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Recurrent copy number alterations in young women with breast 
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ABSTRACT

Breast cancer diagnosis in young women has emerged as an independent 
prognostic factor with higher recurrence risk and death than their older counterparts. 
We aim to find recurrent somatic copy number alteration (CNA) regions identified from 
breast cancer microarray data and associate the CNA status of the genes harbored in 
the regions to the survival of young women with breast cancer.

By using the interval graph-based algorithm we developed, and the CNA data 
consisting of a Discovery set with 130 young women and a Validation set with 125 
young women, we identified 38 validated recurrent CNAs containing 39 protein 
encoding genes. CNA gain regions encompassing genes CAPN2, CDC73 and ASB13 are 
the top 3 with the highest occurring frequencies in both the Discovery and Validation 
dataset, while gene SGCZ ranked top for the recurrent CNA loss regions. The mutation 
status of 9 of the 39 genes shows significant associations with breast cancer specific 
survival. Interestingly, the expression level of 2 of the 9 genes, ASB13 and SGCZ, 
shows significant association with survival outcome. Patients with CNA mutations 
in both of these genes had a worse survival outcome when compared to patients 
without the gene mutations. The mutated CNA status in gene ASB13 was associated 
with a higher gene expression, which predicted patient survival outcome. Together, 
identification of the CNA events with prognostic significance in young women with 
breast cancer may be used in genomic-guided treatment.
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INTRODUCTION

Although young women only account for 7% of all 
breast cancers, it is the most common cancer among young 
females [1]. Yet, young age at diagnosis of breast cancer 
has emerged as an independent factor for higher recurrence 
risk and death in various studies [2–6]. Breast cancer in 
young women has been described to have more biologically 
aggressive tumours (basal and HER2-enriched subtypes) 
than in older counterparts, which has been associated with 
a poorer prognosis [6]. Several factors influence poor 
prognosis in the young subgroup, such as higher tumour 
grade at diagnosis, high tumour proliferation, increased 

expression of HER-2 (ERB-B2) and reduced expression 
of both estrogen (ER) and progesterone receptor (PR) [7]. 
These women often struggle with life issues that are either 
absent or much less severe in older women, such as the 
possibility of early menopause and effects on fertility. While 
clinicopathologic differences point to underlying biological 
differences between breast tumours found in younger versus 
older women, limited studies have documented age-related 
changes at the molecular level. 

Cancer progression is impelled by the accumulation 
of somatic genetic mutations, which consists of single 
nucleotide substitutions, translocations and somatic mutations 
[8]. Somatic mutations are non-heritable alterations to the 
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human genome that occur spontaneously in somatic cells, 
which is often due to DNA replication error or chemical/
ultraviolet (UV) radiation. Copy number alterations (CNA) 
are somatic changes in the copy numbers of a DNA sequence 
that arise during the process of cancer development. They 
consist of changed  chromosome structure in the form of gain 
or loss in copies of DNA segments, and are prevalent in many 
types of cancer [9]. Investigating these genomic alterations 
in breast cancer patients can not only offer valuable insights 
into breast cancer pathogenesis and discover potential 
biomarkers, but also provide novel drug targets for better 
therapeutic treatment options [10]. Several cytogenetic and 
array-based studies have detected recurrent alterations linked 
with certain cancer types, and have found CNAs to be a 
particularly common genetic mutation in cancer [11, 12]. In 
addition, some of these CNAs have resulted in the discovery 
of disease causal genes and novel therapeutic targets, and 
have been strongly associated with clinical phenotypes  
[13–16]. For example, the use of vemurafenib to inhibit 
BRAF V600E mutation has shown remarkably improved 
survival in melanoma patients [17]. In another study, 
treatment with tyrosine kinase inhibitors for EGFR in lung 
cancer has also shown great success [18].

Since CNAs often encompass genes, it is suspected 
that they may greatly influence gene expression within 
the CNA regions. Indeed, several studies have reported 
a correlation between CNA and the average global 
expression levels of genes located within the copy number 
variable chromosomal regions. For instance, one group 
has shown that in tumour formation from an immortalized 
prostate epithelial cell line, 51% of genes with increased 
expression were mapped to DNA gain regions and 42% 
of genes with decreased expression were mapped to DNA 
loss regions [19]. This was further supported by another 
group working with breast tumour cell lines, noting that 
DNA copy number influences gene expression across a 
range of CNAs, with 62% of amplified genes resulting 
in moderately or highly elevated expression of the genes 
within the amplified regions [20]. 

Therefore, investigation of CNAs offers the potential 
to gain insight into the underlying genetic composition of 
breast tumours in young women. Mining genome-wide 
profiles will help find breast cancer genes and pathways 
with strong potential for prognostic significance as a 
function of age. Given that approximately 40–50% of young 
breast cancer patients relapse after 5 years [21], these age-
specific signatures could also serve as a treatment decision 
tool to identify young patients that would gain more benefit 
from particular adjuvant therapies. 

RESULTS 

Clinical characteristics

The young patients with breast cancer in the 
Discovery and Validation Data sets retrieved from the 

Molecular Taxonomy of Breast Cancer International 
Consortium (METABRIC) [22] have very similar 
distribution in age, menopausal status, tumour grade, 
tumour size, ER, PR expression and HER2 expressions 
(p > 0.05) (Table 1). On the other hand, the two sets have 
statistically significant differences in the tumour stage, 
with young patients in the Discovery set having a much 
higher prevalence in stage 0 compared to the Validation 
set (43.1% vs 0.8%) and PAM50 subtypes (p < 0.05). 
However, an overall pattern of the basal subtype being the 
most frequent amongst young patients is apparent in both 
the Discovery and Validation dataset. It must be indicated 
that there are 50 patients in Validation set without stage 
information, which may affect the analysis of difference 
in distribution of stages between the two sets. Since our 
focus is only on those Discovery set CNA candidates that 
are validated in the Validation set, the stage difference 
is unlikely to be driving CNA selection. Furthermore, it 
is our intention to investigate whether tumours in young 
women share commonalities in genetic alterations, 
regardless of stages and subtypes.

Identification of recurrent CNA regions

Figure 1 shows the analysis flowchart to identify 
age-related recurrent CNA regions using our maximal 
clique-based recurrent CNA detection algorithm. In the 
METABRIC Discovery cohort 867 of the total 997 patients 
are classified into the old age group (≥45 years old) and 
130 patients into the young age group. In the Validation 
cohort 870 of the total 995 patients are classified into the 
old age group and 125 patients into the young age group. 
After applying filtering criteria (retaining CNA data that 
was generated by ≥10 probes and having a CNA size of 
at least 1 kb), for the old age cohort in the Discovery set, 
there are 96,503 and 47,943 individual patient level CNA 
gain and loss regions respectively. For the young age 
cohort, there are 14,957 and 6,373 individual patient level 
CNA gain and loss regions, respectively. 

Upon filtering for recurrent CNA regions of at least 
1 kilobase (kb) in size and having at least 5 patients per 
recurrent region identified from the recurrent CNA calling 
algorithm, there are a total of 1,086 recurrent CNA gain 
regions (554 of the 1,086 gain regions encompassing 
protein encoding genes) and 439 recurrent CNA loss 
regions (202 of the 439 loss regions encompassing protein 
encoding genes). These regions are uniquely found in the 
young age group and form the young-specific recurrent 
gain and loss regions in the Discovery set.

Validation testing is then performed using the 
Validation set, which contains 995 patients. All filtering 
criteria and algorithm implementations follow the same 
procedure as the Discovery dataset analysis. For recurrent 
CNA gain regions, a total of 81 of the 1,086 regions have 
been validated (found in both the Discovery and Validation 
datasets), in which 30 regions have encompassed 29 
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unique protein encoding genes (Table 2). For recurrent 
CNA loss regions, a total of 25 of the 439 regions have 
been validated, in which 8 regions encompassed 10 unique 
protein encoding genes (Table 3). In total, 38 validated 
recurrent CNA regions with 39 protein encoding genes 
were identified, along with 51 validated recurrent gain 
CNA regions (Supplementary Table 1) and 17 validated 
recurrent loss CNA regions (Supplementary Table 2) that 
did not encompass any protein encoding genes. 

Figure 2 shows an overview of how similar the cluster 
sizes (i.e. number of patients) are in the Discovery set 
versus the Validation set for all the identified young-specific 
recurrent CNA regions. It can be seen that for both gain and 
loss regions, cluster sizes in the Discovery and Validation 
datasets have a fairly linear relationship. For example, if 
30% of the young patients in the Discovery set harbour a 
CNA region, it is likely that around 30% of patients in the 
Validation set will harbour that region as well.

Table 1: Clinical characteristics table comparing the METABRIC discovery dataset and validation dataset for young 
patients only
Characteristic Discovery Young Validation Young †P-value 
Age* 40 (36, 43) 40 (37, 43) 1
Menopausal Status 0.5
Pre 127 (97.7%**) 125 (100%)
Post 2 (1.5%) 0 (0.0%)
Subtype <0.001
Normal 11 (8.5%) 25 (20%)
LumA 41 (31.5%) 18 (14.4%)
LumB 20 (15.4%) 9 (7.2%)
Her2 16 (12.3%) 21 (16.8%)
Basal 42 (32.3%) 52 (41.6%)
Grade 0.98
1 7 (5.4%) 6 (4.8%)
2 37 (28.5%) 34 (27.2%)
3 86 (66.1%) 81 (64.8%)
Stage <0.001
0 56 (43.1%) 1 (0.8%)
1 25 (19.2%) 28 (22.4 %)
2 42 (32.3%) 35 (28.0%)
3 7 (5.4%) 11 (8.8%)
4 0 (0.0%) 0 (0.0%)
ER-expr 0.09
+ 74 (56.9%) 57 (45.6%)
– 56 (43.1%) 68 (54.4%)
PR-expr 0.78
+ 55 (42.3%) 56 (44.8%)
– 75 (57.7%) 69 (55.2%)
Her2-expr 0.27
+ 22 (16.9%) 29 (23.2%)
– 108 (83.1%) 96 (76.8%)
Tumour Size* (mm) 22 (16,30) (17,30) 1

*For continuous variables (Age, Tumour size), quantiles (50th percentile (25th percentile, 75th percentile)) were presented. 
†P-values were determined by Wilcoxon rank sum test for continuous variables and Fisher’s exact test for categorical 
variables.
**The proportion was obtained by dividing the total number of patients.
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Figure 1: Analysis flowchart for identifying recurrent CNA regions. Recurrent CNA regions are identified from young and 
old patient cohorts in the Discovery set of METABRIC. The identified recurrent CNA regions are then validated in the Validation set of 
METABRIC. 
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Annotation of the identified recurrent CNA 
regions

We performed region-based variation annotation 
on the identified young-specific recurrent CNA regions 
(see Tables 2 and 3 and Supplementary Tables 1 and 2) 
with refGene using the software ANNOVAR (Annotate 

Variation). The complete annotation information of the 
recurrent CNA regions is shown in Supplementary Table 
3. Figure 3 shows the genome location distribution of our 
recurrent CNAs with respect to the encompassed regions. 
The majority of the CNAs are in non-coding regions (76%) 
and 24% in coding regions. 

Table 2: Validated recurrent gain CNA regions with genes

Chr Inner Start Inner End Inner Size Outer Start Outer End Outer 
Size Gene Symbol Size1 Size2

1 84551640 84565561 13921 84481190 84729446 248256 SAMD13 5 6

1 143607802 143609034 1232 143607067 143609055 1988 PDE4DIP 20 30

1 191374290 191385577 11287 191359529 191405183 45654 CDC73 40 50

1 191385797 191402004 16207 191359529 191405183 45654 CDC73 40 50

1 222004315 222004925 610 221990859 222005526 14667 CAPN2 48 47

3 176423680 176427601 3921 176415397 176428705 13308 NAALADL2 18 22

3 176428607 176428705 98 176415397 176470832 55435 NAALADL2 18 22

5 22246497 22346803 100306 22194503 22414425 219922 CDH12 12 11

6 34625387 34634997 9610 34624907 34656516 31609 SPDEF 9 9

7 134782461 134787038 4577 134782461 134792291 9830 CNOT4 11 13

7 142150844 142154230 3386 142150819 142154515 3696 PRSS1 7 10

8 40695071 40697114 2043 40693570 40699795 6225 ZMAT4 17 16

9 93166194 93261927 95733 93157333 93373420 216087 NFIL3 5 7

10 5737990 5742226 4236 5736767 5744158 7391 ASB13 24 32

10 14598341 14600566 2225 14477106 14629604 152498 FAM107B 19 27

11 4931741 4932834 1093 4931741 4932966 1225 MMP26; OR51A2 7 11

12 180797 191614 10817 180797 195197 14400 SLC6A12 14 24

12 7895693 7897774 2081 7895693 7897774 2081 SLC2A14 13 23

12 7899067 7905082 6015 7899067 7909593 10526 SLC2A14 13 23

13 112354883 112363586 8703 112333434 112363586 30152 C13orf35 10 7

13 113356126 113365589 9463 113345036 113371998 26962 ATP4B 10 9

17 43751830 43753351 1521 43722185 43756717 34532 SKAP1 9 14

17 45136676 45139395 2719 45134175 45142242 8067 SLC35B1 21 18

18 9549925 9575313 25388 9417006 9594232 177226 PPP4R1 5 7

18 43704001 43707399 3398 43703934 43707399 3465 SMAD2 6 6

19 40629439 40647918 18479 40620640 40702499 81859 FFAR2 13 13

19 60890917 60901410 10493 60890917 60904859 13942 EPN1 8 11

20 14741416 14743670 2254 14741416 14743754 2338 MACROD2 8 10

20 41215727 41219453 3726 41202818 41220578 17760 PTPRT 12 18

22 20146692 20170596 23904 20145867 20170766 24899 PI4KAP2; 
TMEM191C 7 15

The first seven columns represent the chromosome number, inner and outer start and end coordinates of the recurrent CNA region, 
and the size of the region in base pairs (hg18). The last three columns are the genes encompassed in each CNA region, followed by 
the sample size (no. of cases) in both Discovery and Validation dataset (Chr: Chromosome; Size 1: Discovery Cluster Size; Size 2: 
Validation Cluster Size).
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In order to better visualize the mutation distribution 
of the 39 genes encompassed in the recurrent CNAs 
identified in the coding regions in both the Discovery 
and Validation young women group, an R package called 
the ComplexHeatmap was applied (Figure 4). From 
the heatmap, it can be observed that CNA gain regions 
encompassing genes CAPN2, CDC73 and ASB13 are the 
top 3 most frequent in both Discovery and Validation 
dataset (young women age group), while gene SGCZ ranks 
top for recurrent CNA loss regions in the two datasets. 

Expression quantitative trait locus analysis

An overview of the expression levels for each of the 
identified young-specific genes across all the young patients 
samples in the Discovery (Figure 5A) and Validation datasets 
(Figure 5B) is provided as gene expression heatmaps. Further 
interrogation using logistic regression was performed to 
evaluate the statistical association between gene expression 
and CNA mutation status (Table 4). In total, 16 gain regions 
and 1 loss region show significant associations with their 
gene expression changes. However, the directionality of the 
association is ambiguous. Fourteen out of the 16 gain regions 
correlated with high gene expression while the other 2 gain 
regions (encompassing MMP26 and SPDEF) were associated 
with low gene expression. For example, mutated gain CNA 
status in ASB13 seems to lead to higher gene expression. 
On the other hand, the loss region encompassing PTEN was 
found to be associated with having high gene expression 
level.  

Survival analysis

We further evaluate whether the expression levels of 
these genes are associated with disease-specific survival 

(DSS) (Table 5). The expression levels of eight out of 
the 39 young-specific genes are significantly associated 
with survival outcome. A higher gene expression of genes 
CAPN2, NFIL3 and SLC35B1 was associated with a 
moderately worse survival outcome. 

Of particular interest, the mutation status of two 
genes, ASB13 (Figure 6A) and SGCZ (Figure 7D), was also 
significant in the Kaplan Meier survival analysis, which 
allows estimation of a survival curve over time. Patients 
with a mutated status in both of these genes resulted in a 
worse survival outcome when compared to patients without 
the gene mutations. Other genes found to be significant in 
the survival analysis include ATP4B  (Figure 6B), FFAR2 
(Figure 6C) and PTPRT (Figure 6D), all encompassed 
within CNA gain regions. PTENP1 (Figure 7A), PTEN 
(Figure 7B), ZNF718 (Figure 7C) and ZNF595 (Figure 7E), 
all encompassed in CNA loss regions.

Cancer-relevant candidate genes

PTEN (Phosphatase and tensin homolog)

Results from our study show that the median survival 
time (i.e. half of the patients are expected to be alive) 
for young patients with a copy number loss in the PTEN 
gene region is ~4 years as opposed to ~15 years for those 
without. PTEN (cytoband 10q23.31) has been identified as 
a tumour suppressor which inhibits the PI3K/Akt/mTOR 
signalling pathways [23]. It has been shown to be one of 
the most frequently mutated genes in all cancer types, 
including that of breast, ovary, prostate, glioblastoma and 
lymphoma. Previous studies have observed that 40% of 
invasive breast cancers have a loss of PTEN heterozygosity, 
and that the loss of one gene copy is sufficient to disrupt 
cell signalling and cell growth control. It has also been 

Table 3: Validated recurrent loss CNA regions with genes

Chr Inner Start Inner End Inner 
Size Outer Start Outer End Outer 

Size Gene Symbol Size1 Size2

 2 97507180 97517476 10296 97507180 97520698 13518 ANKRD36B 5 5
 3 62243538 62257523 13985 62242606 62277516 34910 PTPRG 6 6
 4 59521 61566 2045 59521 64435 4914 ZNF718; ZNF595 13 6
 7 38296343 38297866 1523 38295506 38297939 2433 TRGV11 18 22
 8 14388851 14391732 2881 14385622 14391732 6110 SGCZ 23 18
 9 5027454 5029342 1888 5027454 5030334 2880 JAK2 7 11
10 89710114 89713882 3768 89708179 89713882 5703 PTENP1; PTEN 10 10
17 21245986 21253816 7830 21227031 21271210 44179 KCNJ12 15 9

The first seven columns represent the chromosome number, inner and outer start and end coordinates of the recurrent CNA 
region, and the size of the region in base pairs (hg18). The last three columns are the genes encompassed in each CNA 
region, followed by the sample size in both Discovery and Validation dataset (Chr: Chromosome; Size 1: Discovery Cluster 
Size; Size 2: Validation Cluster Size).
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suggested that carriers of the PTEN mutation are at higher 
risk of developing breast cancers at a younger age [24]. 

SGCZ (sarcoglycan zeta)

Our study shows that ~16% of all young patients 
present a CNA loss mutation encompassing SGCZ, with 
a significantly shorter median survival time for young 
patients with this mutation of ~6 years in contrast to ~15 

years for those without. SGCZ (8p22) encodes a protein 
that is part of the sarcoglycan complex, which plays a role 
in connecting the inner cytoskeleton to the extracellular 
matrix, possibly maintaining membrane stability [25]. 
Although the exact function of SGCZ in cancer is not well 
understood, loss of the chr8p region has been associated 
with several factors involved in cancer development and 
progression, such as the tumour having an aggressive 
histology, increased cell proliferation, and large size as 

Figure 2: Scatter plot showing the cluster sizes of recurrent CNA regions in the discovery and validation sets. (A) Gain 
recurrent young-specific regions and (B) Loss recurrent young-specific regions. Each point on the plot represents a young-specific recurrent 
CNA region. Blue represents regions without genes, and orange represents regions with genes. 
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well as the patients having increased early recurrence rate 
and mortality, and overall poor survival in young women. 
This region also contains the gene DLC1 (deleted in liver 
cancer 1), which has been suggested to act as a tumour 
suppressor [26]. DLC1 encodes a GAP protein that inhibits 
the activation of Rho-GTPases, which are often associated 
with a loss of cell adhesion. DLC1 expression has been 
reported to be frequently lost in tumour cells, leading to a 
constitutive activation of the Rho-GTPases.

CAPN2 (calpain 2)

CAPN2 (cytoband 1q41) was the most frequent 
CNA gain mutation in our study, with ~37-38% of all 
young patients harbouring a CAPN2 gain mutation. 
Calpains are calcium-activated intracellular proteases that 
have the ability to cleave cytoskeletal proteins, possibly 
playing a role in regulating cell invasion and migration 
[27]. A knockdown study of CAPN2 in breast tumour 
cells resulted in reduced cell migration, proliferation, as 
well as reduced Akt activation, increased FoxO nuclear 
localization and p27 expression [27]. It was suggested 
that CAPN2 promotes cell proliferation through the Akt-
FoxO-p27 signalling pathway. 

NAALADL2 (N-acetyl-L-aspartyl-L-glutamate 
peptidase-like 2)

Our study shows that ~16% of all young patients 
present a CNA gain mutation encompassing NAALADL2. 
NAALADL2 is a member of the NAALADase protein 
family which act as matrix metalloproteases and have the 
ability to alter the tumour environment. Microarray studies 
have shown that NAALADL2 is often overexpressed in 
prostate and colon cancers and stimulates a migratory 
and metastatic phenotype. A proposed mechanism is 
that since NAALADL2 has been found to be basal-
localized, it may enhance interaction of tumour cells 
with the extracellular matrix surrounding the tumour 
and provide a mechanism for the tumour cells to escape 
[28]. Subsequent survival analysis shows that patients 
with NAALADL2 overexpression have a 45% chance of 
surviving up to 5 years as opposed to 93% for patients 
with low NAALADL2 expression. It remained prognostic 
for recurrence rate even after correction for clinical 
variables such as tumour stage and grade. Expression array 
analyses also associated its overexpression to changes in 
the epithelial-to-mesenchymal transition (EMT) and cell 
adhesion pathways.

Figure 3: Distribution of the identified young-specific recurrent CNA regions with respect to the genome location. The 
functional annotation of the young-specific recurrent CNA regions is based on software ANNOVAR.
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Figure 4: Heatmap of mutation distribution for genes identified in the recurrent young-specific CNA gain and loss 
regions. (A) Results from the Discovery dataset and (B) Results from the Validation dataset. Rows are sorted based on the frequency of 
the alterations in all young-specific samples and columns are sorted to visualize the mutual exclusivity across genes. Barplots at both sides 
of the heatmap show numbers of different alterations for each sample and for each gene. Red represents CNA loss mutations and blue 
represents CNA gain mutations.
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Figure 5: Heatmap of gene expression for the genes identified in the recurrent young-specific CNA regions in young 
breast cancer patients. (A) Results from the Discovery dataset (B) Results from the Validation dataset. Rows represent the gene 
expression levels for the genes identified in the recurrent young-specific CNA gain and loss regions (same order as in Figure 4 for 
comparison). Columns represent the young-specific samples in Discovery and Validation datasets. The higher the intensity of the red 
colour, the higher the gene expression level.



Oncotarget11551www.impactjournals.com/oncotarget

Pathway enrichment analysis

A pathway enrichment analysis using the ANNOVAR 
gene list (174 genes) via the Enrichr REACTOME database 
reveals a significant overrepresentation of phospholipid 
signaling (MTMR14,PTEN,PIP4K2A) and adherens 
junction (CDH12, CDH18, CDH7) pathways (p < 0.05) in 
the identified young-specific recurrent CNA regions with 

genes. Both enriched pathways are highly relevant to cancer 
development and progression.

Phospholipid signaling

Aside from playing an important role in structural 
components, lipids also have a role in signalling processes 
[29, 30]. These lipid molecules aggregate to form lipid 

Table 4: Logistic regression analysis between CNA mutation status and gene expression in combined dataset

Gene Symbol Copy Number 
 State P-value Odds Ratio† Discovery  

Sample Size
Validation  

Sample Size

ASB13 Gain 0.049 1.83 (1.00–3.34) 24 32
ATP4B Gain 0.021 3.51 (1.21–10.17) 10 9
CAPN2 Gain 0.00002 3.21 (1.89–5.45) 48 47
CDH12 Gain 0.026 2.87 (1.14–7.24) 12 11
CNOT4 Gain 0.0004 7.45 (2.46–22.49) 11 13
EPN1 Gain 0.004 9.57 (2.15–42.56) 8 11
PDE4DIP Gain 0.002 2.73 (1.45–5.15) 20 30
PI4KAP2 Gain 0.031 2.81 (1.10–7.14) 7 15
PPP4R1 Gain 0.016 6.7 (1.44–31.23) 5 7
SLC35B1 Gain 0.001 19.19 (6.54–56.27) 21 18
SMAD2 Gain 0.022 6.06 (1.30–28.22) 6 6
SPDEF Gain 0.057 0.39 (0.15–1.03) 9 9
FAM107B Gain 0.083 1.79 (0.93-3.46) 19 27
MACROD2 Gain 0.085 2.73 (0.87-8.55 ) 8 10
MMP26 Gain 0.098 0.43 (0.15-1.17) 7 11
NFIL3 Gain 0.068 3.46 (0.91-13.08) 5 7
PTEN Loss 0.002 29.12 (3.83–221.25) 10 10

†Odds ratio is followed by its corresponding 95% confidence interval in brackets.

Table 5: Cox proportional hazard analysis of disease (breast cancer) specific survival of gene expression in combined 
dataset (discovery and validation)

Genes CNA 
types P-value Hazard ratio†

Discovery 
 Sample 

Size

Validation 
 Sample 

Size
Chr InnerStart InnerEnd

ASB13 Gain 0.0001 0.54 (0.39–0.73) 24 32 10 5737990 5742226
CAPN2 Gain 0.091 1.54 (0.93–2.54) 48 47 1 222004315 222004925
NFIL3 Gain 0.009 1.58 (1.13–2.23) 5 7 9 93166194 93261927
PDE4DIP Gain 0.027 0.37 (0.16–0.89) 20 30 1 143607802 143609034
PTPRT Gain 0.0002 0.68 (0.55–0.83) 12 18 20 41215727 41219453
SKAP1 Gain 0.0002 0.66 (0.53–0.82) 9 14 17 43751830 43753351
SLC35B1 Gain 0.00005 1.88 (1.39–2.55) 21 18 17 45136676 45139395
JAK2 Loss 0.007 0.43 (0.24–0.79) 7 11 9 5027454 5029342

†Hazard ratio is followed by its corresponding 95% confidence interval in brackets.
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rafts as highly specific platforms for cell signalling, 
carrying signals from activated growth factor receptors to 
the intracellular machinery [31]. These receptors recruit 
signalling effectors that induce cell proliferation and reduce 
cell death, dysregulation of which contributes to cancer 
development and progression. The phosphatidylinositol 
(3,4,5)-trisphosphate molecule, also known as PIP3, is 

generated by PI3K and leads to activation of downstream 
signaling components. A well-known consequence is 
recruitment and activation of protein kinase Akt, which can 
phosphorylate a variety of substrates, which in turn activate 
cell growth, apoptosis and cell cycle processes. PIP3 is a 
substrate for phosphatase and tensin homologue (PTEN), 
which is required for dephosphorylation of PIP3 into PIP2, 

Figure 6: Kaplan-Meier survival analysis for genes with significant CNA gain mutations in the young women group. 
Genes showing with statistical significance (p <  0.05) are (A) ASB13, (B) ATP4B, (C) FFAR2 and (D) PTPRT. Survival curve in red 
represents patients without CNA mutation in the corresponding gene (CN = 2) while the curve in blue represents patients with CNA gain 
mutations in the corresponding gene (CN > 2). Y-axis is the cumulative survival probability and X-axis is the survival time in years.
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Figure 7: Kaplan-Meier survival analysis for genes with significant CNA loss mutations in the young women group. 
Genes showing statistical significance (p < 0.05) are (A) PTENP1, (B) PTEN, (C) ZNF718, (D) SGCZ and (E) ZNF595. Survival curve 
in red represents patients without CNA mutation in the corresponding gene (CN = 2) while the curve in blue represents patients with CNA 
loss mutations in the corresponding gene (CN < 2). Y-axis is the cumulative survival probability and X-axis is the survival time in years. 
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essential for inhibition of the AKT pathway. Dysregulation 
of these pathways is frequent in many cancer types. 

Cell adhesion

 Cellular adhesion plays a major role in maintaining 
the integrity of normal cell-cell connections, and disruption 
in this pathway has been strongly associated with metastasis 
in cancers. Adherens junctions, which are sites of 
intracellular signalling and anchoring, provide strong bonds 
between adjacent cell membranes. The molecular processes 
governing cell-cell adhesion are very finely controlled, 
since they inhibit epithelial-mesenchymal transition (EMT) 
that is normally present during embryogenesis and tissue 
repair. Characteristics of EMT include a loss in intercellular 
adhesion and enhancement of cell migration, leading to a 
more motile phenotype [32]. Notably, the adherens junctions 
are lost during the process of EMT, which increases the risk 
of cancer progression such as metastasis. In normal tissues, 
epithelial cells are tightly bound to one another. However, 
in advanced cancer, many epithelial tumour cells show loss 
of cell-cell adhesion and increased tissue invasion. Tumours 
featuring local spreading and invasion are suggested to 
have a more aggressive phenotype and be associated with 
a higher mortality rate of the patient. This phenomenon has 
been widely seen in various cancer types, including breast, 
colon, prostate, ovarian and other types of cancer [33].

CONCLUSIONS

Applying the graph-based algorithm to the Molecular 
Taxonomy of Breast Cancer International Consortium 
(METABRIC) breast cancer dataset, we have identified and 
validated 81 recurrent CNA gain regions and 25 validated 
recurrent CNA loss regions specific to young-Women's 
breast cancers. As well, we have located the corresponding 
candidate protein encoding genes that are encompassed in 
these regions. The graph-based algorithm guarantees that 
the identified CNA regions are the most frequent and that 
the minimal regions have been delineated. 

Identification of molecular alterations associated 
with disease outcome may improve risk assessment 
and treatments for aggressive breast cancer, especially 
for young women. It can give new insights into the role 
of CNAs in cancer predisposition, development and 
progression as well as contribute to a more accurate and 
complete human cancer genome sequence reference. 
We hope that the results of this study will in the future, 
facilitate the development of screening methods for breast 
cancer biomarker discovery, especially in young women, 
as more prospective samples become available.

Since CNAs are fairly large in size, in the future 
it would be interesting to characterize further the non-
coding CNA regions we have identified and their role in 
regulating gene expression levels either in cis or trans. 

MATERIALS AND METHODS

Data source

All breast cancer data are retrieved from the 
Molecular Taxonomy of Breast Cancer International 
Consortium (METABRIC) [22], which is a novel dataset 
consisting of comprehensive clinical features such as 
breast cancer-specific survival data, PAM50 subtypes, 
ER/PR/HER2 status, tumour grade and tumour sizes. Each 
case has corresponding whole gene expression profiles 
(Illumina HT-12 v3 platform), SNPs and somatic DNA 
copy-number profiling data (Affymetrix Human SNP 6.0 
platform). Treatments for the patients are homogeneous 
among each clinically relevant group: almost all 
ER-positive/LN-negative patients did not receive 
chemotherapy, while ER-negative/LN-positive patients 
did receive chemotherapy. Furthermore, the METABRIC 
cohort consists of cohorts prior to the usage of Herceptin/
trastazumab in standard clinical care. Therefore, the 
outcome of HER2 positive patients reflects the poor 
prognosis in such patients before the introduction of this 
targeted therapy [22].

All samples are derived from ~2,000 clinically 
annotated primary fresh-frozen breast cancer specimens 
from tumour banks in the UK and Canada (a discovery 
set of 997 primary tumours and a validation set of 995 
tumours were divided by METABRIC). All genomic and 
clinically annotated data are available at the European 
Genome-Phenome Archive (http://www.ebi.ac.uk/ega/), 
under accession number EGAS00000000083 [22]. The 
individual CNA calls of the ~2,000 individual samples are 
pre-existing from the METABRIC study and downloaded 
from EGAS00000000083 [22]. Circular binary 
segmentation (CBS) method is used for making individual 
CNA calls. CBS is a segmentation-based method that 
scans for change points in an ordered sequence of copy 
number values to delineate segments with different 
distribution of the values (measured by having different 
means). In other words, it will recursively divide up the 
chromosome until segments that have probe distribution 
different than neighbours have been identified [41].

Representing CNAs as an interval graph

Figure 8A shows examples of five individual patient 
level CNA segments (CNA 1, CNA 2, CNA 3, CNA 4, CNA 
5) on the same chromosome. Each of the five CNAs contains 
chromosomal-specific start (left) and end (right) positions. 
To identify the common regions of individual patient level 
CNAs on the same chromosome, the intersection among the 
individual patient level CNAs can be represented as an interval 
graph, treating each called individual patient level CNA as a 
vertex of the graph and connecting two vertices only if the 
corresponding intervals have an intersecting region. Thus, the 
constructed interval graph G(V, E)  is comprised of a set of 
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vertices V, where each vertex (v ϵ V) corresponds to a specific 
interval of the individual patient level CNA and each edge 
({u, v} ϵ E) connects two intersecting intervals u and v. In 
Figure 8B, an example of the interval graph is shown where 
CNA 1 through CNA 4 are the intervals (nodes of the graph 
or individual patient level CNAs) and an edge connects two 
nodes (individual patient level CNAs) if the intervals overlap.

To find maximal cliques in an interval graph 
constructed from individual patient level CNAs, we 
applied Gentlemen and Vandal’s algorithm [34]. The main 
idea of the algorithm is to sort the vertices based on their 
chromosomal end positions. The ordering is important 
because it allows the algorithm to discard vertices in each 
iteration without losing the triangulation property. The 
input of the algorithm is the individual patient level CNAs 
on a specific chromosome, which includes two parameters 
for each CNA segment: start and end positions (base pair). 

Each of the identified maximal cliques is a recurrent 
CNA, which is common in multiple patients. The shared 
region of the recurrent CNA across multiple patients is the 
minimal common region (MCR) of the CNA, which has 
the potential to harbour cancer causing/associated genes. 
In practice, the size of the maximal cliques should be at 
least 2 and the size of the MCRs should be at least 1kb. It 
should be noted that we need to analyse CNA gains and 
losses separately. More details of the algorithm and its 
applications can be found in [35].

Survival analysis 

Disease (breast cancer) specific survival analysis was 
performed for both the mutation status (CNA gain, CNA 

loss) by the product-limit method or The Kaplan-Meier 
method and the expression level of the corresponding 
genes that are encompassed in the validated recurrent CNA 
regions using the Cox proportional hazard model [36]. All 
analyses were performed using Survival R package (https://
cran.r-project.org/web/packages/survival/index.html).

eQTL analysis

An expression quantitative trait locus (eQTL) is 
a locus that explains a portion of the genetic variance 
of a gene expression phenotype. An eQTL analysis 
tests for direct associations between markers of genetic 
variation with gene expression levels; that is, to evaluate 
the association between gene expression and CNA 
mutation status. Logistic regression is used to estimate 
the probability p associated with a dichotomous response 
for various values of an explanatory variable. In this case, 
the response (dependent) variable is gene expression 
(binarized-by-mean) and the predictor (independent) 
variable is CNA status. 

Functional analysis 

Functional analysis such as enrichment and 
annotations have been carried out using software (Enrichr 
and ANNOVAR) to determine whether the identified 
CNA regions with protein coding genes are enriched in 
any interesting pathways or functions. Enrichr software 
[37] contains a diverse and up-to-date collection of over 
100 gene-set libraries available for analysis and download. 
It is used to perform pathway enrichment analysis on the 

Figure 8: Representing CNAs as an interval graph. (A) CNA 1, CNA 2, CNA 3, CNA 4, CNA 5 are individual patient level CNAs 
on a specific chromosome. Each of the CNAs has chromosome start and end positions. (B) This is an interval graph where CNA 1, CNA 
2, CNA 3, CNA 4, CNA 5 are the individual patient level CNAs in (A). The edge between each of two vertices in the graph represents the 
two individual patient level CNAs sharing a piece of common regions on the chromosome.
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identified young-specific genes to identify which pathways 
are over-represented in the gene-set. ANNOVAR [38] 
is a perl command line program for genome annotation. 
This region-based annotation is used to identify affected 
genomic regions that lie outside of the protein-coding 
regions. 

Biological visualization

In order to aid in clearer visualization of and assist 
interpretation of the results, software programs Oncoprint 
[39] and CIMminer [40] were used to generate heatmap 
visualizations for the identified candidate regions. 
Oncoprint is included in the R package ComplexHeatMap, 
and it is a way to visualize multiple genomic alteration 
events in the format of a heatmap. This is used to visualize 
the frequencies of CNA mutation for each of the young-
specific regions with genes in Discovery and Validation 
datasets. CIMminer generates color-coded Clustered 
Image Maps (CIMs) to portray “high-dimensional” data 
sets such as gene expression profiles. It is used to visualize 
the relative expression levels in terms of colour intensity 
for each of the identified young-specific genes. 
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