
Oncotarget13231www.impactjournals.com/oncotarget

Reprogrammed lipid metabolism in bladder cancer with cisplatin 
resistance

Min Young Lee1, Austin Yeon2, Muhammad Shahid2, Eunho Cho3, Vikram Sairam3, 
Robert Figlin4, Khae-Hwan Kim5 and Jayoung Kim2,3,4,5

1Institute for Systems Biology, Seattle, WA, USA
2Department of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
3University of California Los Angeles, Los Angeles, CA, USA
4Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
5Department of Urology, Ga Cheon University College of Medicine, Incheon, South Korea

Correspondence to: Jayoung Kim, email: Jayoung.Kim@cshs.org
Khae-Hwan Kim, email: kimcho99@gilhospital.com

Keywords: lipidomics; cisplatin resistance; bladder cancer

Received: October 06, 2017    Accepted: January 06, 2018    Published: January 13, 2018
Copyright: Lee et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 
(CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source 
are credited.

ABSTRACT

Due to its tendency to recur and acquire chemoresistance quickly, bladder 
cancer (BC) remains to be an elusive and difficult disease. Patients with recurrent 
and chemoresistant BC have an extremely poor prognosis. One possible approach that 
may provide insightful and valuable information regarding resistance mechanisms 
is looking into the lipid metabolism of BC cells. Metabolism of lipids is essential 
for cancer cells and is associated with the regulation of a variety of key cellular 
processes and functions. This study conducted a comparative lipidomic profiling 
of two isogenic human T24 bladder cancer cell lines, one of which is clinically 
characterized as cisplatin-sensitive (T24S) and the other as cisplatin-resistant (T24R). 
Immunohistochemistry analysis revealed that expression of cytosolic acetyl-CoA 
synthetase 2 (ACSS2) is positively correlated with aggressive BC. Ultra performance 
liquid chromatography-mass spectrometry (UPLC-MS) analysis profiled a total of 1,864 
lipids and levels of differentially expressed lipids suspected of being associated with 
cisplatin resistance were determined.  In addition, we found that ACSS2 inhibition 
greatly perturbed levels of metabolites, including CE(18:1), CE(22:6), TG(49:1), and 
TG(53:2). This study broadens our current knowledge on the links between cisplatin 
resistance and lipid metabolism in aggressive BC and suggests potential biomarkers 
for identifying higher-risk patients. 
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INTRODUCTION

Bladder cancer (BC) has undoubtedly impacted the 
lives of many, as it has become the fi fth most prevalent 
type of cancer, with ~76,000 new cases and ~16,300 deaths 
per year worldwide [1–4]. Albeit treatment varies with 
each patient and tumor stage when found, the standard of 
treatment for BC usually involves surgical resection of the 
tumor followed by adjuvant chemotherapy with cisplatin 
[5]. While effective in some forms of cancer, cisplatin 
often loses its effi cacy in BC patients. Resistance often 

builds up quickly, leaving fewer options for treatment. The 
mechanisms driving this increased resistance to cisplatin 
over time are generally unknown.

Since cancer initiation and progression is associated 
with changes in metabolism, investigation into the 
metabolomics of cancer could prove to be useful. In 
particular, dysregulated lipid metabolism, which regulates 
diverse classes of molecules that play critical roles in cellular 
energy, storage, and signaling [6], has been associated with 
aggressive forms of different cancers [7–10]. Furthermore, 
given that lipid metabolism is regulated by several oncogenic 
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signaling pathways and is important for the initiation and 
progression of tumors [11], it is widely accepted that lipid 
alterations may serve as potential cancer biomarkers [12]. 
Lipidomic analysis aims to identify and quantify all the 
relevant lipids along with the goal of characterizing their 
interactions with other cellular components and functions, 
such as proteins or gene expression [13, 14]. Lipid and 
phospholipid metabolism also plays key roles in cellular 
motility, cell invasion, and tumor metastasis. Previous reports 
have shown that metabolic perturbation of phospholipids is 
associated with various cancer types [5, 15, 16], indicating 
that the composition of phospholipids may be critical for 
deciding the fate of tumor cells. 

In this study,  we hypothesized that a perturbed 
phospholipid metabolism is implicated in the more 
aggressive variants of BC. We sought to determine the 
lipid alterations underlying cisplatin resistance and address 
the lack of knowledge between metabolite alterations 
and drug resistance. Through a state-of-the-art mass 
spectrometry approach, the experimental results identifi ed 
lipid metabolites specifi c to cisplatin-resistant BC cells. 

RESULTS

Characterization of isogenic cisplatin sensitive- 
or -resistant bladder cancer cells 

To start identifying the cisplatin resistance-
associated lipid metabolome, we utilized a paired cell 
culture system consisting of two isogenic cell lines, 
one of which was cisplatin sensitive (T24S) and the 
other resistant (T24R). Both cell lines were previously 
characterized in our laboratory [17]. Compared to T24S, 
T24R consistently exhibited a lower response to cisplatin-
induced apoptosis (Figure 1A). The total lipid levels in 
T24R cells were approximately 170% of those in T24S 
cells, suggested that greater lipid production may be 
linked to cisplatin resistance (Figure 1B). 

Prior studies have demonstrated that cancer cells 
have altered lipid metabolism [18, 19]. As a carbon source 
for producing fatty acids and cholesterol, acetate can 
be converted into cytosolic acetyl-CoA, which plays an 
important role in the TCA cycle [20–22]. The cytosolic 
acetyl-CoA synthetase 2 (ACSS2) mediates increased 
incorporation of acetate into lipids this processing. Given that 
a signifi cant increase in the levels of ACSS2 has been found 
in a series of cancer types, such as melanoma, breast, ovarian, 
and lung cancers [21, 23–26], we speculated that ACSS2 
expression may also be correlated with bladder cancer. 

ACSS2 expression is associated with bladder 
cancer aggressiveness

To determine the relationship of ACSS2 to lipid 
metabolism and cisplatin resistance at the molecular level, 
we performed immunohistochemical (IHC) staining of tumor 

microarrays using a commercially available ACSS2 antibody 
(Figure 1C–1D). This experiment revealed elevated ACSS2 
expression in bladder tumor tissue cores. Our IHC analysis 
further confi rmed that ACSS2 is more abundantly expressed 
in tumor samples of higher grades. These experimental results 
suggest that ACSS2 expression is signifi cantly increased in 
BC cells and may also positively correlate with tumor grade. 

Recently, high-throughput small molecule 
screenings of over 200,000 chemical compounds have 
identifi ed inhibitors of ACSS2. One of the most potent and 
specifi c inhibitors is 1-(2,3-di(thiophen-2-yl)quinoxalin-6-
yl)-3-(2-methoxyethyl)urea [25–27]. We were curious to 
see if inhibition of ACSS2 would have any effect on BC 
cells. We treated a set of normal bladder and BC cell lines 
(TRT-HU1, RT4, 5367, T24, and TCCSUP) with ACSS2 
inhibitor for 24 h. Using this small ACSS2-inhibitory 
compound (MolPort), we found that total lipid levels of 
BC cell lines decreased, whereas those of normal cells 
(TRT-HU1) were not affected (Figure 1E). 

Identifi cation of the lipids associated with 
cisplatin resistance 

In order to determine the lipidomics profi le of cisplatin-
resistant BC cells, global and unbiased metabolomics analysis 
was performed. We identifi ed differentially expressed lipids 
(DELs) by comparing BC cell lines T24R and T24S cells. 
Ultra performance liquid chromatography-mass spectrometry 
(UPLC-MS) detected a total of 1,864 lipids in both the 
positive and negative modes. The mass-to-charge (m/z) 
values, retention times, and abundance of the lipids are 
shown in Supplementary Table 1.

We measured 1,037 and 827 unique lipid species 
in the positive and negative modes, respectively. In the 
positive mode, 127 lipid species from cholesteryl ester 
(CE), ceramide (Cer), cholesterol, diacylglycerol (DG), 
glucosylceramide (GlcCer), lysophosphatidylcholines (LPC), 
phosphatidylcholine (PC), phosphatidylethanolamide (PE), 
sphingomyelin (SM) and triglyceride (TG) were identifi ed. 
In the negative mode, 92 lipid species from Cer, fatty acyls 
(FA), GlcCer, LPC, PC, PE, phosphatidylinositols (PI), 
and SM were identifi ed. Of interesting note, we found that 
essential structural components of cell membranes were 
major constituents of the identifi ed lipids in both the positive 
(48 PC, 11 SM, and 44 TG) and negative (14 CER, 10 FA, 32 
PC, and 21 PE) modes. DELs between T24S and T24R cells 
in the positive or negative ion mode are shown in Table 1 and 
Supplementary Tables 2 and 3. 

Inhibition of ACSS2 altered lipidomics profi les 
in cisplatin responsive bladder cancer cells

We next attempted to understand the biological 
effect of ACSS2 inhibition. Given our data showing that 
T24 BC cells showed the biggest inhibitory effect on 
lipid levels by ACSS2 inhibition, we choose T24 cells 
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for further experiments using ACSS2 inhibitor [25–27]. 
The overall lipidomic profi les showed larger differences 
between T24S and T24R cells after treatment with ACSS2 
inhibitor than treatment with vehicles in both positive 
(Figure 2A) and negative (Figure 2B) modes. The full list 
of detected lipids in both the positive and negative modes 
are shown in Supplementary Table 1. 

The difference between T24S– (T24S not treated 
with ACSS2 inhibitor) and T24S+ (T24S treated with 
ACSS2 inhibitor) was larger compared to the difference 
between T24R– (T24R not treated with ACSS2 inhibitor) 
and T24R+ (T24R treated with ACSS2 inhibitor) in the 
positive mode (Supplementary Table 2). The expression 
patterns of DELs showed distinct abundances of various 

Figure 1: Cisplatin resistance is associated with ACSS2. (A) Cisplatin resistant T24R cells showed a delayed apoptosis in response 
to cisplatin treatment, compared to T24S. Cell viability was measured in the absence or presence of cisplatin media for 2 days. *p < 0.05 
(Student’s t-test). (B) Total lipid levels of T24R were compared to T24S cells.  **p < 0.005 (C–D) ACSS2 expression increased in bladder 
cancer tissues in comparison of normal bladder tissues. (C) The BC TMA was stained with anti-ACSS2 antibody (1:100) as described in the 
Materials and Methods section. The expression levels of ACSS2 were examined and quantifi ed based on positivity of staining as previously 
described. (D) Images of one representative example of staining in normal noncancerous bladder tissue (left), and one representative 
example of staining in the paired bladder tumor tissues from same patients (right) were shown. (E) ACSS2 inhibition decreased total lipid 
contents in a series of BC cells. Cells were incubated with ACSS2 inhibitor-containing media for 20 hrs, which was followed by lipid 
measurement as described in Methods. *p < 0.05, **p < 0.005 (Student’s t-test).
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lipid species between the cell lines and treatments in both 
the positive (Figure 3A) and negative modes (Figure 2B) 
(Supplementary Table 3). DEL between T24S+ and 
T24S– in the negative or positive mode are shown in 
Supplementary Tables 4 and 5, while those for T24R+ 
and T24R– in the negative or positive mode are shown in 
Supplementary Tables 6 and 7. 

In our heatmap constructed from the data obtained 
from lipidomics analysis in the positive mode, Cluster 1 
(C1) showed higher expression levels in ACSS2 inhibitor 
treated cell lines, regardless of cisplatin sensitivity (Figure 
2C). Cluster 2(C2) and Cluster 5(C5) showed the highest 
expression in T24R– compared to others (e.g., CE (22:6)). 
Cluster 3(C3) and Cluster 4(C4) showed higher expression 
in T24R regardless of ACSS inhibitor treatment (e.g., 
Ceramide (d42:2), PC(36:6), PC(35:4), PC(40:8), 
SM (d42:3), SM(d42:2), SM(d41:2), SM(d32:1), and 
SM(d34:0)) (Figure 2C). 

In contrast, the heatmap indicating lipidomics data 
in the negative mode is shown in Figure 2D. The most 

distinctive pattern was up-regulation in T24R, regardless 
of treatment with ACSS2 inhibitor. Cluster 2 (C2) included 
SM(d41:2), SM(d42:2), SM(d32:1), and PC(34:4). Cluster 
1(C1) and Cluster 4(C4) showed up-regulation in ACSS 
inhibitor treated cells, regardless of cisplatin sensitivity 
(e.g., PC (40:6)). Cluster 3(C3) showed the lowest 
expression in T24S– and the highest expression in T24R+ 
(e.g., Ceramide(d42:2) and Ceramide(d34:0)) (Figure 2D).

Distinct effects of ACSS2 inhibition on the lipid 
metabolome in cisplatin resistant bladder cancer 
cells 

To further understand the metabolic consequences 
of ACSS2 inhibition, the lipid metabolite profi les of 
T24S+ and T24R+ were compared. Cisplatin-sensitive BC 
cell line (T24S) showed larger changes in lipid profi les 
compared to the resistant cell line (T24R). Among the 
identifi ed lipids, we found that 23 TG lipid species were 
down-regulated in T24S+, compared to T24S–, in the 

Table 1: Differentially expressed lipids (DEL) between T24S and T24R in positive or negative ion mode

Mode Identifi er Annotation InChI Key Species m/z RT P-value Q-value Log2FC
Mean normalized 

intensity

S- R-

Positive

10.30_719.57 CE (22:6) VOEVEGPMRIYYKC
-HNJOWPRISA-N [M+Na]+ 719.5729 10.30 0.0116 0.0911 1.4461 7881.9 21476.0

4.93_768.55 PC (35:4) OROZWUJCDDCYAU
-IPUAOQJZSA-N [M+H]+ 768.5528 4.93 0.0204 0.0948 0.6450 18501.8 28933.0

4.47_778.54 PC (36:6) SPWBDEZMKCRQSX
-NGPPOSSDSA-N [M+H]+ 778.5385 4.47 0.0048 0.0931 0.6402 14238.8 22192.0

5.70_724.53 PE (p-36:4)
/ PE (o-36:5)

ADWDFBQPQIEGRZ
-XBICFDGKSA-N [M+H]+ 724.5279 5.70 0.0002 0.0301 –0.6337 403765.9 260236.6

6.39_752.56 PE (p-38:4)
/ PE (o-38:5)

ZTZQZGHJLWFLFQ
-VZBWJDOASA-N [M+H]+ 752.5591 6.39 0.0142 0.0897 –0.8247 239093.0 134988.5

6.40_778.57 PE (p-40:5)
/ PE (o-40:6)

HHQFKPJXVYWLLJ
-ABYSKWQHSA-N [M+H]+ 778.5743 6.40 0.0185 0.0951 –0.6302 80510.8 52015.6

7.15_813.68
_7.15_835.67 SM (d42:2) DACOGJMBYLZYDH

-GXJPFUDISA-N
[M+H]+

_[M+Na]+
813.6848
_835.6658 7.15 0.0070 0.0814 1.2411 204780.6 484070.9

6.56_811.66
_6.55_833.65 SM (d42:3) TXFLWJQVQCDUDZ

-BRUGZULGSA-N
[M+H]+

_[M+Na]+
811.6624

_833.6505 6.56 0.0001 0.0558 4.3471 10492.5 213546.9

11.16_829.73
_11.17_824.77 TG (48:0) PVNIQBQSYATKKL

-UHFFFAOYSA-N
[M+H]+

_[M+NH4]+
829.7256
_824.7705 11.17 0.0060 0.0894 –1.7587 190985.2 56439.4

11.32_838.78 TG (49:0) TTWJTJMWHOYBPQ
-ANFMRNGASA-N [M+NH4]+ 838.7829 11.32 0.0262 0.0989 –1.6911 15051.5 4661.4

10.96_841.73
_10.96_836.77 TG (49:1) VYYGQDOPVVYUKW

-UKFBYESTSA-N
[M+H]+

_[M+NH4]+
841.7263
_836.7709 10.96 0.0256 0.0993 –1.5552 64017.0 21784.1

11.56_857.76
_11.57_852.80 TG (50:0) MARPCPMDFOPPJX

-UHFFFAOYSA-N
[M+Na]+

_[M+NH4]+
857.7562
_852.8018 11.57 0.0177 0.0989 –2.0145 151586.5 37517.4

11.89_885.78
_11.91_880.84 TG (52:0) SDNYRTVJOFMYIW

-OIVUAWODSA-N
[M+H]+

_[M+NH4]+
885.784

_880.8354 11.90 0.0115 0.0920 –1.7912 96039.1 27748.3

10.69_898.79
_10.67_903.74 TG (54:5) OEJXMJPFOHYSIU

-GRLFFVHSSA-N
[M+NH4]+
_[M+Na]+

898.7855
_903.7415 10.68 0.0191 0.0941 –1.4113 212399.1 79854.1

Negative

4.40_733.55 SM (d32:1) KYICBZWZQPCUMO
-PSALXKTOSA-N [M+Hac-H]- 733.5478 4.40 0.0001 0.0027 1.1264 18915.2 41295.4

7.15_871.69 SM (d42:2) B DACOGJMBYLZYDH
-GXJPFUDISA-N [M+Hac-H]- 871.6894 7.15 0.0012 0.0212 1.2472 46562.3 110528.3

Annotated DELs with q-value less than 0.1 were shown. The full list of DELs was included in Supplementary Table 2 and 3. For each DEL, unique identifi er given as RT, m/z, 
annotation identifi ed by MS-Dial, InChI key, formula of the lipid, m/z, retention time (RT), p-value, q-value, log2-transformed fold-change (log2FC), and mean normalized 
intensities were shown.
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Figure 2: Differentially expressed lipids in T24R compared to T24S. (A–B) Principal component analyses (PCA) of lipid 
profi les of T24S and T24R in the absence or presence of ACSS2 inhibitor were shown. The lipid profi les were acquired in (A) positive ion 
mode and (B) negative ion mode. S and R indicate cisplatin sensitive and resistant bladder cancer cell lines. The positive (+) and negative 
(-) symbols indicate treatment of ACSS2 inhibitor and vehicle, respectively. (C–D) Heatmaps showing differentially expressed lipids in 
T24R compared to T24S in the absence and the presence of ACSS2 inhibitor treatment. (C) DELs identifi ed in positive mode, and (D) in 
negative mode.
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positive mode (Figure 3A). Four lipid species, 2 CE and 2 
TG, were downregulated in T24R+, compared to T24R–, 
in the positive mode (Figure 3B). 

Compared to T24S in the positive mode, T24R had 
42 lipid species that were upregulated and 68 species that 
were downregulated. Of these lipid species, 3 PC and 5 SM 
lipid species were upregulated and 3 PE and 12 TG lipid 
species were downregulated (Figure 3C). Compared to 
T24S+ in the positive mode, T24R + had 5 SM lipid species 
that were upregulated and 3 PE and 29 TG lipid species that 
were downregulated (Figure 3D). 

Only a few identifi ed lipid species were 
differentially expressed between T24S+ and T24S– 
(Figure 3E) and T24R+ and T24R– (Figure 3F). There 
were more differentially expressed lipids associated with 
cisplatin-resistance. Among the identifi ed lipids, 6 PE 
lipid species were downregulated in T24R–, compared to 
T24S–, in the negative mode (Figure 3G). In addition, 2 
PC and 7 PE lipid species were downregulated in T24R+, 
compared to T24S+, in the negative mode (Figure 3H).

These results show that the levels of most lipid 
metabolites specifi c to T24R were not signifi cantly affected 
by ACSS2 inhibitor treatment (Figures 3A and 3B). Levels 
of metabolites, such as CE(18:1), CE(22:6), TG(49:1), and 
TG(53:2) were greatly perturbed by ACSS2 inhibition 
(Figures 4A–4D). In contrast, the expression levels of 
several unknown metabolites such as 11.86_1000.92, 
12.22_369.35, and 8.57_711.58/8.57_735.61 decreased 
only in T24R cells, but not in T24S cells (Figures 4E–4G). 
Collectively, these fi ndings suggest that cisplatin resistance 
is associated with defects in acetate and lipid metabolism. 

DISCUSSION

In this study, we sought to characterize the cisplatin 
resistant lipidome in BC. Through the integration 
of lipidomics and systems biology approaches, this 
study has broadened our understanding of the lipid 
biology associated with cisplatin resistance in BC. 
The experimental results also suggest potential lipid 
biomarkers and therapeutic targets. 

Lipid metabolism is often disturbed in cancer cells 
and this is expected to result in differing lipid composition 
[28]. However, profi ling of disease-related lipids specifi c 
to cancer is still underdeveloped, compared to those of 
genes and proteins. Lipidomics profi ling aims to identify 
lipids using mass spectrometry and annotate them based 
on a metabolite database [12]. Other approaches that 
allow for analysis of lipids in cancer tissue include nuclear 
magnetic resonance (NMR), mass spectroscopy (MS) [12], 
matrix-assisted laser desorption and ionization (MALDI), 
and electrospray ionization (ESI) [29, 30], which allow 
for analysis of lipids in cancer tissue. Integration of 
lipidomic strategies in cancer research could generate new 
opportunities to gain insights into diagnosis, prognosis and 
prediction of therapies [14]. 

Experimental results from our study revealed a list 
of identifi ed lipids that is heterogenous and belongs to 
several different classes. The original goal of this study 
was to determine the global lipid metabolome in cisplatin 
resistant BC. Although this is out of scope for this particular 
study, there has been much speculation regarding the 
potential biological signifi cance of differential amounts 
of sphingomyelin (SM) and ceramide (CE) on membrane 
structure, permeability, and signaling platform formation. 
Several reports have suggested that strict distribution 
patterns of lipid species and enzymes determine cell fate 
through regulatory mechanisms. For instance, higher levels 
of SM are associated with drug resistance, possibly through 
alterations of membrane packing [31]. Sphingomyelinase, 
an enzyme that catalyzes the breakdown of SM into CE 
and phosphorylcholine, also induces apoptosis by altering 
the balance between SM and CE. Additionally, C16:0-
ceramide has recently been reported as a principal mediator 
of obesity-related insulin resistance [32, 33]. Furthermore, 
in various cancer, phosphoglyercides, namely PC, PE, 
and PI, are upregulated [34, 35]. In particular, it is known 
that cholesterol and sphingolipids form specifi c planar 
microdomains, known as lipid rafts [36]. In cancer cells, 
these lipid rafts contain receptors for signaling proteins 
involved in oncogenic and apoptotic pathways [37]. 
Cholesterol is enhanced in the cell membrane of various 
cancer cells [38, 39]. Sphingolipids (sphingomyelin) are 
also involved in several cancer-related processes, such as 
proliferation, apoptosis and metastasis [40]. Therefore, by 
compiling lipidomic data, we could identify potential lipid 
signatures from a combination of different lipids, which 
could then be used to classify tumor samples from healthy 
controls. 

Furthermore, our fi ndings identifi ed specifi c ACSS2-
inhibiting lipid metabolites, such as CE(18:1), CE(22:6), 
TG(49:1), and TG(53:2) (Figure 4). Alterations in the 
levels of phospholipid metabolites, such as PC and PE, have 
often been considered as biochemical indicators of tumor 
progression or drug response [41–44]. Lipid perturbation 
in BC has been observed in a series of previous papers. 
From 40 paired bladder cancer and adjacent normal bladder 
tissues, Dill et al. found that levels of PI, PS, and FA were 
changed in BC tissues [45]. Using the DESI-IMS method, 
the authors found a signifi cant increase of PS(18:0/18:1), 
PI(18:0/20:4) and FA(18:1) in bladder tumor tissues 
(n = 20), compared to healthy controls (n = 20). In the dog 
model BC (n = 4), levels of PS(18:0/18:1), PG(18:1/18:1), 
PI(16:0/18:1), PI(18:0/18:1), PS(18:1/18:1), PC(34:1), 
and PC(36:2) increased in BC tissue compared to normal 
[46]. Our study demonstrates that levels of CE(22:6), 
TG(49:1), and TG(53:1) et al. are signifi cantly elevated 
in cisplatin-resistant BC cells compared to their cisplatin-
sensitive counterparts. This conveys that these lipids may 
be actively involved in BC pathogenesis. Ceramide, a 
sphingomyelin byproduct and gangliosiode precursor, 
is potentially related to tumor growth and metastasis. 
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Figure 3: Volcano plots of cisplatin sensitive and resistant bladder cancer cell lines. (A–D) Positive ion mode. (A) T24S+ 
and T24S–; (B) T24R+ and T24R–; (C) T24R– and T24S–; (D) T24R+ and T24S+. Cyan dots indicate the DEL (p < 0.05 and fold-change 
>1.5). Magenta dots indicate the identifi ed DEL. (E–H) Negative mode. (E) T24S+ and T24S–; (F) T24R+ and T24R–; (G) T24R– and 
T24S–; (H) T24R+ and T24S+. Cyan dots indicate the DEL (p < 0.05 and fold-change >1.5). Magenta dots indicate the identifi ed DEL. 
The x-axis and y-axis show log2-tranformed fold changes and log10-transformed p-values.
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Exogenous addition of a specifi c ganglioside mediated the 
epithelial-to-mesenchymal transition in BC cells [47], and 
also inhibited cell proliferation through inhibition of the 
EGFR signaling pathway [48, 49]. Furthermore, growth 
of bladder tumors was delayed by GM3 in the orthotopic 
bladder cancer model. N-glycolyl-GM3, which contains 
N-glycolylneuraminic acid instead of N-acetylneuraminic 
acid, was observed in colon and breast cancers and is 
suggested as a potential target for cancer therapy. We also 
found that TG species, which are composed of a glycerol 
molecule linked by ester bonds to three fatty acids with 
chain lengths of 49:1 or 53:2, were signifi cantly decreased 
in cisplatin-resistant BC cells compared to cisplatin-

sensitive control cells. TG (and diacylglycerols (DG)) 
plays an important role in cellular membranes and signaling 
pathways. TG also mediates the storage of fatty acids and 
energy, and provides the precursors needed for phospholipid 
biosynthesis. 

Although these fi ndings are quite exciting, this 
study has several limitations. While global lipidomics 
offer exciting technologies, we are aware that there are 
still constraints with data interpretation. Despite the fact 
that available databases for interpreting lipidomics profi les 
have progressed rapidly in recent years, many lipids and 
lipid metabolites are still functionally uncharacterized or 
completely unknown. In this current study, we attempted 

Figure 4: Lipid metabolites whose levels were decreased with ACSS2 inhibition. (A–D) Among 27 lipid metabolites that 
signifi cantly decreased by ACSS2 inhibitor in positive mode, four lipid species (A) CE(18:1), (B) CE(22:6), (C) TG(49:1), and (D) 
TG(53:2) were identifi ed. (E–G) Examples of lipid metabolites specifi cally responsive to ACSS2 inhibitor treatment only in T24R cells. 
Three lipid species (E) 11.86_1000.92 in positive mode, (F) 12.22_369.35 in positive mode, and (G) 8.57_711.58/8.57_735.61 in negative 
mode showed statistically signifi cant changes (p < 0.05 and fold-change >1.5) by ACSS2 inhibitor only in T24R cells. The lipid identifi ers 
denote retention (RT) time and m/z. 
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to extract and provide as much biological information as 
possible on the lipid metabolites identifi ed. In addition, 
our study lacked further validation using independent and 
targeted analyses. A fi nal major outstanding defi ciency in 
this study was lipidomics profi ling using clinical samples, 
which would have signifi cantly strengthened our fi ndings.

In summary, we used an untargeted lipidomics 
approach to depict a comprehensive picture of BC using 
both cisplatin-sensitive and resistant cell lines. We have 
confi dently profi led a diverse lipid signature of 1,037 and 
827 lipids for these cell lines. Specifi cally, differential 
lipid abundances were observed in molecular species that 
are known to have signifi cant roles in regulating cancer 
progression. Based on this lipidomic study, adjusting lipid 
metabolism purposively may represent an optimal strategy 
in overcoming cisplatin resistance and improving cancer 
therapy. This study not only facilitates the development of 
new drugs against cisplatin resistance, but also provides a 
novel method in the clinical diagnosis of cisplatin-resistant 
bladder cancer. 

MATERIALS AND METHODS

Cell culture and transfection

RT4, 5367, TCCSUP, and T24 BC cells were 
obtained and cultured, according to instructions provided 
by ATCC. Immortalized normal human bladder epithelial 
cells, TRT-HU1, were maintained as described previously 
[14]. Media was supplemented with 10% fetal bovine 
serum, 2% glutamine and 1% antibiotics (Invitrogen, 
Carlsbad, CA). Cells were maintained under a humidifi ed 
atmosphere of 5% CO2 at 37° C. The TRT-HU1 cell 
line was constructed and extensively characterized in 
previously published papers. These cells lines tested 
negative for mycoplasma and all other infectious agents.

Cell survival assay 

T24S and T24R cell lines were incubated with 10 
mM cisplatin for 2 days. Cell survival was determined by 
measuring cell viability using MTS reagents, according to 
the company’s protocols (Promega Corporation, Madison, 
WI). 

Lipidomics by charged surface hybrid column 
(CSH)-electrospray (ESI) quadrupole time of 
fl ight mass spectrometer (QTOF) MS/MS

Lipidomics and data analysis were conducted at the 
NIH West Coast Metabolomics Center (UC Davis).

Extraction 

T24 cells were extracted as indicated in the 
following protocols [50], which was slightly modifi ed 
from the earlier protocols [51]. The lipid extracts were 
separated using methanol and MTBE, which can separate 
lipids from proteins and other small polar hydrophilic 
molecules in a way such that the lipids were found in the 
top layer of a liquid-liquid separation, rather than in the 
bottom layer. Therefore, decanting the top layer ensured 
that the proteins or polar compounds did not contaminate 
the lipid extracts. We optimized the choice of internal 
standards and chromatographic conditions; e.g. by using 
toluene in the reconstitution solvent mixture to ensure 
that lipophilic components, like CE and TAGs, were 
transferred to the UHPLC column during the injection 
process. 

Data acquisition 

Data was acquired using the following 
chromatographic parameters: Column, Waters Acquity UPLC 
CSH C18 (100 mm length × 2.1 mm internal diameter; 
1.7 μm particles); Mobile phase A, 60:40 acetonitrile:water 
+ 10 mM ammonium formiate + 0.1% formic acid; 
Mobile phase B, 90:10 v/v isopropanol:acetonitrile + 10 
mM ammonium formate + 0.1% formic acid; Column 
temperature: 65° C; Flow-rate: 0.6 mL/min; Injection 
volume: 3 μL; Injection temperature: 4° C; Gradient: 0 min 
15% (B), 0–2 min 30% (B), 2–2.5 min 48% (B), 2.5–11 min 
82% (B), 11–11.5 min 99% (B), 11.5–12 min 99% (B), 12–
12.1 min 15% (B), 12.1–15 min 15% (B). 

This chromatography method yielded excellent 
retention and separation of lipid classes (PC, lysoPC, PE, 
PS, TAG, ceramides) with narrow peak widths of 8–17 s. 
In addition, we saw very good within-series retention time 
reproducibility of better than 6 s absolute deviation. We 
used automatic valve switching after each injection, which 
was shown to reduce sample carryover for highly lipophilic 
compounds, such as TAGs from 29% to 0.1%. The valve 
switching occurred at 0.10, 11.60 and 13.00 minutes. 
At 0.1 minutes, the sample has fl own through. Then at 
11.60 minutes, the valve switching allows the mobile phase 
(99% B) to fl ow through the needle and fl ush out any highly 
lipophilic compounds. Finally, it switches at 13.00 minutes 
to re-equilibrate the needle to initial conditions. 100% 
isopropanol wash is used to wash the needle before every 
injection (after sample has been picked up).

The following mass spectrometry parameters 
were used: for positively charged lipids, such as PC, 
lysoPC, PE, and PS, an Agilent 6530 QTOF mass 
spectrometer was used with a resolution of R = 10,000; 
for negatively charged lipids, such as free fatty acids 
and phosphatidylinositols, an Agilent 6550 QTOF mass 
spectrometer set at R = 20,000 was used. 
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Identifi cation and quantifi cation of lipids

Raw data was processed through MS-DIAL [52]. 
First, peaks were detected and quantifi ed for each sample. A 
peak table including RT, m/z, and intensity was constructed 
for each sample. Then, peak alignment across all samples 
was performed in four steps: (1) a reference peak table was 
constructed. The reference peak table started with one of 
the sample tables. All peaks from other sample tables were 
examined if they are in the reference table. If the peaks 
are outside the RT and m/z tolerance of 0.1 min and 0.025 
D, they were inserted to the reference peak table. (2) All 
peak information including alignment ID, average RT, 
average m/z and intensities of all samples were associated 
to the reference peak table to generate a complete aligned 
peak table. (3) The aligned peaks with missing intensity 
information in all samples were fi ltered out. (4) In order to 
impute missing intensity values, MS-Dial searched a feature 
with a local maximum intensity with the same RT and m/z 
tolerance in step (1). When no feature was found to align in 
a sample, MS-Dial fi lls zero to indicate that the abundance 
of the peak was not measured.

Normalization and identifi cation of differentially 
expressed lipids

The normalization procedure was based on the sum 
of all peak heights for all identifi ed lipids in each sample 
that were defi ned as mTIC. The normalization factor for 
a sample was calculated by dividing the average mTIC by 
the mTIC of the sample being assessed. The intensities of 
all the lipid species were then multiplied by the calculated 
normalization factor. Differentially expressed lipids (DEL) 
were identifi ed based on a signifi cance test of P < 0.05 from 
a two-sample t-test and if there was a fold change greater 
than 1.5. The Q-value, an FDR adjusted p-value, was 
computed for each p-value using the procedure introduced 
by Storey, 2002 [53]. Principal component analysis (PCA) 
was applied to summarize variations in the lipid profi les of 
different cell lines and the effect of treatment with ACSS1 
inhibitor. The normalized intensities were transformed 
to a log scale with a base of 2. The missing values in a 
lipid species were estimated as the minimum value of the 
quantifi ed values before PCA was applied. To cluster lipids 
that shared similar intensity profi les across conditions, 
hierarchical clustering was applied with Ward linkage and 
Euclidean distance as a similarity measure. 

IHC analysis using TMA

The tissue microarrays (TMA) were obtained from 
a commercial resource (Biomax, BL802). They contain 
80 cases in 80 cores. Sixty cores were bladder cancer 
tissues, 10 cores were normal bladder tissues, and 10 cores 
were normal adjacent to tumors. The antibody specifi c 
to ACSS2 (D19C6) was purchased from Cell Signaling 
Technology (Beverly, MA, United States). For the antigen 

retrieval, we used a high pH method. For counterstaining, 
an Ultraview DAB Detection Kit (Ventana Medical 
Systems) was used. 

Slide annotation and digitalized IHC analysis 

The slides were annotated and characterized using 
Leica Tissue IA 2.0 software (Copyright 2012 by SlidePath 
Ltd.). For quality control measures, hematoxylin and eosin 
(H&E) stained slides were used during the annotation. The 
ACSS2 slide was viewed with its corresponding H&E 
slide to ensure the annotation was done on the bladder 
tumor epithelium only. Stromal and structural tissues 
were cut off from annotation. A minimum number of cells 
measured per slide were set up as 100,000 cells/core. 

Following annotations, analysis was done using 
the Leica Tissue IA 2.0 software. The Measure Stained 
Cells Algorithm was selected. Color defi nition preferences 
were defi ned, and algorithm input parameters were 
optimized by using several stained images of slides. The 
optimized algorithm was used for the analysis of all slides. 
Haematoxylin was set as the nuclear counter stain, and 
3,3’Diaminobenzidine (DAB) was set as the nuclear, 
cytoplasmic, and membrane marker. 

Parameters in the software are based on a grayscale. 
Zero is the minimum intensity (black), and 255 is 
the maximum intensity (white). We set the threshold 
range at 170 and 80 for positive and negative staining, 
respectively. The max nuclear window size radius was 
set to default and the nuclear area threshold was set to 
0–500 mm2 (any nuclei or cells out of these range were 
cut off). The minimum percentage of stained area in 
order to be considered positive in the nucleus was set 
to 20%. The threshold for cytoplasmic staining was set 
at a higher range (160–22) because of the background 
contrast of the cytoplasmic counterstain and the antibody 
staining. In order for positive cytoplasmic staining 
to be detected, the threshold had to be set higher since 
the blue cytoplasmic staining was only slightly lighter 
than the antibody staining. The minimum percentage of 
stained area was set to 75%. After the annotation analysis, 
data of the nuclear h-score, % of positive nuclei, % of 
positive nuclear area, the cellular cytoplasmic h-score, 
and % of positive cytoplasmic staining were collected 
and visualized into box plots. Each annotated core had a 
minimum threshold of 100,000 cells to be analyzed. Three 
individual measurements were performed in a blinded 
manner without any information of clinical data. After 
computerized data analysis, positivity was collected from 
data for the % of positive nuclei in tissue, which was used 
for comparative graphing. 

Measurement of lipid levels in cells

Cells (1.2 × 106/experimental group) were fi nely 
harvested in phosphate buffered saline (PBS) on ice, and 
total lipid levels were determined after lipid extraction 
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using the Infi nity Cholesterol Liquid Stable Reagent 
(Thermo Electron Corp., Waltham, MA). 

Statistical analysis

The mean of more than three replicates was used as 
the average. The p-values were calculated using a standard 
unpaired Student’s t-test for simple comparisons and 
p > 0.05 was considered statistically signifi cant.
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