study is the same 
as gene-set used in original TP53 signature. Some reports 
have confirmed good correlation between the expression 
values of FFPE and FF samples [20]. Good correlations 
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were observed between expression values from FFPE 
and FF samples as counted by nCounter (Supplementary 
Supplementary Figure  1). In all patients, Pearson’s 
correlation coefficient was over 0.9. This result showed 
that FFPE samples are suitable for use in diagnosis of 
TP53 signature with the nCounter system. 

Cutoff value for TP53 signature status

The cutoff value for TP53 signature status as 
measured with the nCounter system was determined by 
analyzing samples from the 30 patients constituting the 
learning cohort. Fourteen patients had TP53 somatic 
mutations as detected by Sanger sequence (Supplementary 
Table 1). ROC curve was generated by plotting the 
relationship of the sensitivity and false positivity for 
TP53 status as determined by Sanger sequence at 
various candidate TP53 signature score cutoff values. 
AUC showed 0.9 (Supplementary Figure 2). When the 
cutoff value was at 0.78, the accuracy of TP53 status 
determination as confirmed by Sanger sequence was 
at its maximum. With a cutoff value of 0.78, sensitivity 
was 0.93, specificity 0.88, and accuracy 0.90. From this 
result, we identified the samples with TP53 signature 
score over 0.78 as belonging to the TP53 signature MT 
type and samples with TP53 signature score under 0.78 as 
belonging to the TP53 signature WT type.

Predictive performance of TP53 signature 

TP53 signature risk score and TP53 signature status 
in nCounter validation cohort

Of the 190 patients analyzed by nCounter, 174 were 
stage I or II. Using nCounter expression data, the TP53 
signature risk score of each sample was calculated, and TP53 

signature status was determined. Sixty-five patients were 
diagnosed as TP53 signature MT type, and 110 patients as 
TP53 signature WT type. Table 1 shows the relation between 
TP53 signature status and patient clinical characteristics. A 
significant difference was observed between the two different 
TP53 signature groups with respect to ER, PR, HER2, tumor 
grade, histological type, need for postoperative adjuvant 
chemotherapy and need for postoperative adjuvant endocrine 
therapy. Specifically, there were significantly more patients 
with TP53 signature mutant type who received postoperative 
adjuvant chemotherapy, while there were significantly 
more patients with TP53 wild-type signature who received 
postoperative adjuvant endocrine therapy. No significant 
differences were observed between the two TP53 signature 
groups with respect to age, clinical stage, tumor size, and 
lymph node metastases (Table 1).

Survival analysis in the nCounter validation cohort

Patients with TP53 signature MT type showed worse 
relapse free survival (RFS) compared with TP53 signature 
WT type patients in the nCounter validation cohort (log-
rank test, P = 0.002; Figure 2A). RFS of stage II was 
significantly shorter than that of stage I (log-rank test, P = 
0.011; Figure 2A), and RFS of node-positive patients was 
shorter than that of node-negative patients (log-rank test, P 
= 0.022; Figure 2A). There was no significant difference 
of RFS related to other clinical factors. Univariate analysis 
showed that TP53 signature status, tumor stage, and lymph 
node metastasis were significantly associated with RFS 
(Table 2). On multivariate analysis, only TP53 signature 
status showed a significant association with RFS. These 
results indicated that TP53 signature status as determined 
using the nCounter system was an independent predictor of 
RFS.

Figure 1: Details of the cohort, shows the flow chart of the breakdown of patients analyzed with nCounter and RNA-
seq.
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Survival analysis in the nCounter RNA-seq common 
cohort

 In a survival analysis of the nCounter RNA-seq 
common cohort, TP53 structural mutation data was 
added as a predictive factor alongside clinical factors 
and TP53 signature status. Of the 120 patients, 25 had 
TP53 structural mutation. On univariate analysis, TP53 
signature status, TP53 structural mutation and lymph node 
metastasis were significantly associated with RFS (Table 3)  
(Figure 2A). On multivariate analysis, only the TP53 
signature showed a significant association with RFS. 
There were three recurrent patients diagnosed as TP53 

signature MT type without TP53 structural mutation. 
These results were consistent with previous reports that 
TP53 signature status was superior to TP53 status as 
defined by DNA-direct sequence to predict prognosis of 
breast cancer.

Comparison of predictive performance between TP53 
signature and other expression profiles

The risk scores for Mammaprint, OncotypeDX, 
PAM50, and TP53 signature were calculated using RNA-
seq count data. The predictive performance of each risk 
score for RFS was compared with the concordance index. 

Table 1: Clinicopathological characteristics disaggregated by TP53 signature status
Total Mutant type Wild type

No. of
patients % No. of

patients % No. of
patients % P*

Samples 174 100 64 37 110 63
Age, years (median) 26–98 (58.0) 37–83 (58.5) 26–98 (57.0) 0.233
pStage
  I 85 49 24 39 61 58
  IIA 59 34 28 43 31 28
  IIB 30 17 12 19 18 16 0.058
ER
  Positive 124 71 28 44 96 87
  Negative 50 29 36 56 14 13 <0.001
PgR
  Positive 95 54 16 25 79 72
  Negative 79 46 48 75 31 28 <0.001
HER2
  Positive 16 9 12 19 4 4
  Negative 158 91 52 81 106 96 0.002
Pathological tumor size, cm
  T1 112 64 39 61 73 66
  T2 60 35 25 39 35 32
  T3 2 1 0 0 2 2 0.374
Node
  Positive 55 32 25 39 30 27
  Negative 119 68 39 61 80 73 0.149
Grade
  1 43 26 3 5 40 38
  2 74 44 19 30 55 52
  3 51 30 41 65 10 1 <0.001
Adjuvant chemotherapy
  + 77 44 42 66 35 35
  − 97 56 22 34 75 65 <0.001
Adjuvant Endocrine therapy
  + 123 71 25 39 98 89
  − 51 29 39 61 12 11 <0.001

Abbreviations: pStage, pathological stage; ER, estrogen receptor; PgR, progesterone receptor; HER2, human epidermal 
growth factor receptor type 2.
P*: Chi-square test was used for statistical analysis of patients' characteristics except for age.
Kruskal–Wallis test was used for statistical analysis of patients' age.
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The results showed that the predictive performance of 
TP53 signature was superior to those of other expression 
profiles (Figure 2B). Furthermore, TP53 signature 
status as diagnosed by nCounter enables more accurate 
prediction than that as diagnosed by RNA-seq does 
(Figure 2B). 

Molecular features of samples with TP53 
signature MT

Molecular biological features of TP53 signature 
were investigated by analyzing TCGA data and RNA-seq 
data. First, somatic mutation genes frequently observed 

Figure 2: Relapse-free survival analysis in the nCounter validation cohort and concordance index for RFS and risk 
score. (A) shows RFS after operation stratified by TP53 signature status (a, d), TP53 structural status (e), stage (c), and lymph node status 
(b, f) using the Kaplan–Meier method. The differences between the curves of the two subgroups were assessed using the log-rank test. The 
results from the nCounter validation cohort are shown in a, b, and c, and the results from the nCounter and RNA-seq cohort are shown 
in d, e, and f.  (B) shows concordance index for RFS and risk score. Predictive performance for RFS was compared among risk scores of 
the following gene expression profiles: TP53 signature, OncotypeDX, Mammaprint, and PAM50. The risk score of TP53 signature was 
calculated using count data from both nCounter and RNA-seq. 
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Table 2: Results of uni- and multivariate analysis (Cox proportional hazard model) showing correlation of RFS with 
clinicopathological factors in patients with breast cancer (nCounter validation cohort)

Variable
Univariate

HR 95% CI p value
TP53 status by signature (versus wild type) 4.94 1.57–15.5 0.003 
pStage (versus Stage I) 3.94 1.11–13.9 0.018 
Node (versus negative) 3.49 1.24–9.82 0.017 
Pathological tumor size (versus T1) 1.68 0.61–4.64 0.322 
Grade (versus 1–2) 1.51 0.54–4.26 0.439 
ER (versus positive) 1.68 0.60–4.72 0.338 
PgR (versus positive) 2.47 0.84–7.24 0.088 
HER2 (versus negative) 1.54 0.35–6.80 0.590 
Adjuvant chemotherapy (versus non-therapy) 1.39 0.50–3.82 0.529 
Adjuvant endocrinetherapy (versus non-therapy) 0.84 0.29–2.45 0.747 

Variable
Multivariate

HR 95% CI p value
TP53 status by signature (versus wild type) 4.2 1.33–13.3 0.015
pStage (versus Stage I) 3.15 0.88–11.3 0.078

Abbreviations: pStage, pathological stage; Node, lymph node metastasis; ER, estrogen receptor; PgR, progesterone 
receptor; HER2, human epidermal growth factor receptor type 2; HR, hazard ratio;CI, confidence interval.

Table 3: Results of uni- and multivariate analysis (Cox proportional hazard model) showing correlation of RFS with 
clinicopathological factors in patients with breast cancer (nCounter RNAseq common cohort)

Variable
Univariate

HR 95% CI p.value
TP53 status by signature (versus wild type) 7.71 1.64–36.3 0.003 
TP53 status by structure (versus wild type) 4.04 1.17–14.0 0.033 
pStage (versus Stage I) 3.67 0.78–17.3 0.067 
Node (versus negative) 3.64 1.03–12.9 0.043 
Pathological tumor size ( versus T1) 1.53 0.44–5.28 0.504 
Grade (versus 1–2) 2.42 0.70–14.0 0.170 
ER (versus positive) 1.70 0.17–2.10 0.424 
PgR (versus positive) 2.10 0.13–1.69 0.246 
HER2 (versus negative) 2.88 0.61–13.6 0.231 
Adjuvant chemotherapy (versus non-therapy) 0.51 0.14-1.80 0.286 
Adjuvant endocrinetherapy (versus non-therapy) 1.68 0.47-5.97 0.430 

Variable
Multivariate

HR 95% CI p.value
TP53 status by signature (versus wild type) 5.27 1.05–26.4 0.043
TP53 status by structure (versus wild type) 3.52 0.97–12.7 0.055
Node (versus negative) 2.43 0.66–8.92 0.182

Abbreviations: pStage, pathological stage; Node, lymph node metastasis; ER, estrogen receptor; PgR, progesterone 
receptor; HER2, human epidermal growth factor receptor type 2; HR, hazard ratio;CI, confidence interval.
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Figure 3: Molecular back ground of TP53 signature in TCGA data. (A) shows somatic mutation numbers (SMN), MDM2 
mRNA expression values, TP53 signature status, TP53 somatic mutation status, MDM2 copy number variation (CNV), mutation genes, 
PAM50 subtypes, ER status, PR status, Her2 status, and Lymph node metastasis status (LN meta) in TCGA data. The shown patients in 
this figure are breast cancer patients with stage I or II. (B) shows comparison of (a) PD-L1 expression, (b) CD8B expression, (c) CNV, and 
(d) Somatic mutation number (SMN) between TP53 signature status in TCGA data. TP53 signature status was determined according to the 
support vector machine method (SVM). (C) shows MDM2 mRNA expression levels among following four subtypes; TP53 signature MT 
type with TP53 somatic mutation, TP53 signature MT type without TP53 somatic mutation, TP53 signature WT type with TP53 somatic 
mutation, TP53 signature WT type without TP53 somatic mutation. 
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in samples with TP53 signature MT type were examined. 
One hundred and twenty-six mutation genes were seen 
across over six samples with TP53 signature MT type 
as determined according to the support vector machine 
(SVM) method. Of these 126 filtered genes, 78 were more 
frequently seen in the TP53 signature MT type than in 
the WT type (Figure 3A, Supplementary Table 2). Gene 
Ontology (GO) enrichment analysis of these 78 genes 
revealed that many of them were related to the GO terms 
“DNA repair”, (e.g., BRCA1 and RB1), “microtubule-based 
process”, (e.g., KIF and DNAH family) or “chromosome 
organization” (e.g., CENPF, HUWE1) (Supplementary 
Table 3). Next, somatic mutations frequently seen in the 
group with TP53 signature MT type but without TP53 
somatic mutation were identified. In this cohort, many of 
the genes were related to the GO terms “DNA repair” (e.g., 
ERCC6, HUWE1, BRCA2, and CUL4B), “regulation of 
cellular macromolecule biosynthetic process” (e.g., ATRX, 
BRCA2, RB1, CUL4B, and TPR) or “nucleic acid metabolic 
process” (Supplementary Tables 4, 5). Analysis using TP53 
signature status as determined according to the clustering 
method showed similar results (Supplementary Table 2).

Although somatic mutation call using RNA-seq was 
still challenging, we investigated whether a result similar 
to that of the TCGA data analysis would be obtained in 
analysis of our clinical breast cancer samples. We found 
that, in fact, similar results were obtained (data not 
shown). 

Secondly, PD-L1 and CD8B mRNA expression 
values, copy number variance (CNV), and somatic 
mutation number (SMN) were compared between the 
TP53 signature status groups as defined according to 
the SVM method using TCGA microarray data. Both 
PD-L1 and CD8B mRNA expression values were higher 
in TP53 signature MT type than in TP53 signature WT 
type (Figure 3B). In addition, CNV and SMN were also 
higher in samples with TP53 signature MT type than in 
those with TP53 signature WT type. The same results were 
obtained when TP53 signature was defined according to 
the clustering method (data not shown). In RNA-seq data 
of clinical samples, there was no significantly difference 
in CD8B expression value between TP53 signature status, 
but PD-L1 mRNA expression value was higher in TP53 
signature MT type than in TP53 signature WT type (data 
not shown). 

 Finally, TP53 signature statuses as determined by 
nCounter were compared among intrinsic subtypes. The 
intrinsic subtype of each sample in the nCounter RNA-seq 
common cohort was determined using RNA-seq count data. 
All samples in the luminal A subtype were TP53 signature 
WT type. Half of the samples in the luminal B subtype 
were TP53 signature MT type. Many samples in the basal 
and Her2 enriched subtypes were TP53 signature MT type 
(Supplementary Table 6). The same analysis was performed 
using TCGA microarray data, and similar results were 
obtained (Supplementary Table 6). In TP53 signature MT 

type, almost all samples with basal type had TP53 structural 
mutation, and many samples with luminal B were without 
TP53 structural mutation (Figure 3A). Some samples 
diagnosed as TP53 signature MT type without TP53 
structural mutation showed overexpression of MDM2, 
and these samples were luminal B type (Figure 3A, 3C).  
Almost all samples diagnosed as TP53 signature WT type 
with TP53 structural mutations were luminal A type.

DISCUSSION

Although TP53 signature is a strong predictor for 
early-stage breast cancer, all previous studies on TP53 
signature have been performed using comprehensive 
expression data from FF tissue samples. In this study, 
we proved that risk score of TP53 signature status 
could be calculated using FFPE specimens rather than 
FF tissue samples, and that TP53 signature status from 
FFPE samples was a robust predictive prognostic factor 
independent of clinicopathologic factors. In addition, 
TP53 signature status as diagnosed by our system has 
strong predictive power compared with other expression 
profiles. The TP53 signature-based diagnostic system 
that we developed in this study is expected to be useful 
in clinical situations for reasons of not only predictive 
performance but also simplicity, cost, and reproducibility. 

Other expression profiles used in clinical settings 
were developed based on prognostic outcomes. It is 
interesting that TP53 signature also has a predictive 
prognostic value, although TP53 signature was developed 
based on biological characteristics of p53 functional 
abnormality. 

In order to clarify the reason why TP53 signature 
has predictive prognostic value, we set out to reveal the 
precise molecular backgrounds of samples with poor 
prognosis as diagnosed by TP53 signature. We reanalyzed 
TCGA data of 526 breast cancer patients and found that 
the total CNV and SMN were higher in samples with TP53 
signature MT type than in those with TP53 signature WT 
type. Gene ontology of the 22 upregulated genes among 
the TP53 signature genes revealed that these genes were 
related to genome and chromosomal stability, being 
associated with “nuclear chromosome segregation”, 
“mitotic sister chromatid segregation”, “microtubule 
cytoskeleton organization”, “spindle organization”, 
“regulation of cyclin-dependent protein kinase activity” 
and “mitotic spindle checkpoint” (data not shown). 
Furthermore, BRCA1, RB1 mutation, and other gene 
mutations rarely reported in breast cancer but relating 
to DNA repair or chromosomal instability were found in 
samples with TP53 signature MT type along with TP53 
gene mutation. These results indicated that the risk score 
of TP53 signature is an index of chromosomal or genome 
instability. 
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The presence of high levels of MDM2 in tumor 
cells decreases their ability to activate p53 [21]. We 
found that samples with overexpression of MDM2 were 
diagnosed with TP53 signature MT type, although these 
samples did not show TP53 structural mutation. This 
result shows that TP53 signature can evaluate TP53 
function comprehensively with or without TP53 structural 
mutations. Several reports have suggested that not only 
mutations in the TP53 gene itself but also structural 
abnormality in other molecules related to the pathway is the 
mechanism underlying tolerance to DNA-damaging drugs 
[22–24]. These reports indicate that there is a limit to the 
efficacy of molecular functional analysis performed only 
based on structural mutations and a need for comprehensive 
biological functional analysis. TP53 signature is a new 
functional assay system that satisfies this requirement.

As explained above, TP53 signature status is a 
classification indicating genomic and chromosomal 
instability. Treatment decisions for breast cancer patients 
are typically based on the oncodriver genes that constitute 
the treatment targets, and intrinsic subtype is used to 
classify patients with regard to treatment target. Among 
the intrinsic subtypes, however, the basal-like subtype 
is considered to have no clear molecular treatment 
target. Our data showed that almost all patients with 
basal-like subtype belonged to the TP53 signature MT 
type. This result indicates that the basal subtype group 
is characterized by high genomic and chromosomal 
instability. Our data also showed that there were some 
patients with genomic and chromosomal instability in 
the luminal B and Her2-enriched subgroups. In patients 
with Luminal B type, about a half of them were TP53 
signature MT type. Some Luminal B type patients with 
TP53 signature MT type did not show TP53 structural 
mutations. This result showed that there might be other 
mechanisms except for TP53 structural mutation to obtain 
chromosomal and genome instability in luminal B type 
patients. In the TCGA data, 75 patients were diagnosed 
as Luminal B type, of which 8 were deceased. Seven of 
these eight patients were diagnosed as TP53 signature 
MT type. These results showed that breast cancer patients 
could be classified in more detail using TP53 signature in 
addition to intrinsic subtype classification, and suggested 
that the prognosis of patients with TP53 signature MT type 
is poor with or without molecular target oncodriver genes 
because of genomic instability. The development of new 
treatment strategies for patients with genomic instability 
will improve prognosis of breast cancer patients. 

Recently, treatments with immune checkpoint 
inhibitors have led to good outcomes in many type of 
cancers [25–28]. In some studies, tumor mutational 
load [29, 30] , chromosomal instability [31], intensity of 
CD8+ T cell infiltrates [32, 33] and intratumoral PD-L1 
expression [34, 35] have been reported as biomarkers for 
responsiveness to immune checkpoint inhibitors. In our 
study, the molecular features of breast cancer samples 

with TP53 signature MT type were consistent with these 
biomarkers for responsiveness to immune checkpoint 
inhibitors. These results indicate that the TP53 signature 
has a potential predictive value for responsiveness to 
immune checkpoint inhibitors. Indeed, Tolaney et al. 
reported in a phase 1b/2 study that eribulin mesylate in 
combination with pembrolizumab led to a high response 
rate (33%, 95% CI: 19.5–48.1%) in patients with 
metastatic triple-negative breast cancer [36], of which 
basal subtype breast cancer accounts for the majority 
of cases. As mentioned in our study, almost all basal 
subtype breast cancer patients were TP53 signature MT 
type. To date, no clinical trials treating breast cancer 
patients with immune check point inhibitors as adjuvant 
therapy have been reported. To prove our hypothesis that 
the TP53 signature has a potential predictive value for 
responsiveness to immune checkpoint inhibitors, future 
prospective study or a retrospective sample analysis 
associated with a clinical trial using immune checkpoint 
inhibitors should be conducted.

Taken together, we developed a powerful diagnostic 
system based on TP53 signature that is suitable for 
clinical use. TP53 signature appears to be an index of 
chromosomal and genomic instability and to have potential 
predictive value for responsiveness to immune checkpoint 
inhibitors. The diagnostic system based on TP53 signature 
developed in this study will help in prognostic assessment, 
therapeutic decision-making, and treatment optimization 
in patients with breast cancer.

MATERIALS AND METHODS 

Patient cohorts and samples (Figure 1)

Learning cohort

This study was approved by the Ethics Committee at 
the Tohoku University Hospital. We analyzed 30 patients’ 
FFPE samples, a set which we called the “nCounter 
learning cohort,” to determine the cutoff value for 
diagnosis of TP53 signature status using nCounter. None 
of this cohort had received chemotherapy or endocrine 
therapy preoperatively. The same cohort had been used 
in our previous microarray-based study [11], and TP53 
status had been identified in all samples by means of TP53 
DNA-direct sequencing.

Validation cohort

The validation cohort was a prospective breast 
cancer case series from Hoshi General Hospital and 
Miyagi Cancer Center from September 2007 to October 
2010. Written informed consent for the study was obtained 
from all patients. None of the patients received had 
chemotherapy or endocrine therapy preoperatively. A part 
of each surgical specimen of breast cancer was stored as 
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FF tissue, and the remainder was stored as FFPE tissue. 
Among the patients enrolled in this study, patients with 
ductal carcinoma in situ, those with unknown histology 
or those with squamous cell carcinoma were excluded 
from the analysis. Among the validation cohort, we called 
the samples analyzed by nCounter only the “nCounter 
cohort” (n = 190) and cases analyzed by RNA-seq the 
“RNA-seq cohort” (n =153). From within these cohorts, 
we selected the curatively resected patients with stage I–
II breast cancer and called them the “nCounter validation 
cohort” (n = 174) and the “RNA-seq validation cohort” 
(n = 132). Samples that were in both the “nCounter 
validation cohort” and the “RNA-seq validation cohort” 
were grouped in an “nCounter RNA-seq common cohort” 
(n = 120).

RNA extraction

Glass slide specimens with 10-µm thick sections 
of FF and FFPE tissue blocks were prepared. Tumor 
cells were collected from FF tissue or FFPE tissue by 
macrodissection in reference to an HE-stained specimen. 
Total RNA was extracted from FF tissue or FFPE tissue 
using an RNeasy mini kit (Qiagen, Valencia, CA, USA) or 
an RNeasy FFPE kit (Qiagen), respectively.

Gene expression analysis by nCounter

A set of thirty-six genes including five internal 
control genes was used as the TP53 signature gene 
set for nCounter. Primers for each of these 36 genes 
were designed. In accordance with the manufacturer’s 
instructions, we measured the expression values of the 36 
genes using nCounter with 200 ng of total RNA extracted 
from each FF or FFPE sample.   

Comparison of expression data of FFPE and FF 
samples by nCounter system

Five patients with both FFPE and FF samples 
were randomly selected, and expression data of these 
patients’ samples were measured using the nCounter 
system. We compared expression data of FFPE with that 
of FF samples in these five patients by Pearson’s product 
moment correlation coefficient.

Gene expression analysis by RNA-seq

RNA quality was monitored using the 2200 
TapeStation system (Agilent Technologies, Santa Clara, 
CA, USA). Sequencing libraries were generated using the 
TruSeq RNA Library Prep kit (Illumina Inc., San Diego, 
CA, USA) according to the manufacturer’s directions. 
Sequencing was performed on the Illumina HiSeq2500 
platform (Illumina) in rapid mode. Raw image files were 
processed using the Illumina pipeline for basecalling with 
default parameters. On average, we obtained 50 million 

50-bp-long paired-end reads from the RNA-seq. RNA-
seq reads were aligned using STAR2 against the hg19 
reference genome [37] . On average, we could align 98% 
of the reads. Raw expression data was calculated as simple 
read counts for the exon regions by featurecounts [38]. 

Somatic mutation call by RNA-seq

Somatic mutation call using RNA-seq data 
was performed according to the following two steps. 
First, the SNP call for RNA-seq data was performed 
using the Genome Analysis Tool kit (GATK version 
3.6). Next, we defined the SNP, of which a few were 
reported in the database as somatic mutations. In brief, 
each sequenced read was aligned against the human 
reference genome (hg19) by STAR2, and duplicate-read 
removals were performed using Picard (version 2.6.0). 
Splitting reads in splicing site fields were performed 
using the SplitNCigarReads program, base quality score 
recalibration using the BaseRecalibrator program, and 
variant discovery using the Haplotype caller program. 
All programs were run according to the GATK tool kit. 
Annotation information was attached to all variants using 
ANNOVAR (version 20160201), and variants were filtered 
using the SNP databases 1000g2015aug_eas and esp6500. 
We identified the base substitutions, the proportion of 
which was under 1 percent in both SNP databases; the 
read count of the base substitutions as somatic mutations 
was over 20 (DP > 20). To determine TP53 somatic 
mutations accurately, we checked all samples visually 
using Integrative Genomics Viewer.

Risk score and TP53 signature status

Risk score of TP53 signature was calculated using 
count data of nCounter or RNA-seq according to the 
following formula. 

Risk score of TP53 signature = (sum of counts 
of 22 genes that were upregulated in tumors with 
TP53 mutation) / (sum of counts of 9 genes that were 
downregulated in tumors with TP53 mutation)

 We used the learning cohort to determine the 
cutoff value for TP53 signature status, because TP53 
status according to Sanger sequence was known for all 
patients in this cohort. The cutoff value of TP53 signature 
score for TP53 signature status was determined to 
maximize accuracy of TP53 status according to Sanger 
sequence, and an ROC curve was drawn. TP53 status 
was determined using only TP53 signature score by the 
nCounter system, because all samples in the nCounter 
learning cohort were analyzed only by the nCounter 
system. In the RNA-seq cohort, on the other hand, only 
risk score was calculated and cutoff value for TP53 
signature status was not determined, because TP53 status 
according to Sanger sequence was not known in this 
cohort. TP53 signature status was considered to be mutant 
type (TP53 signature MT type) when the risk score 
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was higher than the cutoff value, and wild type (TP53 
signature WT type) when the risk score was lower than 
the cutoff value. R package “ROCR” was used to draw 
the ROC curve and calculate the area under the curve 
(AUC) [39]. 

Statistical analysis using clinical information

The association between the various 
clinicopathological parameters and TP53 signature status 
as determined using the nCounter system was evaluated 
using the chi-square test or the Kruskal–Wallis exact test. 
RFS rates were calculated according to the Kaplan–Meier 
method and evaluated by the log-rank test. RFS was 
defined as the period from the date of operation to the 
date of recurrence. Univariate and multivariate analysis 
of various parameters for the prediction of recurrences 
was conducted using the Cox proportional hazards model. 
Regardless of the statistical test performed, differences 
with P < 0.05 were considered statistically significant. In 
the nCounter RNA-seq common cohort, TP53 structural 
mutation data was added to clinical factors and TP53 
signature status as a predictive factor. All static analysis 
was conducted using R ver3.25.

Comparison of TP53 signature with other gene 
expression profiles

Risk scores of Mammaprint, OncotypeDX, and 
PAM50 were calculated using RNA-seq count data from 
the nCounter RNA-seq common cohort. R package, 
genefu version 2.6.0 was used to calculate risk scores [40]. 
Predictive performances for RFS were compared using 
risk scores ofTP53 signature, Mammaprint, OncotypeDX, 
and PAM50. Concordance index calculated using the 
R package survcomp was used to compare predictive 
performance [41]. Intrinsic subtype by PAM50 was 
defined using genefu version 2.6.0 with the RNA-seq 
count data [40].

Molecular biological features of TP53 signature

Diagnosis of TP53 signature status and intrinsic 
subtype from TCGA data

All TCGA data was retrieved from cbioportal (http://
www.cbioportal.org/study?id=brca_tcga_pub).

Five hundred and twenty-six patients’ normalized 
microarray expression data, exome sequence data, copy 
number alternation data, and clinical information data 
were analyzed. Expression values of the 31 genes that 
constitute TP53 signature were obtained from normalized 
microarray data. TP53 signature status for TCGA data was 
determined by two methods. The first was the hierarchal 
clustering method, an unsupervised classification method. 
All 526 samples were divided into two clusters by 
hierarchal clustering. Samples of the cluster that consisted 

predominantly of samples with TP53 somatic mutation 
were identified as TP53 signature MT type. Samples of the 
other cluster were identified as TP53 signature WT type. 
The second was the linear SVM method, a supervised 
classification method. A total of 100 patients, 50 with TP53 
somatic mutation and 50 without, were randomly selected 
as a training set. TP53 signature genes’ expression values 
and TP53 somatic mutation status of training set samples 
were used to build a model to predict presence of TP53 
somatic mutation by the linear SVM method. The linear 
SVM model was built using the R package kernlab [42]. 
TP53 signature statuses of the 426 samples remaining in 
this study after the 100-sample training set was excluded 
were determined according to this SVM model. 

Intrinsic subtype by PAM50 was defined using 
TCGA microarray expression data. Intrinsic subtype of 
each TCGA sample was defined by the R package genefu 
version 2.6.0 [40].

Somatic mutations in TP53 signature

To reveal somatic mutation genes in TP53 signature, 
we performed the following analysis. First, somatic 
mutation genes found in more than five patients in the 
TP53 signature MT group were selected. Next, Fisher’s 
exact test was conducted to compare the occurrence rates 
of each selected gene between the TP53 signature MT type 
group and the TP53 signature WT type group. P value 
under 0.05 was considered indicative of a statistically 
significant difference.

In addition, to reveal the difference in somatic mutation 
genes between the TP53 signature MT type without TP53 
somatic mutation group and the TP53 signature WT type 
without TP53 somatic mutation group, Fisher’s exact test was 
conducted to compare somatic mutations between these two 
groups, and p value under 0.05 was considered indicative of 
a statistically significant difference. 

A similar analysis was performed using RNA-seq 
expression data from clinical specimens.

Copy number variance and total somatic mutation 
number analysis 

The differences in CNV and SMN were compared 
between the different TP53 signature status groups. Of 
the patients classified by the two methods, patients with 
CNV and SMN analysis data were used in this analysis 
(485 samples by the clustering method, 391 samples by 
the SVM method). The differences in CNV and SMN 
between the TP53 signature groups were compared by the 
Mann-Whitney test.

Comparison of PD-L1, CD8B mRNA expression level 
between TP53 signature MT and WT groups

Expression values of PD-L1 and CD8B obtained 
from TCGA microarray data were compared between the 
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TP53 signature status groups. Expression values of both 
PD-L1 and CD8B were compared between TP53 signature 
status groups by Wilcox test. 

Gene ontology enrichment analysis

GO enrichment analysis was performed using David 
ver6.7 [43, 44]. In a function annotation chart obtained from 
DAVID, GO term with p value under 0.1 was considered 
indicative of a statistically significant difference.
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