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Intra-tumor L-methionine level highly correlates with tumor 
size in both pancreatic cancer and melanoma patient-derived 
orthotopic xenograft (PDOX) nude-mouse models
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ABSTRACT

An excessive requirement for methionine (MET) for growth, termed MET 
dependence, appears to be a general metabolic defect in cancer. We have previously 
shown that cancer-cell growth can be selectively arrested by MET restriction such 
as with recombinant methioninase (rMETase). In the present study, we utilized 
patient-derived orthotopic xenograft (PDOX) nude mouse models with pancreatic 
cancer or melanoma to determine the relationship between intra-tumor MET level 
and tumor size. After the tumors grew to 100 mm3, the PDOX nude mice were divided 
into two groups: untreated control and treated with rMETase (100 units, i.p., 14 
consecutive days). On day 14 from initiation of treatment, intra-tumor MET levels were 
measured and found to highly correlate with tumor volume, both in the pancreatic 
cancer PDOX (p<0.0001, R2=0.89016) and melanoma PDOX (p<0.0001, R2=0.88114). 
Tumors with low concentration of MET were smaller. The present results demonstrates 
that patient tumors are highly dependent on MET for growth and that rMETase 
effectively lowers tumor MET.

INTRODUCTION

Cancer cells have an elevated requirement for 
methionine (MET) compared to normal cells. This 
phenomena is termed MET dependence [1]. MET 
restriction arrests tumor growth and induces a selective 
S/G2-phase cell-cycle arrest of cancer cells in vitro and in 
vivo [2–5].

MET dependence appears to be due to excess use 
of MET for aberrant transmethylation reactions, termed 
the Hoffman effect [6–11], analogous to the Warburg 
effect for glucose in cancer [12]. The excessive and 
aberrant use of MET in cancer is observed in [11C] MET 
PET imaging, where high uptake of [11C] MET results 
in a very strong and selective tumor signal compared 
with normal tissue background. [11C] MET is superior to 
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[18C] fluorodeoxyglucose (FDG)- PET for PET imaging, 
suggesting MET dependence is more tumor-specific than 
glucose dependence [13–15].

A purified MET cleaving enzyme, methioninase 
(METase), from Pseudomonas putida has been found 
previously to be an effective antitumor agent in vitro as 
well as in vivo [16–19]. For the large-scale production 
of METase, the gene from P. putida has been cloned 
in Escherichia coli and a purification protocol for 
recombinant METase (rMETase) has been established with 
high purity and low endotoxin [20–25].

We previously reported on the efficacy of rMETase 
against a BRAF-V600E mutant melanoma patient-
derived orthotopic xenograft (PDOX) nude mouse model 
and that rMETase sensitized the melanoma PDOX to 
temozolomide (TEM) [26].

In the present study, we used PDOX nude mouse 
models with pancreatic cancer and melanoma to 
demonstrate the relationship between intra-tumor MET 
level and tumor size, using rMETase to lower tumor MET.

RESULTS AND DISCUSSION

Intra-tumor MET levels highly correlated with 
tumor volume in both the pancreatic cancer (p<0.0001, 
R2=0.89016) (Figure 1) and melanoma PDOX models 

(p<0.0001, R2=0.88114) (Figure 2). Tumors with low 
concentration of MET were smaller in size. Tumors treated 
with rMETase had lower concentration of MET and were 
smaller in size than untreated tumors (Table 1).

The present study shows a direct relationship 
between the intra-tumor MET level and tumor size using 
PDOX models of pancreatic cancer and melanoma, further 
demonstrating the MET dependence of cancer, in this case, 
using patient tumors.

The excessive requirement for MET termed MET 
dependence appears to be a general metabolic defect in 
cancer. Sugimura et al. showed that rat tumor growth 
was slowed by giving the rats a defined diet depleted 
in MET [27]. It was observed that L5178Y mouse 
leukemia cells in culture required very high levels of 
MET to proliferate [28]. Subsequently, most cancer 
cell lines were found to be MET dependent [29, 30]. 
These cell lines were derived from multiple cancer 
types including liver, ovarian, submaxillary, brain, 
lung, bladder, prostate, breast, kidney, cervical, colon, 
fibrosarcoma, osteosarcoma, rhabdomyosarcoma, 
leiomyosarcoma, neuroblastoma, glioblastoma, 
pancreatic and melanoma. The occurrence of MET 
dependence among these diverse cancer types suggests 
that methionine dependence is a general phenomenon 

Figure 1: Correlation between tumor volume and intra-tumor MET level in the pancreatic cancer PDOX. Blue box: 
untreated controls; Red box: treated with rMETase. Please see the Materials and Methods for details.
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in cancer. The present results further substantiate this 
assumption.

Human patient tumors, including tumors of the 
colon, breast, ovary, prostate, and melanoma, were 
previously found to be MET dependent in Gelfoam® 
histoculture [31]. Mouse models of human cell lines were 
previously shown to be inhibited by rMETase [32–34].

PDOX models of Ewing’s sarcoma [35] and 
melanoma [26] were also shown to be MET dependent 
and inhibited by rMETase.

This is the first report that intra-tumor MET levels 
highly correlated with tumor volume. These results 
demonstrate that MET restriction, using rMETase, has 
promising clinical potential.

Previously-developed concepts and strategies of 
highly-selective tumor targeting can take advantage of 
molecular targeting of tumors, including tissue-selective 
therapy which focuses on unique differences between 
normal and tumor tissues [36–41].

Figure 2: Correlation between tumor volume and intra-tumor MET level in the melanoma PDOX. Blue box: untreated 
controls; Red box: treated with rMETase. Please see the Materials and Methods for details.

Table 1: Intra-tumor MET levels (nmol/mg protein) and volume (mm3) after rMETase treatment

MET concentration

Untreated control Treated with rMETase p-value

Pancreatic cancer PDOX 11.3 ± 0.87 7.80 ± 0.73 p = 0.0006

Melanoma PDOX 8.88 ± 1.05 3.65 ± 0.57 p = 0.0003

Tumor volume
Untreated control Treated with rMETase p-value

Pancreatic cancer PDOX 693.9 ± 239.6 200.5 ± 204.2 p = 0.0032

Melanoma PDOX 3755.2 ± 484.3 857.9 ± 262.6 p < 0.0001
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MATERIALS AND METHODS

Mice

Athymic nu/nu nude mice (AntiCancer Inc., San 
Diego, CA), 4–6 weeks old, were used in this study. 
Mice were housed in a barrier facility on a high efficacy 
particulate arrestance (HEPA)-filtered rack under standard 
conditions of 12-hour light/dark cycles. The animals were 
fed an autoclaved laboratory rodent diet. All animal studies 
were conducted in accordance with the principles and 
procedures outlined in the National Institutes of Health 
Guide for the Care and Use of Animals under Assurance 
Number A3873-1. All mouse surgical procedures and 
imaging were performed with the animals anesthetized 
by subcutaneous injection of a ketamine mixture (0.02 
ml solution of 20 mg/kg ketamine, 15.2 mg/kg xylazine, 
and 0.48 mg/kg acepromazine maleate). The response of 
animals during surgery was monitored to ensure adequate 
depth of anesthesia. The animals were observed on a 
daily basis and humanely sacrificed by CO2 inhalation if 
they met the following humane-endpoint criteria: severe 
tumor burden (more than 20 mm in diameter), prostration, 
significant body weight loss, difficulty breathing, 
rotational motion and body temperature drop [26].

Patient-derived pancreatic cancer

The pancreatic tumor was established in nude mice 
at the MD Anderson Cancer Center under IRB approval 
and written informed patient consent [42–49].

Surgical orthotopic implantation (SOI) of 
pancreatic cancer

For the pancreatic cancer PDOX, tumor fragments 
(5 mm3) were initially implanted subcutaneously in nude 
mice. After five weeks, the subcutaneously-implanted 
tumors grew to more than 10 mm in diameter. The 
subcutaneously-grown tumors were then harvested and 
cut into small fragments (3 mm3). After nude mice were 
anesthetized with the ketamine solution described above, 
a 1-2 cm skin incision was made on the left side abdomen 
through the skin, fascia and peritoneum and pancreas was 
exposed. Surgical sutures (8-0 nylon) were used to implant 
tumor fragments onto the tail of pancreas to establish the 
PDOX model. The wound was closed with a 6-0 nylon 
suture (Ethilon, Ethicon, Inc., NJ, USA) [50, 51].

Patient-derived melanoma

The melanoma patient PDOX was previously 
established from a patient diagnosed with a melanoma of 
the right chest wall under UCLA IRB approval and written 
informed patient consent [26, 52–55].

SOI of melanoma

After subcutaneously-implanted tumors grew to 
more than 10 mm in diameter, the subcutaneously-grown 
tumors were then harvested and cut into small fragments 
(3 mm3). After nude mice were anesthetized with the 
ketamine solution described above, a 5-mm skin incision 
was made on the right chest into the chest wall in order 
to match the patient, which was split to make space for 
the melanoma tissue fragment. A single tumor fragment 
was implanted orthotopically into the space to establish 
the PDOX model. The wound was closed with a 6-0 nylon 
suture (Ethilon, Ethicon, Inc., NJ, USA) [26, 52–55].

Recombinant methionase (rMETase) production

Recombinant L-methionine α-deamino-γ-
mercaptomethane lyase (recombinant methioninase 
[rMETase]) [EC 4.4.1.11] from Pseudomonas putida has 
been previously cloned and was produced in Escherichia 
coli (AntiCancer, Inc., San Diego, CA) [20, 23]. rMETase 
is a homotetrameric PLP enzyme of 172-kDa molecular 
mass [20, 25].

Treatment study design

PDOX mouse models were randomized into two 
groups: untreated control; rMETase (100 units, i.p., 14 
consecutive days). Tumor length and width were measured 
at post-treatment. Tumor volume was calculated with the 
following formula: Tumor volume (mm3) = length (mm) × 
width (mm) × width (mm) × ½ [26].

Intra-tumor MET level analysis

Each tumor was sonicated for 30 seconds on ice and 
centrifuged at 12,000 rpm for 10 minutes. Supernatants 
were collected and protein levels were measured using 
the Coomassie Protein Assay Kit (Thermo Scientific, 
Rockford, IL). Protein levels were calculated from a 
standard curve obtained with a protein standard, bovine 
serum albumin (BSA). MET levels were determined with 
the HPLC procedure described previously. MET levels 
were calculated per mg tumor protein [26].

Statistical analysis

JMP version 11.0 was used for analysis of variance 
(ANOVA). A probability value of P ≤ 0.05 was considered 
statistically significant.

CONCLUSIONS

Currently melanoma [56–59] and pancreatic cancer 
[60, 61] are recalcitrant diseases with no reliable therapy. 
The results of the present study indicate that rMETase has 
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general clinical potential to improve the outcome for both 
diseases as non-BRAF-V600E melanoma is also sensitive 
to rMETase [62].
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