
Oncotarget10995www.impactjournals.com/oncotarget

Discovery and validation of a glioblastoma co-expressed gene 
module

Leland J. Dunwoodie1, William L. Poehlman1, Stephen P. Ficklin2 and Frank 
Alexander Feltus1

1Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
2Department of Horticulture, Washington State University, Pullman, WA 99164, USA

Correspondence to: Frank Alexander Feltus, email: ffeltus@clemson.edu

Keywords: glioblastoma; systems biology; gene co-expression networks; complement system; cancer

Received: July 28, 2017    Accepted: January 09, 2018    Published: January 13, 2018

Copyright: Dunwoodie  et  al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0  
(CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source 
are credited.

ABSTRACT

Tumors exhibit complex patterns of aberrant gene expression. Using a 
knowledge-independent, noise-reducing gene co-expression network construction 
software called KINC, we created multiple RNAseq-based gene co-expression 
networks relevant to brain and glioblastoma biology. In this report, we describe the 
discovery and validation of a glioblastoma-specific gene module that contains 22 
co-expressed genes. The genes are upregulated in glioblastoma relative to normal 
brain and lower grade glioma samples; they are also hypo-methylated in glioblastoma 
relative to lower grade glioma tumors. Among the proneural, neural, mesenchymal, 
and classical glioblastoma subtypes, these genes are most-highly expressed in the 
mesenchymal subtype. Furthermore, high expression of these genes is associated 
with decreased survival across each glioblastoma subtype. These genes are of interest 
to glioblastoma biology and our gene interaction discovery and validation workflow 
can be used to discover and validate co-expressed gene modules derived from any 
co-expression network.
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 INTRODUCTION

Glioblastoma (GBM) tumors, with an adult 
median survival time of 14.6 months after radiation 
and temozolomide therapy [1], are known for their 
heterogeneity, vascularization, and lethality. Even after 
resection, remaining tumor cells multiply and invade the 
surrounding parenchyma. Interestingly, primary GBM 
has few known risk factors [2] -- GBM affects patients 
across age, cultural, and socioeconomic boundaries. The 
discovery of relevant biomarker combinations driving 
GBM tumorgenicity would have therapeutic implications.

There are known monogenic GBM biomarkers 
that include mutations in the IDH1 [3] and PDGFRα [4] 
loci. However, any given biomarker does not provide a 
complete picture of the GBM microenvironment. GBM 
tumors, as with other tumors, diseases, and complex 
traits, are controlled by a variety of genetic and epigenetic 
factors [5]. Thus, a systems approach is needed to fully 
understand the biology underlying the GBM phenotype. 

Fortunately, modern measurement technologies such as 
next-generation sequencing [6] now provide researchers a 
broad genomics perspective that is revealing new insights 
to human disease. These technologies, coupled with 
genomics and epigenomics databases such as The Cancer 
Genome Atlas (TCGA) [7], used in this investigation, 
encourage new discoveries.

To identify complex gene expression relationships 
in multiple human tumors, we have built RNAseq-based 
gene expression matrices (GEMs) from publicly available 
RNAseq datasets.  One GEM contains gene expression 
profiles for GBM, lower grade glioma (LGG), bladder 
urothelial carcinoma (BLCA), thyroid carcinoma (THCA), 
and ovarian serous cystadenocarcinoma (OV) from 
TCGA [7] and is fully described in another publication 
[8]. Another GEM built for this study contains different 
RNAseq expression profiles for GBM [9], normal brain 
[10], and Parkinson’s brain [11] obtained from the 
NCBI SRA archive [12].  Both GEMs were individually 
preprocessed and transformed into a gene co-expression 
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network (GCN) using Knowledge-Independent Network 
Construction (KINC) software [8]. Complex gene 
interactions present in the input samples are mineable 
from these GCNs, and these gene interactions patterns can 
be compared between GCNs.

The KINC software package ([8]; open source code 
available at http://www.github.com/SystemsGenetics/
KINC) is unique because it deconvolutes mixed-condition 
expression patterns (e.g. mixed tumor expression 
profiles in the GEM), allowing significant co-expression 
relationships to be annotated with sample labels (e.g. 
GBM vs. non-GBM). There is no need to separate gene 
expression profiles prior to analysis. Thus, without 
providing KINC a priori knowledge, tumor- or non-tumor-
specific gene expression relationships can be identified 
and analyzed for biological meaning. 

In this report, we apply a generalizable gene 
interaction discovery and validation workflow, outlined 
in Supplementary Figure 1, that allows for the detection 
of condition-specific gene sets in one GCN that can be 
validated for specificity and reproducibility in alternate 
GCNs.  We focused this approach on GBM-specific 
modules to investigate GBM tumor biology. Herein, we 
describe the discovery and characteristics of a GBM-
specific gene module present in two GCNs, and explore 
the expression patterns and epigenetic state of these genes 
across the spectrum of GBM subtypes using multiple  
in silico approaches.

RESULTS AND DISCUSSION

GCN construction

KINC identified significant co-expression 
relationships among 2016 datasets in the TCGA Network 
and among 204 datasets in the Brain Network. The TCGA 
network, obtained from our previous study in Ficklin et al. 
[8], included GBM and LGG datasets along with BLCA, 
OV, and THCA datasets.  The Brain Network included 
GBM and normal brain datasets along with datasets from 
Brodmann’s Area 9 of Parkinson’s patients [11]. The TCGA 
Network (Supplementary Table 1) is described in [8] and 
the Brain Network (Supplementary Table 2) was visualized 
with Cytoscape [41] and shown in Figure 1.  356 LCMs 
were detected in the TCGA Network ([8]; Supplementary 
Table 3) and 456 LCMs were found in the Brain Network 
(Supplementary Table 4). Many of these modules were 
condition-specific; for example, 68 of the Brain Network’s 
456 modules were enriched for GBM (p < 0.001). 

Gene module discovery

Genes in the Brain Network were compared with 
those in the TCGA Network to investigate commonality 
in GBM co-expression. 477 unique genes -- 6.6% of the 
unique genes in the TCGA Network and 8.9% of the unique 

genes in the Brain Network-were found in both networks. In 
addition, each network was parsed into LCMs. The TCGA 
Network had 356 modules total and the Brain Network 
had 456 modules total. Considering only the genes in these 
modules, 74 unique genes mapped between networks. The 
low amount of overlap may be a function of (A) sparse 
gene overlap between GCNs; and (B) differential Type I 
and Type II error in each GCN partially due to alternate 
expression measurement techniques; the TCGA Network 
used a GEM made with TCGA’s RNAseqV2 workflow 
[15] and 73599 knownGene 5 UCSC transcript IDs, while 
the Brain Network used a GEM made with Hisat [18], 
Cufflinks [21], and 209086 Ensembl hg38 transcript IDs. 
Nonetheless, of these 74 overlapping genes, 22 (Table 1) 
were seen in Modules M0257 (in the Brain Network) and 
M0214 (in the TCGA Network). While the fate of other 
common interactions is unclear, these 22 intersecting GBM 
interactions emerged in both GCNs.

Next, we asked if there was corroborative co-
expression evidence for the 22 interacting genes from 
other sources. Specifically, we searched the 22 matching 
genes as a group in the GeneFriends gene co-expression 
database [27]. Table 1 shows the gene set co-expression 
analysis where co-expression probability is represented 
by the GeneFriends binomial cumulative distribution 
function (p < 1.00E-7). Because 22 genes were provided 
to GeneFriends, each gene has a maximum of 22 friends, 
or co-expressed genes. 

Interestingly, TCGA M0214 (p < 2.56E-17) and 
Brain M0257 (p < 1.37E-15) were both enriched for 
GBM but not LGG (p < 4.52E-03 in the TCGA Network) 
or normal brain (p < 1.00 in the Brain Network). 
TCGA M0214 is also enriched for ovarian cancer (OV;  
p < 2.56E-17).  Table 2 shows the condition-specific 
Fisher’s Exact Test enrichment values for TCGA M0214 
and Brain M0257. In total, TCGA M0214 includes 54 
genes and Brain M0257 includes 63 genes (Supplementary 
Table 5). The clinical annotation term enrichment results 
are available for each TCGA module (Supplementary 
Table 3) and each Brain module (Supplementary Table 4).

It was interesting that TCGA M0214 is enriched 
for both GBM and OV. While OV is enriched for 
57 modules and GBM is enriched for 102 modules 
(Supplementary Table 3), 22 modules are enriched for 
both GBM and OV. While these cancers are seemingly 
very different, further investigations might reveal new 
commonalities between them. Indeed, the literature 
shows few links between GBM and OV, but OV can 
metastasize to the brain [42] and bevacizumab, an 
angiogenesis inhibitor used to treat GBM, has been 
found to alleviate mesenchymal-like, proliferative OV 
subtypes [43]. While TCGA M0282, described in Ficklin 
et al. [8], is also enriched for GBM and OV in addition 
to THCA, no genes are shared between TCGA M0282 
and M0257. Indeed, no genes are shared between TCGA 
M0282 and the Brain Network.
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Internetwork gene module validation shows 
GBM-specific correlations 

The correlations in Brain M0257, which is enriched 
for GBM, were compared to matching correlations found 
by KINC using only the normal brain datasets in the Brain 
GEM. 70 of the 154 edges (45.45%) in Brain M0257 were 
rediscovered in the normal brain datasets. Of these edges, 
none had a significant Spearman correlation greater than 
0.8801, the Brain Network’s RMT threshold (Figure 2). 
TCGA M0214 includes 54 unique transcripts and 416 
edges correlated above its RMT threshold. 49 of these 
UCSC kg5 transcripts mapped to the hg38 Ensembl IDs 

used by the Brain and Random GEMs. As described in 
the Methods section, the expression values for these 49 
transcripts in the Random GEM were processed with 
KINC [8]. KINC rediscovered 191 (45.91%) of the 416 
TCGA edges using expression values from the Random 
GEM. Nine (4.71%) of the 191 rediscovered edges in the 
Random GEM had a Spearman correlation greater than 
0.7901, the Random Network’s RMT threshold. Seven 
(4.55%) of the 154 edges in Brain M0257 were also found 
in TCGA M0214; 100% of these edges have a Spearman 
correlation greater than the Brain Network’s significance 
threshold (Figure 3). These data indicate that the pairwise 
correlation of these genes is GBM-specific.

Figure 1: Visualization of the brain network. Points represent transcripts (nodes) and lines represent significant expression 
correlations (edges) between nodes. 
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Gene expression analysis reveals GBM-specific 
upregulation

We investigated the gene expression levels of the 22 
genes seen in TCGA M0214 and Brain M0257 in different 
conditions. Heatmaps and bar graphs were constructed 
to visualize the expression levels of the 22 matching 
genes between TCGA M0214 and Brain M0257 (Figures 
4A–4B and 5A–5B). All 22 genes showed significantly 
upregulated expression (Student’s T Test; p < 0.001) in 
GBM relative to LGG (in the TCGA Network) and relative 
to normal brain (in the Brain Network). Significance test 
results are available for the expression of the 22 shared 
genes in the TCGA GEM (Supplementary Table 6) and in 
the Brain GEM (Supplementary Table 7).

Putative transcriptional regulators of the GBM 
modules

Several gbmSygnal biclusters [37] involving genes 
from TCGA M0214 or Brain M0257 (Supplementary 
Table 8) implied regulation by the transcription factor 
ELF1. In addition, by loading the 22 matching genes 
into the Broad Institute Gene Set Enrichment Analysis 
[34], we found that ELF1 was the second-most enriched 
transcription factor for this dataset (p < 9.91 × 10–8) 
(Supplementary Table 9). Indeed, 5 of the 22 matching 
genes have putative ELF1 sites. Moreover, one ELF1 
transcript, ENST00000239882, was upregulated in the 
Brain GEM GBM data relative to normal brain data  
(p < 3.79 × 10–27) (Supplementary Table 10). Furthermore, 

Table 1: The 22 genes overlapping between TCGA M0214 and brain M0257
Gene 
Symbol Gene Name hg38 Ensembl ID kg5 UCSC ID Entrez 

ID Chromosome Transcription 
Start

Transcription 
Stop Gene Friends

LAPTM5 lysosomal protein 
transmembrane 5 ENST00000294507 uc002iop.1 7805 1 30732469 30757820 19

C1QA complement C1q A 
chain ENST00000374642 uc001bfy.2 712 1 22636506 22639608 10

FCER1G Fc fragment of IgE 
receptor Ig ENST00000367992 uc001bga.3 2207 1 161215279 161220699 22

C1QC complement C1q C 
chain ENST00000374639 uc001qtv.1 714 1 22643633 22648110 11

CD86 CD86 molecule ENST00000330540 uc002jkv.2 942 3 122055374 122121136 22

HAVCR2 
(TIM-3) [23]

hepatitis A virus 
cellular receptor 2 ENST00000307851 uc003eet.2 84868 5 157085832 157109714 21

LY86 lymphocyte antigen 86 ENST00000379953 uc001fyz.1 9450 6 6588108 6654983 16

TREM2
triggering receptor 

expressed on myeloid 
cells 2

ENST00000373113 uc001nym.2 54209 6 41158507 41163176 9

FERMT3 fermitin family member 
3 ENST00000345728 uc001xvv.2 83706 11 64206734 64223886 19

SPI1 Spi-1 proto-oncogene ENST00000378538 uc003lwk.1 6688 11 47354860 47378576 19

C3AR1 complement C3a 
receptor 1 ENST00000307637 uc002zgf.3 719 12 8058302 8066471 21

GPR65 G protein-coupled 
receptor 65 ENST00000267549 uc001bsc.2 8477 14 88005124 88014811 17

RNASE6 ribonuclease A family 
member k6 ENST00000304677 uc003mwy.1 10048 14 20781051 20782467 22

ABI3 ABI family member 3 ENST00000225941 uc002mkg.2 51225 17 49210227 49223225 21

CD300A CD300a molecule ENST00000360141 uc011aqf.1 11314 17 74466416 74484796 19

TYROBP TYRO protein tyrosine 
kinase binding protein ENST00000262629 uc001vye.3 7305 19 35904410 35908295 22

SIGLEC9 sialic acid binding Ig 
like lectin 9 ENST00000250360 uc004euu.2 27180 19 51124908 51130310 19

MYO1F myosin IF ENST00000613525 uc002pvu.2 4542 19 8520797 8577577 18

ITGB2 integrin subunit beta 2 ENST00000397852 uc001nfb.1 3689 21 44885953 44910826 22

PARVG parvin gamma ENST00000356909 uc003opy.2 64098 22 44181400 44206635 19

WAS Wiskott-Aldrich 
syndrome ENST00000376701 uc002ocm.2 12731 X 48683779 48691427 19

SASH3
SAM and SH3 domain 

containing 3 ENST00000356892 uc004dkm.3 54440 X 129779984 129795201 19
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this transcript’s kg5 UCSC counterpart, uc001uxs.2, was 
also upregulated in the TCGA GEM GBM data relative 
to LGG data (p < 1.94 × 10–4) (Supplementary Table 10).

In addition, one of the 22 matching genes, SPI1, 
is a transcription factor that shares the ETS transcription 
factor family with ELF1. The 22 matching genes were 
also provided to the transcription factor function in the 
GeneFriends database [27] (Supplementary Table 11). 
Of 1538 possible transcription factors, SPI1 was the 5th-
most enriched for the gene set (p < 1.01 × 10–23) and 19 
of the 22 genes were co-expressed with SPI1. In addition, 
the 22 matching genes were provided to the RegNetwork 
database [35] (Supplementary Table 12). SPI1 was the 
only one of the 22 matching genes to be considered a 
regulator by RegNetwork. Eight of the 21 other genes, 
three with high confidence, were considered regulated by 
SPI1. Indeed, of the 2221 genes potentially regulated by 
SPI1, three of the 22 genes ranked very highly-ITGB2 was 
ranked 3rd, WAS 5th, and TYROBP 27th.

Internetwork modular methylation analysis 
shows GBM-specific hypo-methylation 

The beta methylation values for each of the 22 
matching genes were evaluated using data from TCGA. A 
Student’s T-Test was used to compare the beta methylation 
values for LGG with those in GBM (p < 6.84 × 10–6). As 
shown in Figure 6, on average, each of the 22 genes was 
hypo-methylated in GBM relative to LGG. Of interest, 
while TCGA M0214 is enriched for GBM and OV, the 
methylation patterns differ between GBM and OV. While 
these 22 genes are hypo-methylated in GBM versus LGG 
datasets, several of these 22 genes are hyper-methylated in 

OV versus LGG datasets (data not shown), suggesting an 
alternate regulatory mechanism in OV.

GBM subtype analysis supports the mesenchymal 
phenotype 

The gbmSygnal Network [37] uses bicluster 
technology to group genes based on ChIPseq signals 
and gene co-expression. Each of the 22 matching genes 
was searched in the gbmSygnal database. 16 biclusters 
enriched for a cancer hallmark were found with three or 
more of the 22 matching genes. These 16 biclusters were 
all enriched for “tumor-promoting inflammation” and 
“evading immune detection” (Supplementary Table 8).  
In addition, the gbmSygnal Network organizes expression 
data for each bicluster into quintiles and enriches each 
quintile for GBM subtype. Mesenchymal GBM was 
predominant in the highest expression quintile relative 
to the lowest expression quintile in each of the 16 
biclusters. Furthermore, Verhaak et al. [44] described 
four subtypes of GBM [44] and genes upregulated in 
each of the four GBM subtypes. Four genes (SIGLEC9, 
MYO1F, LAPTM5, ITGB2) from the list of 22 matching 
genes were upregulated in mesenchymal GBM; none 
of the 22 genes were upregulated in any other subtype. 
Furthermore, we investigated the expression levels of nine 
NF1 transcripts in the Brain GEM. High NF1 expression 
is characteristic of mesenchymal GBM [44]. One of these 
transcripts, ENST00000358273, was upregulated in 
GBM relative to normal brain (Student’s T-Test p-value 
= 6.56 × 10–15; Supplementary Table 13). Finally, 17 of 
the 22 shared genes were found in the Glioblastoma Bio 
Discovery Portal [38] based on results from Verhaak 

Figure 2: Brain M0257 Correlation values mapped to normal brain datasets. The Spearman correlation values of pairwise 
gene expression are shown for Brain M0257 and matching edges using only normal samples from the Brain GEM.
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Table 2: Condition-specific module enrichment
Network Module Condition Enrichment
TCGA M0214 GBM 2.56E-17
TCGA M0214 LGG 4.52E-03
TCGA M0214 OV 1.61E-14
TCGA M0214 THCA 1.00E+00
TCGA M0214 BLCA 1.00E+00
Brain M0257 GBM 1.37E-15
Brain M0257 Normal Brain 1.00E+00
Brain M0257 Parkinson 2.05E-01

Figure 3: Correlation values from TCGA M0214 mapped to Brain M0257 and Random GEMs. The Spearman correlation 
values of pairwise gene expression are shown for TCGA M0214, Brain M0257, and a miniature GEM created using expression levels from 
the Random GEM and the genes in TCGA M0214. Only the edges in Brain M0257 that exactly match edges in TCGA M0214 are shown. 

Table 3: Glioblastoma bio discovery portal survival analysis

Subtype Prognostic index hazard ratio LogRank P-Value

Classical 3.57 0
Neural 15.63 0
Proneural 4.66 0
Mesenchymal 3.02 0
Full Cohort 1.79 0
Prognostic index hazard ratio and logrank p-value are given for expression levels above the median within each subtype.
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et al. [44]. The average mRNA expression z-score 
was found across the proneural (n = 56 tumors), neural  
(n = 31 tumors), mesenchymal (n = 57 tumors), and classical  
(n = 53 tumors) GBM subtypes (Figure 7). The 
mesenchymal subtype showed the highest expression for 
15 of 17 genes. Furthermore, using the Glioblastoma Bio 
Discovery Portal, it was found that above-median expression 
levels for these 17 genes led to decreased survival in every 
GBM subtype and the full cohort (Table 3).

cBioPortal analysis provides evidence for a 
GBM-specific module

If this 22-gene network is GBM-specific, as shown 
in Figures 4B and 5B, one would expect different co-
occurrence and mutual exclusivity results for LGG and 
GBM data (Table 4). Indeed, this 22-gene network appears 
highly dependent on ATRX and p53 in LGG but not in 
GBM. The mutual exclusivity of PIK3R1 mutations in 

Figure 4: Expression levels of the 22 matching genes. (A) GBM and normal brain expression levels in the normalized Brain GEM. 
(B) GBM and LGG expression levels in the normalized TCGA GEM. Red indicates expression above the mean, blue indicates expression 
below the mean, and white indicates expression near the mean.

Figure 5: Expression levels of the 22 matching glioblastoma genes. (A) The expression of the 22 matching genes in the Brain 
GEM after dividing the normalized expression values by either the GBM or normal brain median expression value. Vertical axis units 
represent normalized FPKM values. (B) The expression of the 22 matching genes in the TCGA GEM. No further normalization was 
performed. Vertical axis units represent normalized RPKM values. Error bars represent SEM.
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GBM is of particular interest; PIK3R1 knockdown 
decreases invasion, proliferation, and migration in GBM 
[45]. IDH1 mutations were neither mutually exclusive nor 
co-occurring with alterations in the 22 shared genes. This 
is consistent with Figure 7; the proneural GBM subtype, 
which exhibits low expression for these 22 genes, is often 
defined by IDH1 or PDGFRA mutation.

Internetwork modular functional annotation 
analysis 

We next sought to understand the function of TCGA 
M0214 and Brain M0257 in GBM. Comparing the functional 
annotations enriched (p < 0.001) in TCGA M0214 and Brain 
M0257 showed that 23 annotations were shared between 
modules (Table 5). C1QA and C1QC, components of 
complement protein C1 [46], and C3AR1, a receptor for the 
complement protein C3a [47], are among the 22 shared genes 
between TCGA M0214 and Brain M0257. C1Q has been 
shown [48] to promote GBM invasiveness and proliferation 
independent of complement system activation. Carro et al. 
also lists C1Q as a member of the transcriptional network 
which drives mesenchymal phenotypes in brain tumors [49]. 
Several complement system-related functional annotations 
(Table 5) are also shared between TCGA M0214 and Brain 
M0257. In addition, RNase6, one of the 22 matching genes, 
was searched with ImmuNet, a regulatory network database 

for immune system-related genes [36]. At a confidence level 
> 99%, eight of the other 21 genes shared a function with 
RNase6 in the complement system (Supplementary Table 14). 

In conclusion, we used a GMM-based gene  
co-expression analysis to identify GBM-specific gene 
co-expression clusters embedded within and parsed from 
LGG and normal brain datasets. A 22-gene module was 
separately identified in two gene expression sources; this 
module has increased RNA expression and decreased DNA 
methylation in GBM. Furthermore, high expression of 
these genes is associated with decreased survival and with 
the mesenchymal GBM subtype. Future work involving 
these genes may help assess their roles in the complex 
GBM phenotype. We present this GBM-specific gene 
module and note that the cross-validating co-expression 
workflow used here is widely applicable.

MATERIALS AND METHODS

TCGA GEM construction

As described in Ficklin et al. [8], the TCGA GEM 
was constructed using 2016 RNAseq tumor samples [7]. 
All available normalized isoform datasets, produced by 
TCGA’s RNASeqV2 workflow [14, 15], were downloaded 
for five cancers on April 1, 2016. The datasets include 173 
GBM samples, 534 lower grade glioma (LGG) samples, 

Figure 6: Beta methylation values for the 22 matching glioblastoma genes. Error bars show SEM. Note that, because there 
are several methylation readings for each dataset and hundreds of datasets per condition, no error bars are visible because the SEM is 
appreciably zero.
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427 bladder cancer (BLCA) samples, 309 ovarian cancer 
(OV) samples, and 572 thyroid cancer (THCA) samples. 
These datasets were compiled into a single GEM, which is 
an n x m matrix where n is the number of datasets and m is 
the number of RNA transcript IDs; each value represents 
a gene’s expression level as quantified by RSEM 
through the RNASeqV2 workflow [14, 15]. The TCGA 
data utilized 73599 knownGene version 5 (kg5) UCSC 
transcript IDs. As such, the raw GEM was a 73599 × 2016 
matrix.  Outlier expression profiles were detected using a 
Kolmogorov-Smirnov (KS) test (DN > 0.15) implemented 
in the preprocessCore  [16] library.  No outliers were 
detected. All non-zero expression values were log2 
transformed and the matrix was quantile normalized.  

Brain and random GEM construction

A brain-specific GEM was constructed using 
220 RNAseq datasets from NCBI’s SRA database 
[12].  These 220 samples were the only publicly-
available samples annotated as brain-specific in the 
SRA database upon their download on September 
16, 2016. These datasets were processed into a GEM 
using the SRA toolkit v2.5.2 [12], Trimmomatic 
v0.33 [17], Hisat2-2.0.1-beta [18], Samtools v0.1.19  
[19, 20], and Cufflinks v2.2.1 [21]. The Gencode v24 
GFF3 file, complete with scaffolds, assembly patches, and 
alternate loci guided transcript quantification (http://www.
gencodegenes.org/releases/24.html). The raw GEM was 

preprocessed through the methods described above. 16 
datasets were removed by the KS test (DN > 0.15), leaving 
204 samples in the log2 normalized GEM.  Transcript 
counts were indexed as 209086 Ensembl hg38 transcript 
IDs resulted in a 209086 × 204 GEM. Of these samples, 
38 were GBM tumor samples [9], 138 were normal brain 
samples [10], and 28 were from Brodmann’s Area 9 of 
Parkinson’s Disease patients [11]. A random human GEM 
was also constructed using 2004 human RNAseq datasets 
from the NCBI SRA database. These samples were 
randomly selected from all available paired-end human 
RNAseq datasets that were produced by an Illumina HiSeq 
sequencer. This GEM was constructed and preprocessed 
as described above. The KS test (DN > 0.15) removed 
211 datasets, resulting in a 209086 × 1793 GEM. From 
this 209086 × 1793 preprocessed GEM, 49 transcripts 
mapped to the genes present in Module 0214 identified in 
the TCGA Network. 

GCN construction and thresholding

 Each normalized GEM was processed with KINC v1.0 
[8], a software package that uses Gaussian mixture models 
(GMMs) before applying pairwise correlation analyses. 
For each GEM, the OSG-KINC (https://github.com/feltus/
OSG-KINC) workflow was utilized to build a similarity 
matrix using the KINC software.  This workflow utilizes 
the Pegasus Workflow Management System [22] to execute 
GMM clustering and pairwise spearman correlation on the 

Figure 7: Gene expression levels across GBM subtypes for 17 of the 22 matching genes. Error bars represent SEM.
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Open Science Grid (https://www.opensciencegrid.org). By 
using GMMs prior to each pairwise comparison, KINC 
[8] samples clusters that result in co-expressed genes. Only 
clusters spanning 30 or more samples were further processed 
with Spearman correlations because a Pearson’s power 
analysis found that 30 samples resulted in a false positive 
rate at α = 0.05, a false negative at β = 0.2, and an effect size 
of 0.5. The Brain and TCGA Networks each took about one 
month to construct with KINC. Globus [24] was used to 
transfer KINC output files to the Palmetto Cluster at Clemson 
University (https://www.palmetto.clemson.edu/palmetto/).  
Random Matrix Thresholding (RMT) [25] was used to 
find a correlation significance threshold for each similarity 
matrix produced by KINC. The thresholding process ignored 
clusters with low expression levels (< 0.1 FPKM) and/or 
less than 30 datasets. Correlations above this experimentally 
determined significance threshold were extracted for each 
GCN.  The TCGA Network, as described in Ficklin et al. [8], 
had a correlation threshold of 0.8601 and the Brain Network 
had a correlation threshold of 0.8801. Each edge in a GCN 
represents a relationship between two genes with a correlation 
value greater than the RMT-defined significance threshold. 
Link Community Modules (LCM), or groups of co-expressed 
genes, were identified using the linkcomm R package [13, 26].  

TCGA transcript ID mapping

Biomart (http://useast.ensembl.org/biomart) was 
used to map each hg38 Ensembl transcript ID in the Brain 
Network to its corresponding hg38 Associated Gene 
Name. Using the UCSC hg19 database, the kg5 UCSC 
transcript IDs in the TCGA Network were mapped to 
kg6 and kg7 UCSC IDs. Using the UCSC hg38 database, 
these kg7 UCSC IDs were mapped to kg8 UCSC IDs, 
kg9 UCSC IDs, and finally to hg38 Ensembl IDs. 
Biomart was then used to map each hg38 Ensembl ID 
to its corresponding Associate Gene Name. 90% of the 
original kg5 UCSC IDs mapped to hg38 Ensembl IDs.

GeneFriends co-expression validation

The 22 matching genes between TCGA M0214 and 
Brain M0257 were searched as a group in the GeneFriends 
database [27]. The transcription factor data and the 
internal co-expression data for the matching genes were 
downloaded.

Module enrichment analysis

Each module was tested for sample label enrichment 
(Fisher’s Exact Test P < 0.001; e.g. LGG, GBM, OV, 
THCA, BLCA, Normal Brain, and Parkinson’s Brain.  
Only samples present in > 95% of the edges in a module 
were considered. Functional term enrichment was 
performed to associate each module with these functional 
annotations: Kyoto Encyclopedia of Genes and Genomes 
(KEGG) [28], Gene Ontology (GO) [29], Reactome [30], 
InterPro [31], Pfam [32], and Mendelian Inheritance in 
Man (MIM) [33]. A Fisher’s Exact Test p-value < 0.001 
was considered significant. 

Internetwork comparisons

For GBM comparisons with the Brain GEM, 63 
transcripts in Brain M0257 were used to extract a 63 × 138 
GEM with only normal brain datasets-no GBM datasets. 
This mini-GEM was processed with KINC [8] and edges 
matching those in Brain M0257 were identified.  For 
cancer-specific comparisons with the random GEM, 54 
transcripts in TCGA M0214 were identified in the Brain 
GEM and the Random GEM. 49 of the 54 kg5 UCSC 
transcripts in the TCGA GEM mapped to hg38 Ensembl 
transcripts in the Brain and Random GEMs. These 49 
transcripts and their expression values were extracted 
into a 49 × 1793 mini-GEM that was converted into a 
GCN with KINC. Edges matching those in TCGA M0214 
were identified.  For the 22 matching genes between 

Table 4: Mutation enrichment in shared genes
Condition Gene Direction Enrichment
LGG ATRX Co-occurrence 2.56E-06
LGG TP53 Co-occurrence 5.04E-06
LGG CIC Mutual exclusivity 1.29E-03
LGG MUC17 Co-occurrence 0.0122
LGG FUBP1 Mutual exclusivity 0.0143
LGG VPS13B Co-occurrence 0.019
LGG MYH8 Co-occurrence 0.029
GBM KCNQ5 Co-occurrence 3.84E-03
GBM MUC17 Co-occurrence 0.0126
GBM LILRB2 Co-occurrence 0.016
GBM PTPRM Co-occurrence 0.016
GBM PIK3R1 Mutual exclusivity 0.0326
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TCGA M0214 and Brain M0257, the normalized GBM 
and LGG expression values in the TCGA GEM were 
compared with a Student’s T-Test. The GBM and normal 
brain expression values in the Brain GEM were also 

compared with a Student’s T-Test. The Matlab clustergram 
function was used to generate heatmaps that represent 
gene expression intensities. We recognized that the Brain 
GEM, created from various publicly available RNAseq 

Table 5: Shared functional annotations in between modules
Term Term ID Function

GO GO:0045087
Innate immune responses are defense responses mediated by germline 
encoded components that directly recognize components of potential 
pathogens.

GO GO:0050776
Any process that modulates the frequency, rate or extent of the immune 
response, the immunological reaction of an organism to an immunogenic 
stimulus.

GO GO:0045650 Any process that stops, prevents, or reduces the frequency, rate or extent 
of macrophage differentiation.

GO GO:0005581 A protein complex consisting of three collagen chains assembled into a 
left-handed triple helix.

GO GO:0030853 Any process that stops, prevents, or reduces the frequency, rate or extent 
of granulocyte differentiation.

GO GO:0006955 Any immune system process that functions in the calibrated response of 
an organism to a potential internal or invasive threat.

GO GO:0034138 Any series of molecular signals generated as a consequence of binding to 
toll-like receptor 3.

GO GO:0002283
The change in morphology and behavior of a neutrophil resulting from 
exposure to a cytokine, chemokine, cellular ligand, or soluble factor, 
leading to the initiation or perpetuation of an immune response.

GO GO:0002281
A change in morphology and behavior of a macrophage resulting from 
exposure to a cytokine, chemokine, cellular ligand, or soluble factor, 
leading to the initiation or perpetuation of an immune response.

GO GO:0019864 Interacting selectively and non-covalently with an immunoglobulin of an 
IgG isotype.

GO GO:0071404
Any process that results in a change in state or activity of a cell (in terms 
of movement, secretion, enzyme production, gene expression, etc.) as a 
result of a low-density lipoprotein particle stimulus.

INTERPRO IPR001073 C1q domain
INTERPRO IPR008983 Tumour necrosis factor-like domain
INTERPRO IPR008160 Collagen triple helix repeat
INTERPRO IPR013106 Immunoglobulin V-set domain
KEGG hsa05322 Systemic lupus erythematosus
MIM 120575 COMPLEMENT COMPONENT 1, q SUBCOMPONENT, C CHAIN

PFAM PF00386 C1q is a subunit of the C1 enzyme complex that activates the serum 
complement system.

PFAM PF01391 Members of this family belong to the collagen superfamily.

PFAM PF07686 This domain is found in antibodies as well as neural protein P0 and CTL4 
amongst others.

REACTOME R-HSA-173623 Classical antibody-mediated complement activation

REACTOME R-HSA-198933 Immunoregulatory interactions between a Lymphoid and a non-Lymphoid 
cell

REACTOME R-HSA-166663 Initial triggering of complement
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datasets, required further normalization within conditions; 
unlike the TCGA datasets, the Brain datasets were not all 
derived by the same research network using the same 
RNASeqV2 workflow. Thus, GBM expression values of 
the 22 matching genes were divided by the GBM global 
median expression value in the Brain GEM (1.1398). 
Similarly, the normal brain expression values of the 22 
matching genes were divided by the normal brain global 
median expression value in the Brain GEM (1.7215).  A 
Student’s T-Test was also used to compare ELF1 and NF1 
expression levels across different conditions in the TCGA 
and Brain GEMs.

Module DNA methylation analysis

 All publicly available beta methylation datasets for 
GBM and LGG were downloaded from the Genomic Data 
Commons’ TCGA Data Portal (https://gdc-portal.nci.nih.
gov/) on January 27, 2017. 1607 datasets, including 534 
LGG and 450 GBM datasets, were downloaded. The beta 
methylation values for the 22 matching genes across each 
cancer were compared with a Student’s T-Test. 

External evidence for internetwork module 
relationships

The 22 genes matching between TCGA M0214 and 
Brain M0257 were queried in the Gene Set Enrichment 
Analysis database [34] and the resulting transcription 
factor data was downloaded. These 22 genes were also 
provided to the RegNetwork database [35] to find possible 
regulatory mechanisms. In addition, RNase6, one of 
the 22 matching genes, was searched in the ImmuNet 
database [36] to find functional similarities to genes in the 
complement cascade. The genes with ImmuNet confidence 
levels > 0.99 were downloaded. The gbmSygnal Network 
[37] was also queried and 16 biclusters with three or 
more of the 22 matching genes were discovered. The 22 
matching genes were also provided to the Glioblastoma 
Bio Discovery Portal [38] using the “Verhaak Core” 
participants option and the “3-Platform Aggregates” 
experiment option. Finally, cBioPortal [39, 40] was used 
to analyze the 22 matching genes in patient samples; the 
22 matching genes were queried twice; first, as a gene set 
using LGG (n = 283 tumors) data, and second, using GBM 
(n = 136 tumors) data from the “TCGA, Provisional” 
dataset. cBioPortal uses a Student’s T-Test for its reverse 
phase protein array comparison and a Fisher Exact Test for 
mutation enrichment.

Abbreviations

GBM: glioblastoma, also known as glioblastoma 
multiforme; LGG: lower grade glioma; BLCA: bladder 
urothelial carcinoma; THCA: thyroid carcinoma; OV: 
ovarian  serous cystadenocarcinoma; GEM: gene 
expression matrix; GCN: gene co-expression network; 

TCGA: the Cancer Genome Atlas; KINC: Knowledge-
Independent Network Construction; kg: knownGene; 
OSG: Open Science Grid; GMM: Gaussian mixture 
model; RMT: Random Matrix Thresholding; LCM: Link 
Community Module.

Author contributions

Project Design: LJD, FAF; Data Acquisition: LJD; 
KINC Software Development: SPF, FAF; GEM/KINC 
Workflow Design: LJD, WLP; Manuscript Writing: LJD, 
WLP, SPF, FAF.

ACKNOWLEDGMENTS

This work used Clemson University’s Palmetto 
Cluster, Washington State University’s Kamiak Cluster 
(both high performance compute clusters) and the Open 
Science Grid (OSG). The OSG is supported by the 
National Science Foundation and the U.S. Department 
of Energy’s Office of Science. We acknowledge the 
assistance of M. Rynge, D. Balamurugan, and the OSG 
support staff for technical support and assistance. We 
acknowledge the assistance of J. Schipper from Van Andel 
Institute for reviewing the manuscript.

CONFLICTS OF INTEREST

The authors declare no conflicts of interest.

REFERENCES

1. American Brain Tumor Association. Glioblastoma. http://
www.abta.org/brain-tumor-information/types-of-tumors/gli 
oblastoma.html. 2017.

2. Nelson JS, Burchfiel CM, Fekedulegn D, Andrew ME. 
Potential risk factors for incident glioblastoma multiforme: 
the Honolulu Heart Program and Honolulu-Asia Aging 
Study. J Neurooncol. 2012; 109:315–21. https://doi.
org/10.1007/s11060-012-0895-3.

3. Dunn GP, Andronesi OC, Cahill DP. From genomics to 
the clinic: biological and translational insights of mutant 
IDH1/2 in glioma. Neurosurg Focus. 2013; 34:E2. https://
doi.org/10.3171/2012.12.focus12355.

4. Liu KW, Hu B, Cheng SY. Platelet-derived growth factor 
receptor alpha in glioma: a bad seed. Chin J Cancer. 2011; 
30:590–602. https://doi.org/10.5732/cjc.011.10236.

5. Petronis A. Epigenetics as a unifying principle in the 
aetiology of complex traits and diseases. Nature. 2010; 
465:721–7. https://doi.org/10.1038/nature09230.

6. Schuster SC. Next-generation sequencing transforms 
today’s biology. Nat Methods. 2008; 5:16–8. https://doi.
org/10.1038/nmeth1156.

7. Weinstein JN, Collisson EA, Mills GB, Shaw KR, 
Ozenberger BA, Ellrott K, Shmulevich I, Sander C, Stuart 



Oncotarget11007www.impactjournals.com/oncotarget

JM. The Cancer Genome Atlas Pan-Cancer analysis project. 
Nat Genet. 2013; 45:1113–20. https://doi.org/10.1038/
ng.2764.

 8. Ficklin SP, Dunwoodie LJ, Poehlman WL, Watson C, 
Roche KE, Feltus FA. Discovering Condition-Specific Gene 
Co-Expression Patterns Using Gaussian Mixture Models: 
A Cancer Case Study. Sci Rep. 2017; 7:8617. https://doi.
org/10.1038/s41598-017-09094-4.

 9. Gabrusiewicz K, Rodriguez B, Wei J, Hashimoto Y, Healy 
LM, Maiti SN, Thomas G, Zhou S, Wang Q, Elakkad A, 
Liebelt BD, Yaghi NK, Ezhilarasan R, et al. Glioblastoma-
infiltrated innate immune cells resemble M0 macrophage 
phenotype. JCI Insight. 2016; 1. https://doi.org/10.1172/jci.
insight.85841.

10. Hwang T, Park CK, Leung AK, Gao Y, Hyde TM, Kleinman 
JE, Rajpurohit A, Tao R, Shin JH, Weinberger DR. Dynamic 
regulation of RNA editing in human brain development 
and disease. Nat Neurosci. 2016; 19:1093–9. https://doi.
org/10.1038/nn.4337.

11. Dumitriu A, Golji J, Labadorf AT, Gao B, Beach TG, 
Myers RH, Longo KA, Latourelle JC. Integrative analyses 
of proteomics and RNA transcriptomics implicate 
mitochondrial processes, protein folding pathways and 
GWAS loci in Parkinson disease. BMC Medical Genomics. 
2016; 9:5. https://doi.org/10.1186/s12920-016-0164-y.

12. Leinonen R, Sugawara H, Shumway M. The sequence read 
archive. Nucleic Acids Res. 2011; 39:D19–21. https://doi.
org/10.1093/nar/gkq1019.

13. Ahn YY, Bagrow JP, Lehmann S. Link communities reveal 
multiscale complexity in networks. Nature. 2010; 466: 
761–4. https://doi.org/10.1038/nature09182.

14. Wang K, Singh D, Zeng Z, Coleman SJ, Huang Y, Savich 
GL, He X, Mieczkowski P, Grimm SA, Perou CM, 
MacLeod JN, Chiang DY, Prins JF, et al. MapSplice: 
accurate mapping of RNA-seq reads for splice junction 
discovery. Nucleic Acids Res. 2010; 38:e178. https://doi.
org/10.1093/nar/gkq622.

15. Pihl T. (2013). RNASeq Version 2.
16. Bolstad BM. preprocessCore: A collection of pre-processing 

functions. R package version. 2013; 1. 
17. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible 

trimmer for Illumina sequence data. Bioinformatics. 2014; 
30:2114–20. https://doi.org/10.1093/bioinformatics/btu170.

18. Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced 
aligner with low memory requirements. Nat Methods. 2015; 
12:357–60. https://doi.org/10.1038/nmeth.3317.

19. Li H. A statistical framework for SNP calling, mutation 
discovery, association mapping and population genetical 
parameter estimation from sequencing data. Bioinformatics. 
2011; 27:2987–93. https://doi.org/10.1093/bioinformatics/
btr509.

20. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, 
Homer N, Marth G, Abecasis G, Durbin R. The Sequence 
Alignment/Map format and SAMtools. Bioinformatics. 

2009; 25:2078–9. https://doi.org/10.1093/bioinformatics/
btp352.

21. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, 
van Baren MJ, Salzberg SL, Wold BJ, Pachter L. Transcript 
assembly and abundance estimation from RNA-Seq 
reveals thousands of new transcripts and switching among 
isoforms. Nature biotechnology. 2010; 28:511–5. https://
doi.org/10.1038/nbt.1621.

22. Deelman E, Vahi K, Juve G, Rynge M, Callaghan S, 
Maechling PJ, Mayani R, Chen W, Ferreira da Silva R, 
Livny M, Wenger K. Pegasus, a workflow management 
system for science automation. Future Generation Computer 
Systems. 2015; 46:17–35. https://doi.org/http://dx.doi.
org/10.1016/j.future.2014.10.008.

23. Anderson AC. Tim-3: an emerging target in the cancer 
immunotherapy landscape. Cancer Immunol Res. 2014; 
2:393–8. https://doi.org/10.1158/2326-6066.cir-14-0039.

24. Foster I. Globus Toolkit Version 4: Software for Service-
Oriented Systems. IFIP International Federation for 
Information Processing. 2005:2–13. 

25. Luo F, Yang Y, Zhong J, Gao H, Khan L, Thompson DK, 
Zhou J. Constructing gene co-expression networks and 
predicting functions of unknown genes by random matrix 
theory. BMC Bioinformatics. 2007; 8:299. https://doi.
org/10.1186/1471-2105-8-299.

26. Kalinka AT, Tomancak P. linkcomm: an R package for the 
generation, visualization, and analysis of link communities 
in networks of arbitrary size and type. Bioinformatics. 2011; 
27:2011–2. https://doi.org/10.1093/bioinformatics/btr311.

27. van Dam S, Craig T, de Magalhaes JP. GeneFriends: a 
human RNA-seq-based gene and transcript co-expression 
database. Nucleic Acids Res. 2015; 43:D1124–32. https://
doi.org/10.1093/nar/gku1042.

28. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes 
and genomes. Nucleic Acids Res. 2000; 28:27–30. 

29. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, 
Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, 
Harris MA, Hill DP, Issel-Tarver L, et al. Gene ontology: 
tool for the unification of biology. The Gene Ontology 
Consortium. Nat Genet. 2000; 25:25–9. https://doi.
org/10.1038/75556.

30. Fabregat A, Sidiropoulos K, Garapati P, Gillespie M, 
Hausmann K, Haw R, Jassal B, Jupe S, Korninger F, 
McKay S, Matthews L, May B, Milacic M, et al. The 
Reactome pathway Knowledgebase. Nucleic Acids Res. 
2016; 44:D481–7. https://doi.org/10.1093/nar/gkv1351.

31. Finn RD, Attwood TK, Babbitt PC, Bateman A, Bork P, 
Bridge AJ, Chang HY, Dosztanyi Z, El-Gebali S, Fraser M, 
Gough J, Haft D, Holliday GL, et al. InterPro in 2017-beyond 
protein family and domain annotations. Nucleic Acids Res. 
2017; 45:D190–d9. https://doi.org/10.1093/nar/gkw1107.

32. Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, 
Mitchell AL, Potter SC, Punta M, Qureshi M, Sangrador-
Vegas A, Salazar GA, Tate J, Bateman A. The Pfam 



Oncotarget11008www.impactjournals.com/oncotarget

protein families database: towards a more sustainable 
future. Nucleic Acids Res. 2016; 44:D279–85. https://doi.
org/10.1093/nar/gkv1344.

33. Amberger JS, Bocchini CA, Schiettecatte F, Scott AF, 
Hamosh A. OMIM.org: Online Mendelian Inheritance in 
Man (OMIM(R)), an online catalog of human genes and 
genetic disorders. Nucleic Acids Res. 2015; 43:D789-98. 
https://doi.org/10.1093/nar/gku1205.

34. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, 
Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub 
TR, Lander ES, Mesirov JP. Gene set enrichment analysis: 
a knowledge-based approach for interpreting genome-
wide expression profiles. Proc Natl Acad Sci U S A. 2005; 
102:15545–50. https://doi.org/10.1073/pnas.0506580102.

35. Liu ZP, Wu C, Miao H, Wu H. RegNetwork: an integrated 
database of transcriptional and post-transcriptional 
regulatory networks in human and mouse. Database 
(Oxford). 2015; 2015. https://doi.org/10.1093/database/
bav095.

36. Gorenshteyn D, Zaslavsky E, Fribourg M, Park CY, Wong 
AK, Tadych A, Hartmann BM, Albrecht RA, Garcia-Sastre 
A, Kleinstein SH, Troyanskaya OG, Sealfon SC. Interactive 
Big Data Resource to Elucidate Human Immune Pathways 
and Diseases. Immunity. 2015; 43:605–14. https://doi.
org/10.1016/j.immuni.2015.08.014.

37. Plaisier CL, O’Brien S, Bernard B, Reynolds S, Simon Z, 
Toledo CM, Ding Y, Reiss DJ, Paddison PJ, Baliga NS. 
Causal Mechanistic Regulatory Network for Glioblastoma 
Deciphered Using Systems Genetics Network Analysis. 
Cell Systems. 2016; 3:172–86. https://doi.org/10.1016/j.
cels.2016.06.006.

38. Celiku O, Johnson S, Zhao S, Camphausen K, Shankavaram 
U. Visualizing molecular profiles of glioblastoma with 
GBM-BioDP. PLoS One. 2014; 9:e101239. https://doi.
org/10.1371/journal.pone.0101239.

39. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, 
Sumer SO, Sun Y, Jacobsen A, Sinha R, Larsson E, 
Cerami E, Sander C, Schultz N. Integrative analysis of 
complex cancer genomics and clinical profiles using the 
cBioPortal. Sci Signal. 2013; 6:pl1. https://doi.org/10.1126/
scisignal.2004088.

40. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy 
BA, Jacobsen A, Byrne CJ, Heuer ML, Larsson E, Antipin 
Y, Reva B, Goldberg AP, et al. The cBio Cancer Genomics 
Portal: An Open Platform for Exploring Multidimensional 
Cancer Genomics Data. Cancer Discovery. 2012; 2:401–4. 
https://doi.org/10.1158/2159-8290.cd-12-0095.

41. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, 
Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a 
software environment for integrated models of biomolecular 
interaction networks. Genome Res. 2003; 13:2498–504. 
https://doi.org/10.1101/gr.1239303.

42. Pakneshan S, Safarpour D, Tavassoli F, Jabbari B. Brain 
metastasis from ovarian cancer: a systematic review. 
J Neurooncol. 2014; 119:1–6. https://doi.org/10.1007/
s11060-014-1447-9.

43. Kommoss S, Winterhoff B, Oberg A, Konecny GE, Wang 
C, Riska SM, Fan JB, Maurer MJ, April C, Shridhar V, 
Kommoss F, du Bois A, Hilpert F, et al. Bevacizumab 
may differentially improve ovarian cancer outcome in 
patients with proliferative and mesenchymal molecular 
subtypes. Clinical Cancer Research. 2017. https://doi.
org/10.1158/1078-0432.ccr-16-2196.

44. Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, 
Wilkerson MD, Miller CR, Ding L, Golub T, Mesirov JP, 
Alexe G, Lawrence M, O’Kelly M, et al. An integrated 
genomic analysis identifies clinically relevant subtypes of 
glioblastoma characterized by abnormalities in PDGFRA, 
IDH1, EGFR and NF1. Cancer cell. 2010; 17:98. https://
doi.org/10.1016/j.ccr.2009.12.020.

45. Weber GL, Parat MO, Binder ZA, Gallia GL, Riggins GJ. 
Abrogation of PIK3CA or PIK3R1 reduces proliferation, 
migration, and invasion in glioblastoma multiforme cells. 
Oncotarget. 2011; 2:833–49.

46. Feng X, Tonnesen MG, Peerschke EI, Ghebrehiwet B. 
Cooperation of C1q receptors and integrins in C1q-mediated 
endothelial cell adhesion and spreading. J Immunol. 2002; 
168:2441–8. 

47. Shinjyo N, Stahlberg A, Dragunow M, Pekny M, Pekna M. 
Complement-derived anaphylatoxin C3a regulates in vitro 
differentiation and migration of neural progenitor cells. 
Stem Cells. 2009; 27:2824–32. https://doi.org/10.1002/
stem.225.

48. Bulla R, Tripodo C, Rami D, Ling GS, Agostinis C, 
Guarnotta C, Zorzet S, Durigutto P, Botto M, Tedesco F. 
C1q acts in the tumour microenvironment as a cancer-
promoting factor independently of complement activation. 
Nat Commun. 2016; 7:10346. https://doi.org/10.1038/
ncomms10346.

49. Carro MS, Lim WK, Alvarez MJ, Bollo RJ, Zhao X, Snyder 
EY, Sulman EP, Anne SL, Doetsch F, Colman H, Lasorella 
A, Aldape K, Califano A, et al. The transcriptional network 
for mesenchymal transformation of brain tumours. Nature. 
2010; 463:318–25. https://doi.org/10.1038/nature08712.


