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ABSTRACT

Breast cancer, a heterogeneous disease with variable pathophysiology and 
biology, is classified into four major subtypes. While hormonal- and antibody-targeted 
therapies are effective in the patients with luminal and HER-2 subtypes, the patients 
with triple-negative breast cancer (TNBC) subtype do not benefit from these therapies. 
The incidence rates of TNBC subtype are higher in African-American women, and the 
evidence indicates that these women have worse prognosis compared to women 
of European descent. The reasons for this disparity remain unclear but are often 
attributed to TNBC biology. In this study, we performed metabolic analysis of breast 
tissues to identify how TNBC differs from luminal A breast cancer (LABC) subtypes 
within the African-American and Caucasian breast cancer patients, respectively. We 
used High-Resolution Magic Angle Spinning (HR-MAS) 1H Nuclear magnetic resonance 
(NMR) to perform the metabolomic analysis of breast cancer and adjacent normal 
tissues (total n=82 samples). TNBC and LABC subtypes in African American women 
exhibited different metabolic profiles. Metabolic profiles of these subtypes were also 
distinct from those revealed in Caucasian women. TNBC in African-American women 
expressed higher levels of glutathione, choline, and glutamine as well as profound 
metabolic alterations characterized by decreased mitochondrial respiration and 
increased glycolysis concomitant with decreased levels of ATP. TNBC in Caucasian 
women was associated with increased pyrimidine synthesis. These metabolic 
alterations could potentially be exploited as novel treatment targets for TNBC.
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INTRODUCTION

Breast cancer is a heterogeneous group of diseases 
that are immunohistochemically categorized by the cancer 
cell expression of the estrogen receptor (ER), progesterone 
receptor (PR), and human epidermal growth factor 
receptor-2 (HER-2) amplification into four main subtypes: 
luminal A, luminal B, Her-2-positive, and triple-negative 
[1][2]. These subtypes not only differ in their hormonal 
statuses and HER-2 expressions, but also clinically vary in 
their prognoses, responses to therapy, and incidence rates 
[3]. The incidence rates of TNBC are higher in younger 
premenopausal women and African-American women 
than in Caucasian women [4].

TNBC constitutes about 10-20% of all diagnosed 
breast cancer cases. Despite its smaller percentage, TNBC 
causes a disproportionate number of breast cancer deaths 
due to its aggressive nature, earlier relapses, and distinct 
patterns of metastasis [5]. Because of its lack of hormonal 
receptors (ER and PR) and HER-2 receptor, TNBC is 
not responsive to hormone or anti-HER-2 monoclonal 
antibody therapy. Current TNBC treatment is limited to 
systemic cytotoxic chemotherapy [6]. On the other hand, 
LABC typically constitutes 40-50% of invasive breast 
cancer, is more prevalent in Caucasian women, and has a 
good prognosis.

In the pursuit of identifying specific targeted therapy 
for TNBC, recent preclinical studies have identified 
potential molecular targets, including the epidermal 
growth factor receptor (EGFR), SRC, MET, and poly 
ADP ribose polymerase 1/2 (PARP1/2). However, these 
targets have underperformed in their clinical testing [5]. 
Therefore, the need to identify an effective treatment 
for TNBC still exists. This could be achieved by a 
better understanding of its biology, which may aid in 
the discovery of new specific therapeutic targets. Many 
approaches including proteomic and genomic techniques 
have been utilized to study the biology of TNBC [7]
[8] [9] and more recently metabolomics methods have 
been used as a promising alternative approach [10]. 
Because metabolites are sensitive to subtle differences 
in an individual’s pathological status, their profiling may 
identify altered pathways and key enzymes that could 
provide novel therapy targets. A variety of powerful 
analytical techniques such as nuclear magnetic resonance 
(NMR) and mass spectrometry (MS), and multivariate 
statistical methods [11, 12] have been shown to reliably 
identify differentially altered metabolites in various 
biological samples [13, 14].

In this study, we used a metabolomic approach to 
identify the altered metabolites of TNBC (ER, PR, HER-
2 negative subtype) and LABC (ER and PR positive 
and HER-2-negative subtype) within (African American 
women) and across race (in comparison to Caucasian 
women). Cancer and normal adjacent tissue samples 
obtained from African-American and Caucasian patients 

before neoadjuvant chemotherapy were studied using 
1H HR-MAS NMR and multivariate statistics methods. 
The analysis of these tissues indicated distinct metabolic 
profiles and pathways of TNBC and LABC in both group 
of women.

RESULTS

Patient characteristics

The demographic and hormonal characteristics 
of African-American and Caucasian women’s breast 
cancer tissue samples (n=47, 30 African Americans, 17 
Caucasians) and normal adjacent tissues (n=35, 18 African 
Americans, 17 Caucasians) are summarized in Table 1.

Global metabolite analysis distinguishes tumor 
and adjacent normal tissues

We employed HR-MAS NMR analysis to perform 
the metabolic profiling of TNBC and LABC in African 
American and Caucasian women. Qualitatively, the 
1H NMR spectra of adjacent normal tissues were 
dominated by lipids signals. The tumor spectra showed 
the peak intensities of a large number of metabolites to 
be significantly higher than the normal tissues. Lipids 
and a number of small molecules, including amino and 
organic acids, were identified in the spectra and listed in 
Supplementary Table 1 and Supplementary Figure 1. A 
total of 27 metabolites were assigned to the corresponding 
resonances by comparing the chemical shifts and peak 
multiplicities to the previously reported data [15]. The 
normalized NMR data were analyzed by PLS-DA to 
differentiate the tumors from the normal adjacent tissue. 
The PLS-DA score plots showed a clear differentiation, 
indicating distinct metabolic differences between breast 
cancer and normal adjacent tissue samples. The ROC 
curve for the predictive model was derived from the PLS-
DA analysis of the 27 metabolites listed in Supplementary 
Table 1. Figure 1A features a very good specificity of 
0.9, a sensitivity of 0.8, and an AUROC of 0.93. Similar 
analytical results using NMR-detected metabolites from 
postmenopausal women (>50 years old) are presented in 
Figure 1B with an AUROC of 0.86. The samples from 
premenopausal women (<50 years old) also showed good 
differentiation (Figure 1C) with an AUROC of 0.94. 
These data suggested that patients and controls could 
be predicted either as breast cancer patients or healthy 
controls (as well as whether they were postmenopausal 
or pre-menopausal) with high sensitivity and specificity 
(Table 2).

Box-and-whisker plots for the peak intensities of 6 
of the 27 metabolites showed that the lipids, unsaturated 
lipids, and ATP levels were lower in the tumors; however, 
the methionine, choline, and phosphocholine levels were 
higher in the tumors compared to the adjacent normal 
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tissues (Supplementary Figure 2A). Box-and-whisker 
plots for the peak intensities of the phosphocholine, myo-
inositol and uridine metabolites were significantly higher 
in the tumors compared to the normal adjacent tissues of 
premenopausal women (Supplementary Figure 2B).

Hormonal status and race affect metabolite 
expression in breast cancer

We visualized the results obtained by NMR using 
a heatmap combined with the hierarchical clustering 
of tumor tissue samples by race, hormonal status, and 

metabolite (Figure 2). As seen in Figure 2A, the top two 
clusters are enriched by the tumors on the left sub-tree and 
the normal adjacent tissues on the right sub-tree. Using the 
most variable metabolites, we applied linear discriminant 
analysis to the tumor and normal samples and found linear 
discriminants that distinguish African-American from 
Caucasian women (Figure 2B) and ER+ from ER- (Figure 
2C). Metabolites with p-values < 0.05 are listed in Table 3  
for TNBC and LABC samples regardless of race.

A PLS-DA model was developed using the 27 
NMR-detected metabolites (Supplementary Table 1). We 
used leave-one-out cross-validation to obtain the best 

Table 1: Clinicopathological characteristics of women with invasive breast cancer

Patient Characteristics Number

Total number of patients 82
African American women 48 (T=30; N=18)
Caucasian women 34 (T=17; N=17)
Pathology  
 Invasive carcinoma grade I and DCIS 3
 Invasive carcinoma grade II 10
 Invasive carcinoma grade III 25
 Unknown 9
Patient Age (years)  
All patients  
 <50 10
 >50 37
African American women  
 <50 7
 >50 23
Caucasian women  
 <50 3
 >50 14
ER Status  
All patients  
 TNBC 18
 LABC 29
African American women  
 TNBC 13
 LABC 17
Caucasian women  
 TNBC 5
 LABC 12

T: tumor; N: Normal adjacent tissue, TNBC= triple-negative breast cancer (ER,PR,HER2_negative); LABC =Luminal A 
breast cancer (ER and PR-positive and HER-2-negative).
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Figure 1: Tissue metabolite profiles derived from breast cancer patients are different from healthy control individuals. 
ROC curve for (A) PLS-DA model (based on 27 measured metabolites) with 47 breast cancer patients and 35 healthy controls. (B) PLS-DA 
model (based on 27 metabolites) with postmenopausal women breast cancer tissue and adjacent control tissue with women of >50 years 
of age. (C) PLS-DA model (based on the 27 metabolites) with premenopausal women breast cancer tissue and adjacent control tissue with 
women of <50 years of age.

Table 2: Metabolites significantly (p<0.05) expressed between all tumor and all normal tissues stratified by age

Tumor vs. Normal (All ages) Tumor vs. Normal (> 50yrs) Tumor vs. Normal (< 50yrs) 

Alanine 0.034 Alanine 0.004 Myo-inositol 0.040

ATP 0.006 ATP 0.012 Phosphocholine 0.049

Choline 0.012 Choline 0.001 Uridine 0.022

Creatine 0.043 Glucose 0.044   

Glutamate 0.008 Glutamate 0.001   

Glutamine 0.005 Glutamine 0.023   

Glutathione 0.003 Glutathione 0.012   

Glycine 0.032 Glycine 0.001   

Lactate 0.001 Lactate 0.001   

Myo-inositol 0.001 Lipid 0.015   

Phosphocholine 0.001 Methionine 0.004   

Taurine 0.001 Myo-inositol 0.001   

Tyrosine 0.041 Phenylalanine 0.016   

Uridine 0.034 Phosphocholine 0.005   

  Taurine 0.003   

  Threonine 0.006   

  Tyrosine 0.012   

  Unsaturated lipid 0.012   

  Valine 0.015   
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Figure 2: (A) Heatmap constructed based on clustering results from metabolite profiles of breast cancer (red) and normal (blue) samples. 
Heatmap features the top twenty-seven metabolites as identified by t-test analysis (p≤0.05). Distance measure is Euclidean and clustering 
is determined using the Ward algorithm. (B) Linear discriminant analysis of breast cancer samples according to race. LD plot generated for 
African American (black circle) and Caucasian women (red circle) breast cancer tissues. (C) Linear discriminant analysis of breast cancer 
samples according to hormonal status. LD plot generated for ER- (blue circle) and ER+ (red circle) breast cancer tissues.

A

B

C
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model and reduce over-fitting. The PLS-DA performance 
analyses of tumor versus adjacent normal TNBC and 
LABC tissue samples are featured in the ROC curves 
(Figures 3A and 3B). Box-and-whisker plots were created 
for tumor tissue metabolites with p-values <0.05 versus 
normal adjacent TNBC (Supplementary Figure 3) and 
LABC tissues (Supplementary Figure 4). With regards to 
the patients’ race, we found three metabolites—tyrosine, 
phenylalanine, and isobutyric acid—were significantly 
higher in the LABC of African-American women 
compared to the LABC of Caucasian women (Figure 
4A). TNBC glutamine was the only metabolite that was 
significantly higher in African-American women (Figure 
4B). Our data suggest that race and hormonal status affect 
the metabolite profiles expressed in the breast cancer 
patients.

TNBC and LABC metabolite profiles of African-
American women

For a better understanding of the effect of ER status 
on tissue metabolites, a PLS-DA model with leave-one-

out cross-validation for all 27 metabolites (Supplementary 
Table 1) was constructed, which showed excellent 
separation between the tumor and normal adjacent tissues 
for African-Americans with TNBC vs. their adjacent 
normal tissues and LABC vs. their adjacent normal 
tissues, respectively. The performance of the PLS-DA 
analysis of the above comparisons is displayed using ROC 
curves (Figure 5A&5B). Relative metabolite levels with 
p < 0.05 for TNBC/adjacent normal and LABC/adjacent 
normal are shown Table 4. When comparing the TNBC 
to the LABC of African-American women, only ATP was 
found be lower in TNBC and higher in the LABC tissues 
(Figure 6).

Pathway analysis

Pathway enrichment analysis was performed using 
the metabolite levels to compare the tumor metabolisms 
of African-American and Caucasian women, and the two 
groups exhibited striking differences (Figure 7). A total of 
39 pathways were enriched in the tumors from African-
American women; of these, 29 pathways were found to 

Table 3: Metabolites significantly expressed (p<0.05) in luminal A breast cancer (LABC) and triple-negative breast 
cancer (TNBC) comparing tumors vs. adjacent normal tissue regardless of race

Metabolites LABC vs their normal adjacent TNBC vs their normal adjacent

Alanine 0.022 -

ATP - 0.026

Choline 0.0046 -

Creatine - 0.046

Glucose - 0.020

Glutamate 0.008 -

Glutamine 0.027 -

Glutathione 0.031 0.018

Glycine 0.033 -

Lactate 0.003 0.034

Lipid - 0.011

Methionine 0.008 -

Myo-inositol 0.007 0.013

Phosphocholine 0.006 -

Taurine 0.015 0.020

Threonine 0.012 -

Tyrosine 0.046 -

Unsaturated lipids - 0.007

Uridine 0.016 -

Valine 0.045 -
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Figure 3: ROC curve for the results of the PLS-DA model from the 27 metabolites from (A) TNBC, ER-negative, samples and (B) LABC, 
ER-positive, samples.

Figure 4: Box-and-whisker plots of metabolites with p-values < 0.05 illustrating discrimination between tumor tissues from African 
American and Caucasian (A) LABC and (B) TNBC. A horizontal line in the middle portion of the box represents the mean. Top and 
bottom boundaries of boxes show the 75th and 25th percentiles, respectively. Upper and lower whiskers show 95th and 5th percentiles, 
respectively. Open circles show outliers.
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be significant (p<0.05). In Caucasian women, a total of 
39 pathways were enriched; however, only one pathway 
was found to be significant (p<0.05). The significant 
pathways associated with the tumor metabolisms of 
African-American and Caucasian women are listed in 
Supplementary Table 2.

DISCUSSION

We have used a metabolomics approach based on 
HR-MAS NMR spectroscopy and multivariate statistical 
analyses to determine the altered metabolites levels in 
breast cancer associated with clinical and demographic 
parameters. The analysis clearly showed that there were 
significant differences in the metabolic profiles of tumor 
and normal adjacent tissues and identified 14 metabolites 
to be significantly altered due to malignancy. In agreement 
with our data, the ability of the NMR-based metabolomic 
approach to distinguish malignant tumor from their 
adjacent normal tissues in unsupervised and supervised 
analyses was demonstrated by other studies that examined 
the metabolomic profile of pancreas, breast, and colon 
tissues [16–21].

Our results also revealed that the metabolic profiles 
of breast cancer tissues in postmenopausal (>50 years) 
women were distinct from those in premenopausal (<50 
years) women, which suggest that the metabolic profiles 
are age dependent, a possible outcome of various aging 
processes [22]. Few studies have been conducted to 
compare age-related metabolic effects in women with 
breast cancer. In one of these studies, it was demonstrated 

that increased methionine uptake and participation of 
the transmethylation pathway distinguished TNBC in 
African-American and Caucasian women younger than 50 
years of age [23]. With regard to effect of race on breast 
cancer metabolism, a number of metabolites were found 
to discriminate between African-American and Caucasian 
women in our study. A similar ethnic-based metabolic 
profile was reported by Stewart et al. [24]. Furthermore, 
our study showed that LABC and TNBC have different 
metabolite profiles regardless of race. These tumors could 
be distinguished from each other with high accuracy 
(AUC>0.9), which is potentially due to the previously 
known altered metabolic pathways of these two subtypes 
[25] [26]. In addition, lipid, unsaturated lipid, and glucose 
signals were significantly decreased in TNBC, which may 
be a result of the higher utilization of lipids for membrane 
biosynthesis and the higher glycolytic activity of these 
tumors [27]. Interestingly, decreased expression levels of 
these metabolite was found to have an effect on TNBC 
patient survival [28].

We then examined our data for the effect of both  
race and hormonal status. We found that glutathione, 
choline, glycine, lactate, and glutamine were significantly 
(p<0.05) higher in the tumor samples compared to the 
normal tissue samples in African American women. 
Glutathione, an intracellular antioxidant, plays a 
significant role in cellular defense [29]; therefore, high 
levels of glutathione were hypothesized to contribute to 
the treatment resistance by reducing the effectiveness of 
drugs intended to damage cancer cells [30] [31]. Higher 
concentrations of choline and phosphocholine in breast 

Figure 5: ROC curves for the cross-validated predicted class values obtained using the results of PLS-DA model for African American 
women with (A) TNBC samples and (B) LABC samples.
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cancer tissues have been reported by several studies [32]
[33] [34] [35]. Higher phosphocholine as well as lower 
glycerophosphocholine and choline levels were shown 
to be associated with LABC than TNBC. Furthermore, a 
higher glycerophosphocholine to phosphocholine ratio in 
TNBC compared to LABC was also observed. Treatment 
with PI3K pathway inhibitors significantly increased 
phosphocholine and consequently decreased proliferation 
in basal-like tumor xenografts but not in luminal-like 
tumor xenografts [36]. In patients with breast cancer that 
responded to treatment, choline and phosphocholine levels 
were significantly lower compared to patients who did 
respond to treatment. These findings identify a decrease 
in choline phospholipid metabolism as a potential target 
of breast cancer therapy [37].

Our pathway analysis visualized the differences 
in tumor metabolism between TNBC and LABC in 
African-American and Caucasian women. The same 
metabolites showed striking differences between the two 
races. While 29 different pathways showed significant 

(p<0.05) association with the tumors in African-
Americans patients, only one pathway was found to be 
significant for Caucasians. Pathways associated with 
energy metabolism—glycolysis, TCA cycle, and amino 
acid metabolism—were dominant in African-American 
women, which potentially indicates the aggressiveness of 
the tumor subtype compared to the tumors of Caucasian 
women. Our data suggest that TNBC cells in African-
American women are more active in glycolysis and 
ATP metabolism, which was also demonstrated by 
the lower ATP levels in TNBC compared to LABC. 
Rapidly proliferating tumor cells undergo metabolic 
reprograming to meet their unusually high rates of growth 
and proliferation. Therefore, these cells up-regulate the 
glycolytic flux to lactate in the presence of oxygen (i.e. 
the Warburg effect). In this situation, ATP is preferentially 
generated through aerobic glycolysis instead of oxidative 
phosphorylation, which leads to the rapid, yet inefficient, 
production of ATP per unit of glucose consumed [38]. 
Previous studies also found that TNBC cells exhibited 

Table 4: Metabolites significantly altered (p<0.05) TNBC and LABC tumors vs. adjacent normal tissues in African 
American women

Metabolites All tumor samples vs. 
adjacent normal

TNBC samples vs adjacent 
normal

LABC samples vs adjacent 
normal

Alanine 0.005 0.023 -

ATP 0.008 0.035 -

Choline 0.001 0.029 0.019

Glucose - 0.008 -

Glutamate 0.001 0.024 0.027

Glutamine 0.020 - -

Glutathione 0.026 0.026 -

Glycine 0.005 0.022 -

Lactate 0.001 0.020 0.02

Lipids 0.019 0.001 -

Lysine, L-Leucine, Arginine 0.008 - 0.041

Methionine 0.002 - 0.023

Myo inositol 0.001 - 0.007

Phenylalanine 0.012 - -

Phosphocholine 0.005 - 0.009

Taurine 0.004 0.028 0.040

Threonine 0.008 0.022 -

Tyrosine 0.005 0.033 0.043

Valine 0.011 0.036 -

Unsaturated lipids 0.013 0.007 -
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Figure 6: Box-and-whisker plots of metabolites with p-values < 0.05 illustrating discrimination between TNBC vs. 
LABC in African Americans. Horizontal line in the middle portion of the box, mean. Top and bottom boundaries of boxes show the 
75th and 25th percentiles, respectively. Upper and lower whiskers show 95th and 5th percentiles, respectively. Open circles show outliers.

Figure 7: All matched pathways according to p values from pathway enrichment analysis and pathway impact values obtained from 
pathway topology analysis for (A) Metabolites that distinguished tumors and normal adjacent tissues for African Americans. A total of 39 
pathways were found to be associated with the metabolites, of which 29 pathways were significant (p<0.05). Glycolysis or gluconeogenesis 
(1); pyruvate metabolism (2); alanine, aspartate and glutamate metabolism (3); glycine, serine and threonine metabolism (4); glutamine and 
glutamate metabolism (5); taurine and hypotaurine metabolism (6); (B) Metabolites that distinguished tumors and normal adjacent tissues 
for Caucasians. A total of 39 pathways were found to be associated with the metabolites, of which one pathway, pyrimidine metabolism (1) 
was significant. (see also Supplementary Table 1)
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profound metabolic alterations characterized by a decrease 
in mitochondrial respiration and increased glycolysis [39]. 
It was documented that rapid ATP consumption (resulting 
in low levels of ATP) and its degradation product, 
adenosine, increased breast cancer cell migration. An 
adenosine receptor antagonist was found to attenuate the 
ATP stimulation of tumor cell migration and metastases in 
vitro and in vivo [40].

However, pathway analysis revealed that only the 
pyrimidine synthesis pathway is significantly activated in 
the TNBC of Caucasian women. Pyrimidine nucleotides 
provide the nucleotide building blocks of RNA and DNA 
required for cell growth and proliferation. Pyrimidines 
are synthesized through two routes, either by recycling 
the nucleotides via salvage pathways or synthesizing 
de novo from small metabolites through the glutamine-
dependent pathway. The activity of the latter is low in 
normal cells where the need for pyrimidine is largely 
satisfied by the salvage pathways. In contrast, de novo 
pyrimidine biosynthesis is crucial in proliferating cells 
in order to meet the increased demand for nucleic acid 
precursors [41] [42]. It was recently reported that the 
metabolic reprogramming of pyrimidine synthesis 
promoted chemotherapy resistance in in vitro and in 
vivo TNBC cells. The inhibition of de novo pyrimidine 
synthesis pathway offers a strategy to enhance in vitro and 
in vivo sensitivity of TNBC cells to chemotherapy [43]. 
Furthermore, it was shown that the depletion of glutamine 
effectively eliminated the ability of chemotherapy to 
elevate pyrimidine dNTP, suggesting that chemotherapy 
modulates de novo pyrimidine synthesis. Our data showed 
that glutamine levels were low in the TNBC tissues of 
Caucasian women compared to the TNBC tissues of 
African-American women. These findings suggest that 
glutaminolysis is also upregulated? in these tissues. Thus, 
TNBC tissues of African-American and Caucasian women 
exhibit different alterations in cellular metabolism; race as 
well as hormonal status may play critical roles in breast 
cancer metabolism. Accordingly, these factors should be 
investigated in more detail and considered when designing 
new therapies.

Our study identified that HR-MAS NMR 
spectroscopy combined with multivariate statistical 
analysis could be used as a powerful technique to 
develop the metabolite profiles of breast cancer tissues. 
Our results revealed numerous statistically significant 
metabolite changes in tumor tissues compared to the 
normal adjacent tissue samples of postmenopausal and 
premenopausal women. Race and hormonal status may 
affect the metabolite expression of breast cancer. Tyrosine, 
phenylalanine, and isobutyric acid levels were significantly 
higher in the LABC of African-American women 
compared to LABC in Caucasian women. Glutamine was 
the only metabolite that was found significantly higher 
in the TNBC of African-American women compared to 
TNBC in Caucasian women. Importantly, TNBC showed 

a distinct metabolite profile from that of LABC in African 
Americans and TNBC in Caucasian women. TNBC in 
African-American women had reduced ATP level and 
exhibited profound metabolic alterations characterized 
by decreased mitochondrial respiration and increased 
glycolysis. On the other hand TNBC in Caucasian women 
was associated with increased pyrimidine synthesis. These 
metabolic alterations in TNBC in both groups of women 
could potentially be exploited as novel treatment targets.

MATERIALS AND METHODS

Chemicals

Deuterium oxide (D2O, 99.9% D) was purchased 
from Cambridge Isotope Laboratories, Inc. (Andover, 
MA). Trimethylsilylpropionic acid-d4 sodium salt (TSP), 
sodium azide (NaN3), disodium hydrogen phosphate 
(Na2HPO4), and monosodium phosphate (NaH2PO4) were 
purchased from Sigma-Aldrich (analytical grade, St. 
Louis, MO).

Tissues and patient characteristics

A total of 82 human breast tissue samples, invasive 
grade II-III breast cancer (n=47; 30 African Americans, 
17 Caucasian) and normal adjacent (n=35; 18 African 
Americans, 17 Caucasian) were collected from 47 patients 
operated on at Indiana University Health, Lafayette, IN; 
University of Chicago, Chicago, IL; and Indiana Biobank, 
Indianapolis, IN. Samples were frozen immediately in 
liquid nitrogen after surgery and then kept at −80 °C until 
analysis. Purdue University, the University of Chicago, 
and Indiana University Health Institutional Review Boards 
approved this work.

High-resolution magic angle spinning (HR-MAS) 
1H NMR

Frozen tissue samples were cut into an appropriate 
size to fit into HR-MAS sample tubes, and had resulting 
weights between 11.4 and 22.4 mg. For the field-
frequency lock and air removal, 50μl D2O was added 
to each tube. Tubes were then placed into the rotor. 1H 
NMR experiments for tissue samples were performed 
on a Bruker Avance-III-800 spectrometer equipped with 
a HR-MAS probe. NMR data were acquired using the 
1D CPMG (Carr-Purcell-Meiboom-Gill) pulse sequence 
with water presaturation. CPMG experiment parameters 
included: number of scan=128; number of dummy 
scans=16; number of time domain points =32K; spectrum 
width=12,193 Hz; relaxation delay=2s; acquisition 
time=1.34 s; number of spin-echo loops =400. The 
acquired spectra were then phased, baseline corrected and 
referenced to the lipid peak at (δ=0.909 ppm) using Bruker 
Topspin 3.0 software.
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Data processing and statistical analysis

NMR spectra were binned to 4 K buckets of 
equal width (0.0034 ppm) to minimize errors due to 
any fluctuations of chemical shifts arising from pH or 
ion concentration variations using MestReNova 7.0. 
The resulting data generated from MestReNova were 
transferred into Microsoft Excel. Spectral regions between 
0 to 9.0 ppm were analyzed after the water region (4.5 to 
5.0 ppm) was excluded. The NMR data were normalized 
to sample weight and the unpaired Student’s t-test was 
used to identify significant differences in metabolite 
levels in the tumors and compared with the levels in the 
normal adjacent tissues. P values ≤ 0.05 were considered 
as statistically significant. Normalized NMR data 
were imported into Matlab (R2008a, Mathworks, MA) 
installed with a PLS-DA toolbox (version 4.1, Eigenvector 
Research, Inc.) for Partial Least Squares-Discriminant 
Analysis (PLS-DA). The R statistical package (version 
3.0.0) was used for generating box-and-whisker and 
receiver-operating characteristics (ROC) curves plots. 
ROC curve analysis using leave-one-out cross-validation 
was utilized to evaluate the sensitivity and specificity of 
the PLS-DA model. Pathway enrichment analysis was 
performed to identify the associated metabolic pathways 
using MetaboAnalyst 3.0 [44].
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