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AbstrAct:
Loss of the Fbw7 tumor suppressor is common in diverse human cancer types, 
including T-Cell Acute Lymphoblastic Leukemia (T-ALL), although the mechanistic 
basis of its anti-oncogenic activity remains largely unclear. We recently reported 
that SCFFbw7 regulates cellular apoptosis by controlling the ubiquitination and 
destruction of the pro-survival protein, Mcl-1, in a GSK3 phosphorylation-dependent 
manner. We found that human T-ALL cell lines displayed a close relationship 
between Fbw7 loss and Mcl-1 overexpression. More interestingly, T-ALL cell lines 
that are deficient in Fbw7 are particularly sensitive to sorafenib, a multi-kinase 
inhibitor that has been demonstrated to reduce Mcl-1 expression through an 
unknown mechanism. On the other hand, Fbw7-deficient T-ALL cell lines are much 
more resistant to the Bcl-2 antagonist, ABT-737. Furthermore, reconstitution of 
Fbw7 or depletion of Mcl-1 in Fbw7-deficient cells restores ABT-737 sensitivity, 
suggesting that elevated Mcl-1 expression is important for Fbw7-deficient cells to 
evade apoptosis. Therefore, our work provides a novel molecular mechanism for 
the tumor suppression function of Fbw7. Furthermore, it provides the rationale 
for targeted usage of Mcl-1 antagonists to treat Fbw7-deficient T-ALL patients.

INtrODUctION

Dysregulated cell cycle progression leads to 
uneven distribution of the genetic information between 
the two daughter cells, which contributes to genomic 
instability and ultimately, cancer development. Recent 
work established that two related, multi-component 
E3 ubiquitin ligase enzymes, the Anaphase Promoting 
Complex (APC) and the Skp1-Cullin1-F-box complex 
(SCF), are the major driving forces governing proper cell 
cycle progression [1-4]. APC is active from the late G2 
phase to mid-G1 phase, and is responsible for degradation 
of mitotic cyclins, securin and geminin [5, 6]. On the 
other hand, SCF is thought to be active from the late G1 
phase until the G2 phase and mediates the ubiquitination 
and destruction of G1 cyclins and Cdk inhibitors [1, 7]. 
SCF consists of the adaptor protein Skp1, the scaffold 
protein Cul1, the ring-finger protein Rbx1, as well as 
a variable component that is responsible for substrate 
recognition known as the F-box protein. The human 
genome encodes 68 putative F-box proteins, thereby 
providing sufficient flexibility for substrate specificity 

[8]. Most of the physiological functions of these putative 
F-box proteins remain unknown. The well-characterized 
F-box proteins include Skp2, Cdc4/Fbw7, and β-TRCP1, 
which targets p27 [9], cyclin E [10], and Cdc25A [11], 
respectively, for ubiquitination and degradation. In all 
cases, proper phosphorylation of the substrate is required 
for its interaction with the F-box proteins.

Fbw7 Is A tUmOr sUppressOr

Loss of Fbw7 is frequently observed in various types 
of tumors including breast cancer, colon cancer [12] and 
T-cell acute lymphoblastic leukemia (T-ALL) [13]. It has 
been documented that tissue-specific deletion of Fbw7 in 
mouse T cells results in the development of T-ALL [14-
16], suggesting that Fbw7 is a novel tumor suppressor in 
T-ALL. However, the exact molecular mechanisms by 
which Fbw7 exerts its anti-tumor activity are still unknown 
[4]. We previously discovered that Fbw7 regulates 
the degradation of c-Jun in a GSK3 phosphorylation-
dependent manner [17]. Our work assigned a biological 



Oncotarget 2011; 2:  239 - 244240www.impactjournals.com/oncotarget

significance to the v-Jun S243F point mutation and also 
underscored the importance of Fbw7 in tumor suppression 
[17]. In addition to the turnover of cyclin E [10] and c-Jun, 
Fbw7 is also involved in the degradation of c-Myc [18, 
19], and the Notch-1 protein [20] (Figure 1), all of which 
have been reported to possess oncogenic functions and are 
frequently found to be overexpressed in various human 
cancers, including leukemia. Consistent with frequent loss 
of Fbw7, overexpression of c-Myc, c-Jun and Notch-1 
is closely associated with the development of T-ALL. 
Besides accelerating cell growth [21], overexpression 
of either c-Jun, c-Myc or Notch-1 results in cell death 
through upregulation of the pro-apoptotic protein Bim-
1 [22]. However, despite the ever-growing list of Fbw7 
ubiquitin substrates (Figure 1), it remains unclear how 
Fbw7-deficient cells evade cell death in the setting of 
upregulated c-Jun, c-Myc or Notch-1 (Figure 2A). 

the mcl-1 ONcOprOteIN Is FOUND 
tO be FreqUeNtly OverexpresseD 
IN leUkemIA

Expression of the anti-apoptotic protein Mcl-1 is 
frequently elevated in various human tumors including 
leukemia, but the underlying mechanisms causing its 
elevation are not fully understood [23, 24]. Mcl-1 is a 
pro-survival member of the Bcl-2 family of proteins, 

which can suppress apoptosis by interacting with and 
suppressing the activities of pro-apoptotic proteins 
including Bim, Bax and Bak [25]. However, unlike other 
Bcl-2 family members, the Mcl-1 protein is extremely 
unstable, having a very short half-life [26]. The rapid 
induction and destruction of Mcl-1 has been proposed 
as a molecular mechanism for cells to switch into either 
the survival or apoptotic pathways in response to various 
stresses [27, 28]. Although GSK3 phosphorylation is 
reported to regulate Mcl-1 stability directly [26], little is 
known about the upstream E3 ubiquitin ligase that targets 
phosphorylated Mcl-1 for destruction. As illustrated in 
Figure 2B, we and others recently reported that Fbw7 
targets Mcl-1 for ubiquitination and destruction in a 
GSK3-dependent manner [29, 30]. Therefore, our studies 
suggest that the simultaneous elevation of the pro-survival 
factor Mcl-1 provides a protection mechanism allowing 
Fbw7-deficient cells to evade apoptosis, thus providing 
a novel molecular mechanism for the tumor suppression 
function of Fbw7 (Figure 2B). Moreover, Mcl-1 has been 
demonstrated to play a key role in regulating the cellular 
apoptosis of T cells, but not other tissue types such as 
liver cells [27, 31]. Therefore, our studies also provide 
the possible mechanism for why loss of Fbw7 is very 
frequently observed in T-ALL patients. 

Figure 1: schematic illustration of the 
scFFbw7 e3 ubiquitin ligase complex and a 
list of its identified downstream ubiquitin 
substrates.
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Figure 2: Fbw7 participates in the regulation of cellular apoptosis by targeting the pro-survival factor mcl-1 for 
ubiquitination and destruction. 
A. Loss of Fbw7 leads to the elevated expression of c-Myc, c-Jun, and the Notch-1 protein, all of which possess oncogenic functions and are 
frequently found to be overexpressed in various human cancers, including leukemia. Besides promoting cell growth, it has been shown that 
overexpression of either c-Jun, c-Myc or Notch-1 provokes cellular apoptosis. However, it remains unclear how Fbw7-deficient cells evade 
programmed cell death in the setting of upregulated c-Jun, c-Myc or Notch-1. 
b. We recently reported that loss of Fbw7 also leads to a significant elevation in Mcl-1 expression, which suppresses the induction of apoptosis 
by inactivating the pro-apoptotic function of many BH3 only proteins including Bim, Bax and Bak
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the Fbw7-DeFIcIeNt t-All 
cells Are “ADDIcteD” tO hIgh 
expressION levels OF mcl-1

Our studies for the first time provide firm 
experimental evidence for a potential role for the Fbw7 
tumor suppressor in the modulation of the apoptotic 
pathway by governing Mcl-1 ubiquitination and 
destruction. Therefore, loss of Fbw7 not only provides a 
growth advantage by upregulating the c-Jun and c-Myc 
oncoproteins, but also leads to elevated Mcl-1 expression 
as a protection mechanism allowing Fbw7-deficient cells 
to evade possible apoptosis induced by high c-Jun and 
c-Myc expression (Figure 2B). However, this intricate 
balance to evade apoptosis seems to depend on high levels 
of the Mcl-1 oncoprotein. As a result, compared to WT-
Fbw7 cells, Fbw7-deficient T-ALL cells are much more 
sensitive to the Mcl-1 inhibitor, sorafenib (Figure 3). 
Sorafenib is a multi-kinase inhibitor reported to suppress 
B-Raf, PDGF receptor and VEGF receptor kinase 
activities. Although its ability to repress Mcl-1 has been 
attributed to inactivating MAPK kinase and/or activating 
GSK-3 [32], the exact mechanism remains unclear. 
Nevertheless, this data suggests that Fbw7-deficient 
T-ALL cell lines might require high levels of the Mcl-1 
oncoprotein to evade apoptosis, a phenotype that has been 
described previously as “oncogene addiction” [33]. Our 
studies thus provide a basis for personalized medicine for 
T-ALL patients as well as the rationale for developing 
specific Mcl-1 antagonists, or agents that significantly 
reduce Mcl-1 expression, to treat T-ALL patients.

the Fbw7-DeFIcIeNt t-All 
cells Are resIstANt tO Abt-737 
treAtmeNt

The BH3 mimetic ABT-737 is a specific pan-inhibitor 
of the Bcl-2 family of anti-apoptotic proteins, which is 
reported to effectively kill leukemia cells, presumably 
by disrupting the Bcl2/Bax complex and inducing the 
Bak-dependent apoptotic pathway [34]. However, 
leukemia cells with elevated Mcl-1 expression are found 
to be refractory to ABT-737 treatment [35, 36] primarily 
because ABT-737 fails to inactivate Mcl-1 due to a low 
binding affinity [34]. Consistent with this, we found that 
Fbw7-deficient T-ALL cells, which displayed a significant 
increase in Mcl-1 expression, are much more resistant 
than Fbw7-WT T-ALL cells in response to ABT-737 
(Figure 4). We further showed that depletion of Mcl-1, or 
reintroduction of Fbw7 into Fbw7-deficient T-ALL cells, 
restored ABT-737 sensitivity. This suggests that increased 
Mcl-1 expression is the determining factor that confers 
Fbw7-deficient cells resistance to ABT-737. Although it 
warrants further investigation, this work indicates that 
Fbw7-deficient T-ALL patients may not respond well to 

Figure 3: Fbw7-deficient T-ALL cells are “addicted” to high 
levels of mcl-1 expression and are particularly sensitive to 
the mcl-1 antagonist sorafenib.
A. In unstressed Fbw7-deficient T-ALL cells, induced expression of 
the pro-survival factor Mcl-1 balances the pro-apoptotic effects of 
elevated c-Jun, c-Myc and Notch-1 oncoproteins. However, the cells 
become “addicted” to high expression levels of the Mcl-1 oncoprotein.
b. When Fbw7-deficient cells are treated with the Mcl-1 antagonist, 
sorafenib, the pro-survival function of Mcl-1 is inhibited. On the other 
hand, loss of Fbw7 leads to elevated expression of c-Jun, c-Myc and 
Notch-1, which provokes cellular apoptosis. When the anti-apoptotic 
effect of Mcl-1 is inhibited, cells undergo programmed cell death. 
Therefore, compared to the WT-Fbw7 T-ALL cells, Fbw7-deficient 
T-ALL cells are very sensitive to Mcl-1 antagonists.
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ABT-737 treatment.

Fbw7 Is the physIOlOgIcAl e3 
lIgAse thAt tArgets mcl-1 FOr 
UbIqUItINAtION IN t-All

Besides Fbw7, other E3 ubiquitin ligases including 
c-Mule [37] and β-TRCP [38] have also been implicated in 
Mcl-1 stability control. However, we found that although 
depletion of c-Mule leads to Mcl-1 upregulation in T-ALL, 
this regulation is not contingent upon GSK3-dependent 
phosphorylation of Mcl-1 [37, 38]. Most importantly, 
unlike the frequent loss of Fbw7 found in T-ALL, no 
correlation was found between the expression of c-Mule 
and Mcl-1 in various T-ALL cell lines. These results 
exclude a physiological role for c-Mule in regulating 
Mcl-1 in T-ALL cells. Additionally, although ectopic 

expression of β-TRCP promotes Mcl-1 destruction, no 
β-TRCP-dependent induction of Mcl-1 ubiquitination 
was observed. Furthermore, depletion of endogenous 
Fbw7, but not endogenous β-TRCP, leads to a significant 
induction of Mcl-1, rejecting the notion that β-TRCP 
physiologically control Mcl-1 abundance in T-ALL cell 
lines. Consistent with this finding, array CGH analysis 
demonstrated a high frequency of Fbw7 loss [13], but not 
simultaneous loss of β-TRCP1 and β-TRCP2 in the T-ALL 
cell lines. These data together support the hypothesis that 
the Fbw7 tumor suppressor, which is frequently lost in 
T-ALL, is the physiological E3 ubiquitin ligase for Mcl-1. 
However, it remains unclear whether in other tissue types 
or cellular context, other than Fbw7, c-Mule or β-TRCP 
will be the major force that governs Mcl-1 stability. 

whether the pteN/pI3k/Akt AxIs Is 
the UpstreAm sIgNAlINg pAthwAy 
thAt gOverNs Fbw7-meDIAteD 
UbIqUItINAtION OF mcl-1

Our work indicates that loss of Fbw7 contributes to 
Mcl-1 overexpression in T-ALL. However, only 20-30% 
of T-ALL cases are estimated to possess inactive Fbw7 
[13], thus it is critical to understand how Fbw7-mediated 
Mcl-1 ubiquitination is physiologically regulated in vivo, 
and how Mcl-1 expression is aberrantly elevated in WT-
Fbw7 genetic background, which accounts for 70-80% 
of T-ALL cases. To this end, we found that in WT-Fbw7 
genetic backgrounds, loss of the PTEN tumor suppressor, 
which leads to inactivation of GSK3 kinase, also results in 
elevated Mcl-1 expression in a similar fashion to Fbw7-
deficiency (data not shown). The PTEN phosphatase is 
a negative regulator of the PI3K/Akt signaling pathway 
and loss of PTEN is frequently observed in many types 
of tumors including T-ALL [13, 39-41]. Since our recent 
studies clearly demonstrated that GSK3 plays a critical role 
for Fbw7-mediated Mcl-1 ubiquitination, we hypothesize 
that any aberrant inactivation of GSK3, including loss of 
PTEN activity [42], might phenocopy Fbw7 deficiency, 
resulting in elevated Mcl-1 expression (Figure 5). Looking 
forward, it is thus critical to determine, especially in the 
setting of T-ALL, the molecular mechanisms by which 
the PTEN/PI3K/Akt/GSK3 axis participates in Fbw7-
mediated destruction of Mcl-1, and to evaluate whether 
Akt or mTOR inhibitors could be a novel anti-leukemia 
therapeutic option to trigger apoptosis by decreasing Mcl-
1 protein abundance, especially for those who are PTEN-
deficient.
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Figure 4: loss of Fbw7 leads to elevated mcl-1 expression, 
which confers increased resistance to the pan-bcl-2 inhibitor 
Abt-737. 
A. In T-ALL cells with WT-Fbw7 genetic background, Mcl-1 stability 
is governed by Fbw7 in a GSK3-dependent manner. Inhibition of the 
Bcl-2 family of proteins with ABT-737 efficiently triggers apoptosis by 
inducing cytochrome c release.
b. Due to structural differences, the pan-Bcl-2 inhibitor ABT-737 
cannot efficiently inactivate Mcl-1 as it does to the rest of the Bcl-2 
family of proteins. Therefore, loss of Fbw7 leads to elevated Mcl-1 
expression, subsequently resulting in increased resistance to ABT-737.
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