
Oncotarget7285www.impactjournals.com/oncotarget

www.impactjournals.com/oncotarget/ Oncotarget, Vol. 5, No. 17

The structural basis for cancer treatment decisions
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ABSTRACT
Cancer treatment decisions rely on genetics, large data screens and clinical 

pharmacology. Here we point out that genetic analysis and treatment decisions may 
overlook critical elements in cancer development, progression and drug resistance. 
Two critical structural elements are missing in genetics-based decision-making: 
the mechanisms of oncogenic mutations and the cellular network which is rewired 
in cancer. These lay the foundation for the structural basis for cancer treatment 
decisions, which is rooted in the physical principles of the molecular conformational 
behavior of single molecules and their interactions. Improved tumor mutational 
analysis platforms and knowledge of the redundant pathways which can take over 
in cancer, may not only supplement known actionable findings, but forecast possible 
cancer progression and resistance. Such forward-looking can be powerful, endowing 
the oncologist with mechanistic insight and cancer prognosis, and consequently more 
informed treatment options. Examples include redundant pathways taking over after 
inhibition of EGFR constitutive activation, mutations in PIK3CA p110α and p85, and 
the non-hotspot AKT1 mutants conferring constitutive membrane localization.

INTRODUCTION

Computational biology tackles cancer in two 
distinct ways. The first involves analysis of massive 
quantities of genomic, proteomic, microarray, cell and 
tissue imaging data produced by experiments, as well as 
clinical data relating to the tumors, the patients and the 
results of clinical trials [1–4]. These data are compiled 
and organized effectively in targeted databases, and 
diverse software tools are developed to sift through the 
voluminous compilations to exploit them. The collected 
data and analyses are immensely important. Databases 
store vast amount of information, which, if well 
organized, curated, managed and shared, can produce 
robust statistical trends. If the number of records is large, 
they allow correlating basic experimental data with 
outcomes [5, 6]. However, these are statistical studies; 
as such, they are not able to provide an insight into why 

these statistical trends exist and why the correlations are 
observed. Since each record contains many variables, it is 
difficult to fully interpret the observed biases. Thus, while 
enormously useful, this restricts the predictive power 
for individual patients [7], and hampers personalized 
drug regimes. The second, complementary way through 
which computations contribute to cancer research is by 
revealing the mechanism through which particular genetic 
or acquired aberration works. To understand mechanisms, 
and design or computationally screen drugs, structures are 
needed. The 2013 Nobel Prize in Chemistry underscored 
the significance of computational structural biology, 
noting “Computer models mirroring real life have 
become crucial for most advances made in chemistry 
today… Today the computer is just as important a tool 
for chemists as the test tube. Simulations are so realistic 
that they predict the outcome of traditional experiments” 
[8]. Further, computations are able to reach a level of 
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mechanistic detail that is hard for experiments to attain. 
They are able to integrate and interrogate data across a 
range of scales, introduce and test hypotheses, and most 
importantly, the results are quantified. Within these active 
areas of research, here we focus on this second aspect. 
We aim to put forward what we consider are the major 
ways through which structural biology, and in particular 
computational structural biology, contributes to the 
foundation for cancer treatment decisions. The first step 
is a definition of cancer: cancer is a breakdown of normal 
physiological tissue homeostasis due to loss-of-function 
or gain-of-function. There are multiple ways for each to 
evolve [9–43].

Cancer can be described by its genetic makeup and 
expression profiles [44]. This epitomizes personalized 
medicine, which aims to tailor disease treatment as much 
as possible to an individual patient [45]. It drives studies 
of the cancer’s genetic features to determine how best to 
apply the knowledge in the clinic, and calls for genetic 
testing for inherited cancer risk [46–50]. The complexity 
of cancer genetics and expression profiles across multiple 
scales is evident. One example is the histopathological 
heterogeneity in lung adenocarcinoma which has been 
classified into subtypes differing in metastatic potential 
and survival illustrates. No molecular profiles exist to 
explain these differences. Analysis of discrete areas of 
the different subtypes, screening for mutations in hotspot 
regions of the EGFR, KRAS and BRAF genes observed 
that KRAS and BRAF mutations could be confined 
to morphological domains of higher grade. However, 
EGFR driver mutations were observed in all histological 
subtypes in each tumor. Taken together, this suggests that 
small biopsies may not adequately represent a tumor’s 
full mutational profile, particularly for later arising but 
prognostically important mutations such as those in the 
KRAS and BRAF genes [51]. Despite this, decisions need 
to address the mutational cause, not the histopathological 
imaging.

Here our premise is that cancer treatment decisions 
would benefit from marrying the genetic basis for cancer 
treatment with the structural basis, which to date has 
largely been overlooked. The structural basis should 
be thought of as not only helping to understand the 
genetics of individual mutations in cancer, but instead as 
capable of tailoring, innovating and improving the way 
the disease is treated. Structural considerations argue 
for a modification of the binary ‘passenger’ and ‘driver’ 
mutational paradigm. Rather than a mutation classified 
into one of the two, a ‘passenger’ mutation can become 
a ‘driver’ if a cooperative mutation takes place during 
cancer development. Identifying ‘latent driver’ mutations 
and their expected emergent cohorts in the unstable 
cancer landscape can inspire more potent personalized 
treatments.

Treatment Decisions in the Clinic

Effective personalized cancer treatment requires 
information. Much of it is available and known to be 
crucial; some of the rest may be compiled but hidden 
in the massive amount of data generated by cancer 
genome sequences, their analyses and patients’ genetic 
tests. Among the key problems facing physicians are the 
enabling technology and the time to diagnose actionable 
findings in the patient’s genome – as compared to 
cancer genomes – and clinical data that will improve 
treatment decisions for the patient; in addition looms 
the question whether the actionable data have been 
a priori identified as such. Current cancer treatment 
decisions largely rest on identification of the patient’s 
driver gene and driver mutations through comparisons 
to those determined statistically across populations of 
patients. Ideally, a  cancer diagnostic platform should 
help the oncologist to rapidly translate all relevant 
and available clinical, molecular, and drug data into 
effective treatment choices for individual patients. 
However, diagnostic platforms generally assume that 
actionable driver mutations have been unraveled, and 
that these are the ones that appear most frequently 
in cancer. A mutation is classified as either a driver 
or a passenger. If the latter, it is of no interest to the 
treating oncologist. By contrast, here our premise is that 
actionable mutations (and thus also proteins) should 
be thought of as not only those diagnosed as drivers, 
but also some of those presumed to be passengers. 
A passenger mutation may have no observable clinical 
effect; however, combined with another presumed 
passenger mutation, or some external factor (like 
infection) it can become a driver. Such pre-existing 
‘latent driver’ mutations may additively lead to an 
outcome resembling driver mutations. Diagnosis 
of the patient’s actionable  pre-existing latent driver 
mutations may arm the oncologist with foreknowledge 
of cancer progression, resistance and more effective 
drug combinations. Since the  mutational environment 
differs across a patient and cancer population, such a 
prognostic foresight can lead to more targeted patient-
specific therapies.

Oncologists are faced with the challenge of 
deciphering molecular data and determining the treatment 
implications. Each tumor presents a distinct set of 
genetic aberrations among which are driver and latent 
driver mutations. These can influence the drug’s mode 
of action and its aftermath. The latent drivers’ concept 
calls for reevaluation of genetic decision platforms which 
are exploited by physicians and powered by high end 
computing. Because identification of latent drivers rests 
on residue combinations, larger statistics will be required 
posing a major challenge.
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An Overview of Cancer: the Preeminent Role of 
the Cellular Network

Homeostasis provides an intricate balance of cell 
proliferation and death. Tipping the scale toward cell 
growth causes cancer. A normal cell is transformed into a 
tumor cell primarily through alterations in genes regulating 
cell growth and apoptosis. These involve oncogenes with 
gain-of-function and tumor suppressor genes with loss-of-
function, respectively. Oncogenes promote cell growth and 
survival. Activating mutations in the Ras protein at codons 
12, 13, and 61 [52, 53] promote oncogenesis. In contrast, 
tumor suppressor genes arrest cell division or induce 
apoptosis. Cancer typically results from genetic alterations 
involving a combination of uncontrolled growth and 
failed anti-proliferative cellular responses, underscoring 
the involvement of the cellular signaling network. That 
the cellular network is chief player is also indicated 
by experiments: genome-wide analysis of DNA copy 
number and somatic mutation frequencies in melanoma 
BRAF data [54] revealed significant differences. These 
allowed classification into four groups with 70% accuracy, 
indicating that distinct genetic pathways result in distinct 
melanoma cancer types. Another example concerns PI3K, 
whose link to cancer is among the strongest in the cell 
[55, 56]. PI3K integrates growth and survival signals from 
RTKs and Ras to the mTOR, MAPK, FOXO1 and GSK3β 
signaling pathways. Class I PI3Ks have a regulatory 
subunit (p85 α, β, or γ) and a catalytic subunit (p110 α, 
β, or γ). Constitutive activation of the PI3Ks in the p110α 
subunit is observed in 30% in the human breast, colon and 
endometrial cancer patient population. A subpopulation 
(~10%) of colorectal cancer patients presents inactivating 
mutations in the p85 regulatory subunit. While 
imidazopyridine-based drugs J124 and J128 strongly 
inhibited growth in vitro in the nM range as well as in 
medulloblastoma cell lines, only modest effects on tumor 
growth inhibition were observed in vivo. These data beg 
the question of which PI3Kα-dependent processes impact 
the spread of the primary tumor. Thus, linking genetic 
alterations to signaling pathways in cancer cells is the very 
first step toward targeted therapeutic development [57], 
as well as in battling drug resistance [58]. Cancer cells 
exploit redundant pathways to overcome drug action.

Cancer is a complex genetic disease. Hannahan 
and Weinberg formulated a useful framework consisting 
of a set of common capabilities acquired by cancer cells 
through mutagenesis [59]. These include sustaining 
proliferative signaling, evading growth suppressors, 
resisting cell death, enabling replicative immortality, 
inducing angiogenesis, activating invasion and metastasis. 
These hallmarks reflect genome instability, which 
generates genetic diversity, and inflammation. Recently 
they extended the concept of cancer biology by including 
two enabling characteristics of reprogramming energy 

metabolism and evading immune destruction [60]. 
Cancer cells achieve these abilities mainly by rewiring 
existing cellular programmes that normally take place 
during development to coordinate cell proliferation, 
migration, polarity, apoptosis, and differentiation during 
embryogenesis and tissue homeostasis. The Darwinian 
character of cancer cells confers the ability to proliferate 
and survive through random mutations and epigenetic 
changes followed by selection of resistant variants [61] 
under circumstances that would normally be deleterious.

Types of Cellular and Molecular Events  
Leading to Cancer

Cancer-causing scenarios are diverse; they include 
genetic and epigenetic changes in cancer cell genomes. 
Genetic events cover large scale aberrations in the genome 
such as gain-of-function or loss-of-function mutations, 
deletions, fusions, rearrangements and gene duplications, 
such as CNVs (copy number variations) [62–66]. Tumor 
suppressor genes may be deleted and regions harboring 
oncogenes may be amplified, as for example for p16 and 
myc, respectively [67, 68]. Rearrangements, inversions 
and translocations, can result in tumor-driving fusion 
products as in the case of BCR-Abl [69–71] and the 
Philadelphia Chromosome [72, 73] as well as fusion 
events in solid tumors [74, 75]. Epigenetic alterations 
do not involve changes in the nucleotide sequence  
[76–78]. They influence gene expression through 
chromatin reorganization and gene accessibility, via 
alteration of DNA methylation patterns, silencing, 
posttranscriptional regulation of signaling molecules 
by microRNAs, histone modifications, alternative RNA 
splicing, and more. Epigenetics can work through over- 
or under- gene expression. Cancer-causing scenarios 
similarly include over/under protein degradation. All 
bypass normal growth controls.

Computational cancer biology focuses on analyzing 
molecules and processes that play a major role in cancer, 
including those above. It uses genome-scale measurements 
(genomic, proteomic, and metabolomic) to assemble 
models of cellular processes and disease which can 
provide blueprints of normal and diseased cell functions. 
Methods often rely on high-throughput data. They aim 
at relationships between molecular characteristics of 
cells, such as how do genome aberrations and changes in 
copy number, a result of increased genome instability in 
cancer, affect gene expression as well as elements such 
as miRNAs, and how the changes affect the function 
of related proteins. Considerable research focuses on 
biomarkers, at the genome, transcriptome or proteome 
levels that are prognostic of cancer progression or 
predictive of response to specific therapeutic agents [59, 
60, 79]. Interpreting copy number data, the effect of 
genome changes on the transcriptome and proteome level 
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profiles, epigenetic changes, somatic evolution, gene sets 
in specific cancer types, mutational landscape statistics, 
such as The Cancer Genome Atlas (TCGA), and data 
that measure the effects of drugs are major strategies in 
computational cancer biology.

Collectively, these embrace diverse areas of 
research. Below, we address key questions in cancer 
biology that relate to structure. From the standpoint 
of structural biology, two problems stand out: the 
mechanisms of mutations and deciphering the network that 
governs cellular response under physiological conditions 
and its rewiring in cancer. The examples below underscore 
the limitations of an approach based solely on genetics, 
and the significance of complementing it by structural 
insight in making treatment decisions.

Cancer Cell Signaling Deregulates the  
Cellular Network

Proliferation can result from upstream or 
downstream deregulation of signaling. Upstream signaling 
can be perturbed by overexpression of growth factors 
[80, 81], elevated levels of receptors at the cancer cell 
surface, somatic mutations in the receptors that result 
in structural changes that facilitate ligand-independent 
firing, and constitutive activation of proteins in signaling 
pathways downstream, which bypass ligand-mediated 
receptor activation. One example is Protein kinase C (PKC) 
which activates the MEK-ERK pathway, independent of 
Ras activation and dependent on Raf [82]. Downstream 
mutations are also common: 40% of human melanomas 
contain mutations in the B-Raf protein, constitutively 
activating signaling through the mitogen-activated protein 
(MAP)-kinase pathway [83]. Another example concerns 
drug resistant mutations in Raf’s catalytic domain leading 
to Ras-independent Raf dimerization [84]. Cancer typically 
involves co-occurring mutations.

Deregulation typically takes place by interfering 
with molecular checkpoint switches which control the 
transitions between and within cell cycle phases. Under 
normal conditions, multiprotein switches generate robust 
transitions and trigger stable oscillations. The scales are 
tipped to cancer when the switch is abolished [57]. To 
capture the protein in its physiological environment, we 
consider proteins as nodes in the cellular network. Their 
switches are controlled by two inherent and related factors: 
the network motif and the signal integration mechanism. 
One example of the effect of network motif concerns 
the PI3K/Akt/mTOR pathway (Fig. 1). PTEN, a tumor 
suppressor gene, negatively regulates the pathway through 
its lipid phosphatase activity. It counteracts PI3-kinase by 
degrading its phosphatidylinositol (3, 4, 5) trisphosphate 
(PIP3) product, thereby keeping a check on cell growth 
and proliferation. Loss-of-function PTEN mutants, or 
underexpression due to promoter methylation fail to 

dampen the signaling flux and are observed in several 
cancers [85]. However, use of small molecule inhibitors 
of this pathway remains limited due to the presence of 
compensatory feedback loops such that inhibition of one 
molecule often leads to activation of another resulting in 
chemoresistance. Via negative feedback mTOR activation 
inhibits PI3K proliferative signaling. The inhibition (e.g. 
by rapamycin) increases PI3K/Akt/PKB activity, crippling 
its antiproliferative effects [86, 87]. Another example is 
provided by the Ras protein, an activator of a number of 
signaling pathways, including Ras/Raf/Mek/Erk (Fig. 1). 
Oncogenic Ras mutations (involving G12, G13 and Q61) 
abolish the GTP→GDP hydrolysis reaction, retaining Ras 
in a constitutive GTP-loaded active state [88].

Cancer Can Hijack Signal Integration

Each protein (node) in the cellular network 
receives concomitant signals from more than one source, 
e.g. phosphorylation and a binding event, multiple post-
translational modifications (PTMs), or two or more 
binding events. Each event is an allosteric effector. The 
recipient protein node integrates the incoming signals and 
transmits an output response, which reflects its resultant 
conformational distribution. The mechanisms of signal 
integration and output response are expressed by proteins 
forming or quenching interactions [89]. There are three 
possible mechanisms to switch a node from an OFF state 
to an ON state [89, 90]: (i) incremental activation by a 
graded switch, with full activation requiring all events. 
Src kinases, which belong to the nonreceptor tyrosine 
kinase family, can provide an example. Activation takes 
place through dephosphorylation of the C-terminal tail, 
phosphorylation of the activation loop, binding of a 
ligand to the SH2 domain, and binding of ligands to the 
SH3 domain. Each event leads to a higher level of activity. 
(ii) AND-gate, an all-or-none switch with only two types 
of responses: inactivity or full activity. All signaling 
events are required for activation. The Tec family kinases, 
where both phosphorylation of the loop and intramolecular 
binding of the SH2-kinase linker to the kinase are required 
for activation provide an example. (iii) OR-gate, an all-or-
none switch with two types of responses, where one set of 
events is sufficient for full activation. Syk tyrosine kinase 
activation, which takes place by either phosphorylation 
in the SH2-kinase linker or by binding of phosphorylated 
immunoreceptor tyrosine-based activation motifs 
(ITAMs), provides an example. The presence of both 
stimuli does not enhance the kinase activity beyond each 
stimulus alone. Structural data on the ON- and OFF- states 
are required to annotate the logic gate type. However, 
in the absence of experimental data, assigning the logic 
gate type is challenging. Oncogenic and drug resistance 
mutations interfere with native signal integration resulting 
in loss of control. To constitutively activate a node in the 
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cellular network, oncogenic mutations are likely to be 
more frequent and effective in the OR gate than in the 
Graded and AND gates, with single (or fewer) mutations 
hijacking control.

Oncogenic and drug resistance mutations can 
hijack the signal integration mechanism resulting in 
loss of control. One example relates to deregulation of 
the Ras-Raf-Mek-Erk pathway by mutations in B-RAF. 

Figure 1: Ras signaling pathways. Ras signaling is involved in numerous cellular functions, including cell proliferation, apoptosis, 
migration, fate specification, and differentiation. A key Ras effector pathway is the mitogen-activated protein kinase (MAPK), Raf-MEK-
ERK pathway. EGF binds to the extracellular domain of the epidermal growth factor receptor (EGFR), a receptor tyrosine kinase (RTK). 
The signal is transmitted through the transmembrane domain resulting in EGFR dimerization and activation. Activated EGFR recruits the 
son of sevenless (SOS), a guanine nucleotide exchange factor (GEF), to its phosphorylated C-terminal tail via the adaptor proteins, SH2-
adaptor protein (SHC) and growth factor receptor-bound protein 2 (Grb2). GEF exchanges GDP by GTP, activating Ras. Active, GTP-
loaded Ras dimerizes and binds Raf, thereby promoting Raf dimerization and activation. Active Raf dimer phosphorylates and activates 
mitogen-activated protein kinase kinase 1 and 2 (MEK1/2), which induces ERK1/2 activation. Transcription factor Elk-1 is among ERK1/2 
many downstream phosphorylation targets. Elk-1 binds to its cofactor, a dimer of serum response factor (SRF), leading to transcription 
activation and cell proliferation. Active GTP-bound Ras regulates a number of signaling pathways; among these is phosphatidylinositol 
3-kinase (PI3K). PI3K is a heterodimer with a regulatory (p85) and catalytic (p110) subunits (not shown here). RTKs recruit the p85 
subunit of PI3K. Ras activates p110 independently of p85 [172]. PI3K phosphorylates phosphatidylinositol-4,5-bisphosphate (PIP2) to 
phosphatidylinositol-3,4,5-trisphosphate (PIP3), a process which can be reversed by the action of phosphatase and tensin homologue 
(PTEN). PIP3 recruits Phosphoinositide-dependent kinase-1 (PDK1) that phosphorylates a serine/threonine kinase, Akt (also known as 
PKB, protein kinase B) in the plasma membrane. This further induces the activation of mammalian target of rapamycin (mTOR) complex, 
one of the major pathways leading to cell growth. This pathway plays important roles in Ras-mediated cell survival and proliferation.
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Raf activation requires formation of an asymmetric 
dimer configuration. Under normal physiological 
conditions, Ras-GTP-membrane recruitment, 
dephosphorylation of Ser259, and dissociation of  
14–3–3 result in stabilization of an open conformation 
of Raf monomer, which favors dimer formation. Gain-
of-function mutations in the B-RAF gene, the most 
oncogenic of which is B-RAFV600E, induce ERK activity 
independently of the normal EGFR-Ras signals [84, 
91–93], by allosterically shifting the population [94–
98] of the ensemble toward dimer-favored monomer 
conformation. Vemurafenib treatment results in deletion 
mutant p61B-RAFV600E with enhanced dimerization 
and activity through a similar allosteric mechanism. 
It is also possible that binding of the drug to one 
p61B-RAFV600E monomer inhibits drug binding to the 
other, resulting in one active monomer per dimer and 
abolishing drug resistance.

Key Questions from the Structural Standpoint

The model of cancer argues that the first 
consideration is that the experimental data include 
information on whether the malignancy is the outcome 
of (i) over- or under expression; if overexpression 
it can be reflected for example in a higher gene copy 
number or differential regulation of gene expression. 
(ii) Normal expression, however with gain- or loss-
of-function mutations. Most oncogenic mutations 
result in gain-of-function; loss-of-function mutations 
can take place in repressors with a similar outcome.  
(iii) Aberrant protein degradation. The first step involves 
verification of the oncogenic mutation through available 
structural data; if absent, via high quality modeled 
structures. This allows approaching questions such as 
what is the mechanism of the oncogenic mutation on 
the protein conformational level and how it affects its 
interactions [99–101] which are the oncogenic ‘driver’ 
versus ‘passenger’ mutations and why [102]; why a 
specific mutation can have a more profound effect 
when the protein is bound to a specific effector as in 
the case of Raf influencing Ras’ intrinsic hydrolysis; 
how the mutations affect the circuitry and its rewiring 
in different types of cancers and under different 
(individuals, tissues, cell types) conditions; and related 
to this why specific mutations may activate specific 
pathways; which are the isoform-specific pathways, 
and how do these work. Further, cancers often involve 
multiple different clones impeding therapeutics; do these 
collaborate and if so how.

A mutation can constitutively activate (or 
repress) by stabilizing the active (or destabilizing the 
inactive) state, as in the case of the EGFR [103, 104]. 
Alternatively, it may block a reaction, as in the case 
of Ras G12, G13 and Q61 mutations which hamper 

GTP hydrolysis, thus retaining Ras in a constitutively 
activated state (Fig. 2). Nonetheless, why G12C and 
G12V K-Ras mutations in lung adenocarcinoma 
preferentially activate the Ras’ RalGDS pathway, 
whereas G12D prefers the Raf/mitogen-activated protein 
kinase (MAPK) and PI3K pathways [105, 106] is still 
unclear. One possibility is that allostery plays a role [104, 
107–110]. Besides their direct effects, these mutations 
are established to induce allosteric effects at the effector 
binding site. Q61 is a key allosteric residue [111, 
112], as is Y64 [113]. Another question concerns the 
mode of the specific inhibition of K-Ras4B, a highly 
oncogenic splice variant of the K-Ras isoform, by 
calmodulin and its enigmatic signaling consequences. 
To understand the mechanism of oncogenic mutations 
requires conformational detail, achievable with the 
help of molecular dynamics simulations. EGFR 
provides remarkable example [103, 104, 114–116]. 
However, questions such as why mutations in certain 
isoforms which are highly similar in sequence and 
structure are much more frequent than in others may 
not necessarily relate to protein conformations; instead 
the answer may lie in over- (under-) expression as 
could be in the case of K- versus H- and N-Ras [117, 
118], underscoring the importance of the three types of 
data above.

Identifying the location of the mutations and their 
stabilizing/destabilizing actions may provide clues to 
their ‘driver’ or ‘passenger’ properties [119–123]. High-
throughput somatic missense mutations detected in tumor 
sequencing can be mapped onto structures to provide 
first-hand information. In protein-protein interfaces 
they may abolish a specific interaction or enhance it 
[124, 125]. Conformational analysis may distinguish 
between tumorigenic ‘driver’ mutations from their neutral 
passenger counterparts.

The single most confounding question is how 
a cancer cell escaping drug treatment is able to rapidly 
adapt and rewire its network toward uncontrolled 
growth. Another, on a different level, is how proteins 
escape degradation. Tumor cells avoid apoptosis and 
promote survival in a number of ways [126–128]; 
among these is loss of TP53 tumor suppressor function, 
up-regulating antiapoptotic (Bcl-2, Bcl-xL) or down-
regulate proapoptotic (Bax, Bim, Puma) regulators, 
aborting the extrinsic ligand-induced death pathway and 
interfering with programmed cell death by shifting the 
balance in favor of survival [129]. They may also evade 
the immune surveillance. Inflammation can support 
the tumor microenvironment [130]. Constructing the 
complex structural pathways [131–137] would further 
aid therapeutic targeting to mitigate drug resistance [58]. 
Negative feedback loops can recoil cancer. For example, 
there are many ways to activate Erk through receptor 
tyrosine kinases (RTKs), T-cell receptors (TCRs), and 
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GPCRs. Blocking EGFR may lead to other pathways 
taking over (Fig. 3). Figuring out the network and its 
robust regulatory motifs and circuitry requires structural 
data. Given its sheer complexity and its multiple cell- 
and tissue-wide effects, this is perhaps the paramount 
challenge facing structural biology.

Redundant Pathways and Therapeutics

Deliberately targeting specific proteins has been a 
major strategy. The emergence of drug resistance fostered 
an alternative, involving drug combinations either for 
the same protein or to a lesser extent different proteins 

Figure 2: The structural basis of an oncogenic mutation. The figure illustrates how an oncogenic mutation can work on the 
structural level. Ras the most common mutated oncogene in cancer is shown as an example. Wild type Ras acts as a binary signal switch 
cycling between active and inactive states. Ras only binds its effectors in its GTP-bound active state. Ras is activated by the son of sevenless 
(SOS) nucleotide exchange factor (GEF). In contrast, the GTP→GDP hydrolysis, helped by GTPase-activating protein (GAP) inactivates 
Ras. A key oncogenic mechanism aborts the hydrolysis reaction, keeping Ras in a constitutively active GTP-bound state. Residues most 
prone to these mutations are G12, G13 and Q61. Mutation of G12 K-Ras is most prevalent and oncogenic in colon cancer [173]. G12C 
and G12V K-Ras mutants activate the Ral guanine nucleotide dissociation stimulator (RaLGDS) pathway, whereas G12D preferentially 
activates the PI3K and MAPK signaling pathways [105, 106]. The reason for this differential preferred activation is still unclear. Figure 
(A) sketches Ras regulation under normal conditions (on the left hand-side) and constitutive activation (right hand-side). The constitutively 
active conformation of Ras harboring these mutations does not permit formation of the transition state required for catalysis upon binding 
to GAP. Under normal conditions, the flexibility of G12 allows the Arg789 side-chain (Arg finger) on the finger loop of GAP to insert into 
Ras active site. However, G12 mutants with bulkier or charged residue prevent the Arg finger insertion, blocking the transition state with 
GAP [174]. It is also likely that these mutations allosterically differentially affect the effector binding sites (not shown). (B) This panel 
illustrates native Ras in complex with GAP, poised for the catalytic reaction. The crystal structure of GDP-H-Ras/RasGAP complex (PDB 
code 1WQ1) is remodeled with the GTP-K-Ras crystal structure (PDB code 3GFT). The finger loop of RasGAP is in blue (taken from the 
complex, PDB code 1WQ1). The Arg finger is highlighted as a blue stick, positioned at the Ras active site, near the G12 residue in green 
mesh. (C) This panel clarifies why mutation of G12 prevents hydrolysis through a steric clash mechanism in which the G12C residue in 
green mesh prevents the insertion of Arg finger. Crystal structure of G12C GTP-H-Ras mutant (PDB code 4L9W) is remodeled to G12C 
GTP-K-Ras mutant.
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albeit usually in the same pathway [138]. Two strategies 
can further expand the repository. The first, ‘allo-network 
drugs’ can bolster the repertoire of targets with proteins 
that can work by transmitting the effects to target proteins 

in the pathway allosterically across protein-protein 
interfaces [139–142]. The second accounts for redundant 
pathways. Compiling a repertoire of combinations of 
redundant pathways and targets within them would 

Figure 3: A structural view of redundant pathways taking over during drug resistance. Ras is normally activated in 
response to the binding of extracellular ligands to various receptors. Among these is epidermal growth factor (EGF) binding to its cognate 
receptor EGFR, as shown in Figure 1. Upon EGF binding to the extracellular domain of EGFR, the intracellular domain of EGFR forms an 
asymmetric dimer in the cytosol. EGFR and its ERBB receptor family members can form homo- or hetero-dimers. Downstream signaling 
proceeds through Ras in the Raf-MEK-ERK and/or PI3K-Akt-mTOR pathways. The figure provides a sequence of events induced by 
a constitutive mutation taking place in EGFR, keeping it in an active state even in the absence of its ligand. Drug treatment abolishes 
EGFR signaling; however, a drug resistant mutation leads to overexpression of another receptor, populating an otherwise low-activity 
second receptor. (A) L858R mutation in EGFR kinase (the circled R) causes non-small cell lung cancer (NSCLC) by constitutively 
activating its kinase domain [175]. Under normal conditions EGFR largely populates its inactive state. The mutation shifts the free 
energy landscape of EGFR stabilizing its active with respect to its inactive conformation even in the absence of a bound EGF. (B) Drugs 
such as the 4-anilinoquinazolines gefitinib (Iressa) [176] and erlotinib (Tarceva) [177] can inhibit the activity of EGFR L858R mutant. 
(C) However, tumors develop resistance, in this case one possibility is through overexpression of MET [178]. Overexpressed MET leads 
to phosphorylation of ERBB3 which interacts with ERBB2. The ERBB2/ERBB3 receptor can activate Ras and thus its PI3K-Akt signaling 
pathway, independent of EGFR. A key question is how the blockage of an addicted growth pathway is able to rewire the oncogenic cellular 
network within a short period, leading to MET’s overexpression and ERBB3 activation.
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facilitate systematic evaluation. A sufficiently robust 
compilation can uncover and stockpile ‘drug cocktails’ 
[58] to alleviate the almost-inevitable relapse.

Growing experimental evidence supports the 
partially redundant signaling pathways (Fig. 3). Thus, a 
targeted therapy inhibiting one pathway in a tumor may 
not completely shut off cancer cell survival. Surviving 
cancer cells adapt to the therapy through mutations, 
epigenetic reprogramming, or remodeling of the stromal 
microenvironment, eventually provoking renewed 
tumor growth, abrogating the drug’s efficacy. Since the 
number of parallel signaling pathways supporting a given 
function can be expected to be limited, targeting all of 
these therapeutically, through a strategy such as the one 
described above can be achievable. However, while in 
principle possible, compiling the repertoire of parallel 
pathways accounting for negative feedback loops is a yet 
another highly challenging task confronting structural 
biology [58].

Outline of the Components of the Strategy

Mapping guidelines implementing the structural 
basis for treatment is not straightforward. Broadly, two 
elements are needed: (i) a detailed structural model of 
the oncogenic driver mutations and (ii) a repertoire of 
redundant pathways in the cell to allow judicious ‘drug 
cocktail’ combinations.

For the first, via sequence alignments the mutation 
can be identified. Molecular dynamics simulations 
can verify its mechanism. EGFR provides a good 
example [57]. The kinase catalytic domain is allosterically 
activated by formation of an asymmetric dimer in which 
the C-lobe of the ‘activator’ kinase domain interacts with 
the N-lobe of a second ‘receiver’ kinase domain [143]. In 
contrast, in symmetric dimers, both kinases are in inactive 
conformations. Unliganded EGFR fluctuates between 
the monomer and dimer states [144]. Structural data 
indicated that in normal cells the kinase domain of EGFR 
is mostly populated either in a stabilized autoinhibited 
monomer or in an inactive symmetric dimer, making 
the formation of the asymmetric dimer possible, but not 
favorable. EGF binding, induces a conformational change 
in the extracellular domain which facilitates the kinase 
asymmetric dimer association. Oncogenic mutations in 
the juxtamembrane region that stabilize the dimer (such 
as Δ746–750 or L858R) can either destabilize the inactive 
conformation and/or stabilize the active conformation as 
shown by simulations [114].

For the second, which pathways to combine (to 
avoid alternative routes by drug resistant mutations, 
Fig. 3) and which protein targets to select within these 
(to minimize toxicity) present a daunting challenge. 
An organized redundant pathway resource based on 

structural data can be a first step toward a ‘pathway 
drug cocktail’ [58]. The National Cancer Institute has 
published a summary of drug combinations, as well 
as common combinations for colon and rectal cancer. 
5,000 combinations of 100 existing cancer drugs have 
been tested. High-throughput screening techniques led 
to 150 drugs that were genotype-selective for Ras or 
B-Raf mutations. These were searched for pairs that could 
inhibit metastasized melanoma. While such exhaustive 
strategies can obtain beneficial results, a strategy based on 
more structural information of the cellular network may 
be expected to allow for more accurate and deliberate 
targeting of specific cancers at a fraction of the cost.

Finally, structural data can be critical in elucidating 
mutations that on their own are ‘passengers’; however, 
when combined become ‘drivers’. To date, a mutation 
has been classified as either a ‘driver’ or a ‘passenger’. 
However, the AND and Graded logic gate integration 
mechanisms discussed above (but not OR) argue that 
allosteric mutations can work like allosteric binding 
events cooperating to constitutively activate (or, inactivate 
in the case of a repressor) a cellular network node [89]. 
We reason that whether a mutation is a ‘passenger’ or a 
‘driver’ is likely to depend on the mutational landscape 
of the protein. This is in line with successive stepwise 
cancer development and progression [145–150]. Pre-
existing latent mutational population can combinatorially 
merge with other newly acquired genetic alterations. 
This can be tested experimentally and statistically. In 
principle, structural analysis should be able to annotate 
the mutational data and identify ‘latent driver’ mutations. 
Forecasting which existing ‘passengers’ will turn into 
‘drivers’ and upon which mutational changes could 
establish more powerful treatments.

Intrinsic and Extrinsic Influence

Redundant pathways can be intrinsic or extrinsic. 
At a higher level, the signaling circuitry describes the 
intercommunication between multiple distinct cell types 
that collaborate to progressively form malignant stages 
of cancer. It also includes signaling between microbiota 
and the human cell. Recent data indicate the tight linkage, 
arguing for studies of a metaorganism at the structural 
regulatory level.

Compelling evidence points to tumors as highly 
heterogeneous populations derived from a common 
progenitor [151]. The multiple cancer cell clones and 
combinations of co-existing mutations in the same cell 
including splicing variants of the same isoform [152], 
may be the reason why current pharmaceutical strategies 
involving targeted magic bullets toward a specific protein 
and mutation not only fail but may incite more resistant 
aggressive cells. By accounting for populations of cells, 
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the complex dynamic circuitry, and population shifts in 
response to changing conditions, computational structural 
biology may foment and chart new territory [153]. Even 
living things must conform to the laws of quantum 
mechanics and structural chemistry.

The Structural Basis for Improving Decision 
Platforms for the Clinic

Treatment decisions are based on data and its 
interpretation. Data sources, types and volume increase 
rapidly. This is particularly the case in cancer. Not only 
is there a rapid increase in the number of sequenced 
cancer genomes across a population, but in addition, 
the mutational rates and the microenvironment evolve 
rapidly. The NIH has recognized the need for assembling 
and organizing platforms for ‘big data’ – and within such 
a framework, cognitive capabilities that ‘understand’ 
the context, uncover answers, and continuously learn 
from experiences – in the battle against cancer. The 
unprecedented breadth and depth of clinical oncology 
data and knowledge guide informed decisions. However, 
extracting actionable insights from this information still 
poses significant challenges. Beyond the valuable day-to-
day patient care data and clinical trials – often trapped in 
disparate and remote databases and established routines for 
identification of key genomic factors – there is a need to 
step back and reconsider basic premises. It is clear that the 
identified driver mutations in genomic cancer screens are 
of paramount importance. The question is – are we certain 
that mutations labeled as passengers are expendable? 
Biology has long taught us that it does not follow a binary 
‘Yes’ or ‘No’ definition; conditions matter and these work 
by shifting the expression of mutations on the structural – 
and thus functional – level. A mutation can be classified 
into a driver, latent driver which can be expressed in 
combination with other mutation, and true passengers. 
Because latent driver mutations pre-exist in the cancer 
mutational load, their detection equips the oncologist with 
a mechanistic perception, permitting prediction of the 
potential cancer evolution. A comprehensive gene testing to 
evaluate genetic changes in a patient’s tumor can thus help 
oncologists to more effectively manage treatment options.

Early on most tumors were treated according to 
what they looked like under the microscope; over the 
past decade focus shifted to the molecular reasons for 
why cancer grows. There is a consensus that informed 
cancer medicine can help clinicians tailor anticancer 
treatment to individual patient tumor characteristics. This 
represents a significant shift in the ability to understand, 
and respond to, vast amounts of ‘big data’ and may have 
enormous potential to improve decision making for health 
care. Here we take a further step toward forecasting 
tumor evolution. Our thesis is that the basis of actionable 

mutations is indeed the informatics-definition platforms 
and the associated clinical trials; however, that definition 
should improve to account for the latent driver repository 
and redundant signaling pathways in cancer prognosis 
and drug cocktail treatment regimes. It is difficult to 
estimate the percentage of patients that would benefit from 
improved decision platforms incorporating latent drivers. 
Even though it can be low compared to the high frequency 
of driver mutations – in cancer treatment decisions they 
cannot be overlooked.

Examples of Low Frequency Mutations  
Acting as Drivers

Two recent examples related to the AKT1 gene 
illustrate that low frequency mutations can act as 
drivers mimicking the same structural mechanisms, 
underscoring the need to reconsider decision strategies 
based solely on cancer genome statistics. Mutational 
activation of the PI3-kinase-Akt-mTOR pathway is the 
most frequent oncogenic event in breast cancer. The 
hotspot AKT1 E17K mutation occurs in approximately 
3% of primary breast cancers. The mutation confers 
constitutive plasma membrane localization in the 
absence of growth factor stimulation, leading to 
increased Akt1 activation and phosphorylation of 
downstream target proteins. Functional analysis of 
large scale breast cancer sequencing studies identified 
six non-hotspot AKT1 pleckstrin homology domain 
mutants. Three of these cause constitutive activation of 
Akt1 [154]. Of note, like the hotspot E17K mutation, 
these mutants confer constitutive membrane localization 
of Akt1. These same three mutants also showed 
oncogenic activity in a cellular transformation assay. 
The other three mutants were inactive. These findings 
not only validate novel driver mutations in AKT1 and 
extend the number and type of mutations that activate 
the PI3-kinase pathway in human breast cancers, they 
also point out that genetics-based identification of driver 
mutations is incomplete. Non-hotspot, lower frequency 
mutations are not necessarily passengers, and may act 
via similar mechanisms. A second study discovered 
somatic mutations at the pleckstrin homology (PH) 
domain-kinase domain (KD) interface. These mutations 
abolish the interactions between the domains which are 
essential for maintaining AKT in an inactive state. These 
AKT1 somatic mutants are constitutively active, leading 
to oncogenic signaling. Also, the AKT1 mutants are not 
effectively inhibited by allosteric AKT inhibitors, in 
agreement with the requirement for an intact PH-KD 
interface for allosteric inhibition [155]. Allosteric drugs 
emerge as an advantageous therapeutic strategy due to 
their higher specificity and thus lower toxicity [156].
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CONCLUSIONS

Personalized treatment decisions are fraught with 
bottlenecks. The genetic basis for cancer treatment rests on 
knowledge of the personal cancer mutation spectrum [157] 
and its comparison with known statistical trends across 
primary and metastasized tumors. However, distinguishing 
between driver and passenger mutations is difficult and it 
is still unclear how many mutations are active at any given 
stage of a tumor.

Consideration of pathways through which resistance 
can take place is not straightforward either. Pathways may 
appear simple and linear; however, this is not the case, 
particularly not in the complex circuitry of cell survival, 
differentiation, growth and death. That a simple pathway 
diagram is not good enough can be seen from the Raf 
dimer example [158–160]. Pathways are also poorly 
understood at the level of detail required to shut them 
down effectively. Coupled to this is the deployment of the 
immune system. Innate immunity pathways are intimately 
linked to proliferative signaling, energy metabolism, 
angiogenesis, invasion, and survival pathways, sharing 
major cellular circuits [124, 161–167].

The structural basis for cancer treatment decisions 
focuses on unveiling the mechanism of the mutation on 
the conformational level and deciphering the redundant 
pathways that can be rewired in drug resistant mutants 
to increase the likelihood of avoiding relapse. Decision 
making rests on therapy combinations based on this 
information. ‘Latent driver’ mutations can be thought of 
not only as bearing on the question of why common adult 
tumors, such as pancreatic, breast and brain cancer, often 
have three to six mutated genes while several tumors have 
only one or two driver gene mutations [168], but also on 
how the blocking of an addicted growth pathway is able to 
rewire the oncogenic cellular network within a short time 
period in drug resistance.

Cancer research encompasses phenotypic 
complexities; however, these may manifest a small set 
of underlying organizing principles [60]. Computational 
structural biology is a powerful quantitative science. It 
combines biology and chemistry/physics of single molecules 
and their interactions in atomic detail and on a large scale. 
Together with experiment and statistical ‘big data’ genetic 
and clinical analysis, it may help in laying the foundation 
for new paradigms in the biological sciences to elucidate 
the basis of cancer and abate malignant transformations. 
Combining the structural basis, the genetic basis and clinical 
data can revitalize personalized treatment regimes.

Matching targets for selective cancer therapy is 
difficult [169, 170]. Nonetheless, recently strategies 
have been proposed to restrict the combinatorial space, 
minimize toxicity, and increase the precision and power of 
such restrictive combinations, altogether leading to drugs 
that could be tested in clinical trials [171]. Leveraging 
the enhanced identification of drug targets, including 

repertoires of redundant pathways combinations, may be 
helped by such innovative concepts.
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