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ABSTRACT

As the center of most biological processes, Protein-Protein Interactions (PPIs) 
constitute the basis of the formation of biological mechanisms. Deregulation of PPIs 
results in many diseases including cancer and pernicious anemia. As a special type 
of PPIs, the Self-interacting Proteins (SIPs) occupy an important position in them. 
Although a large number of SIPs data have been generated by experimental methods, 
currently-detected self-interacting proteins cover only a small part of the complete 
network. Therefore, there is a great need for computational methods to efficiently 
and accurately predict SIPs. In the present study, we introduce a novel computational 
method based on protein sequence information to predict SIPs. More specifically, each 
protein sequence is converted to Position-Specific Scoring Matrix (PSSM) containing 
the evolutionary information. And then an effective feature extraction approach, 
namely, Auto Covariance (AC) is employed to construct a feature set. Finally, the 
improved Rotation Forest (RF) model is used to remove the noise of the feature set 
and give prediction results. When performed on yeast and human SIPs data sets, the 
proposed method can achieve high accuracies of 80.50% and 93.70%, respectively. 
Our method also shows a good performance when compared with the SVM classifier 
and other existing methods. Consequently, the proposed method can be considered to 
be a promising model to predict SIPs. In addition, for the purpose of further research 
in the future, the user-friendly web server is freely available to academic use at 
http://www.proteininteraction.cn/sip/. 

 INTRODUCTION

As both the material base of life and the main 
bearer of life activities, proteins affect the cells through 
interaction with other components. In these interactions, 
Protein-Protein Interactions (PPIs) has attracted more 
attention of researchers because of their critical roles in 
living organisms. Deregulation of PPIs results in many 
diseases including cancer and pernicious anemia. The PPI 
data accumulated from the previous numerous small-scale 
experiments and some recent large-scale experiments 

allow us to establish the proteome-wide PPI networks 
[1–4], which will help us to deepen the understanding 
of cell structure and function from the perspective of the 
system and provide theoretical basis for the discovery of 
new drug targets and drug design.

One special type of PPIs is Self-interacting proteins 
(SIPs). They represent those with more than two copies 
that can interact with each other. Two interaction partners 
of SIPs are two identical copies represented by the same 
gene, which can result in the formation of homodimer. 
More than two copies of a protein interact with each other 
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to form a homotrimer or a higher order homo-oligomer. 
Recent research have shown that homo-oligomerization 
plays important roles in a variety of vital biological 
processes, such as immune response, enzyme activation, 
signal transduction and gene expression regulation [5–9]. 
Ispolatov et al. [10] noted that SIPs occupy a significant 
position in the protein interaction networks (PINs), 
meaning that there are great possibilities that the SIPs can 
interact with a large number of other proteins. At the same 
time, it also shows its functional importance for cellular 
systems. Pereira-Leal and their collaborators proposed a 
genome-wide, cross-species analysis of the origins and 
evolution of protein complexes. Their conclusion indicates 
that the evolution of many protein complexes was first 
established through self-interactions and then through 
the duplication of these self-interacting proteins [11]. 
In addition, one of the key factors that regulate protein 
function is self-interaction. Without increasing the size 
of the genome, through self-interactions, the functional 
diversity of proteins can be greatly expanded [12]. 

Recently, some computational methods for the 
prediction of PPIs have been developed [13, 14]. By 
analyzing the relationship between codon pair usage and 
PPIs in yeast, Zhou et al. drew a conclusion that codon pair 
usage of interacting protein pairs has great difference on 
the random expectations. And it is used as a motivation by 
proposing a novel method named CCPPI to predict PPIs by 
using codon pair frequency difference as Support Vector 
Machine input [15]. Based on pairwise similarity theory, 
Zaki et al. used only the protein primary structure before 
proposing a simple and efficient method for predicting 
PPIs [16]. You et al. used only the protein sequence 
information to predict PPI, in which a kind of method 
called PCA-EELM (Principal Component Analysis-
Ensemble Extreme Learning Machine) is designed. When 
performed on the PPIs data of Saccharomyces cerevisiae, 
this model yields 87.00% prediction accuracy, 86.15% 
sensitivity and 87.59% precision [17]. These methods 
generally take into account the correlational information 
between protein pairs, such as coevolution, co-localization 
and co-expression. However, such information is not 
available when predicting protein self-interacting. 
Furthermore, the data sets used in these methods do not 
contain protein interactions among the same partners, 
making them unsuitable for SIP prediction. Therefore, 
there is a strong motivation to design efficient and reliable 
computation methods for large-scale prediction SIPs.

Based on the Rotation Forest (RF) algorithm  
[18, 19], in this study, we designed an improved RF-
based approach (ImRF) [20, 21] for predicting SIPs by 
only using protein amino acids sequences. First, the 
candidate self-interacting protein sequence is converted 
into Position-Specific Scoring Matrix (PSSM) [22]. 
Second, an effective feature extraction method called Auto 
Covariance (AC) [23] is used to extract feature vector 
from PSSM. Finally, the features of weighted selection 

are fed into the RF classifier to predict SIPs. In the 
experiments, the proposed model was evaluated on yeast 
and human SIPs data sets. The experiment result shows 
that our model achieved 80.50% and 93.70% prediction 
accuracy with 85.30% and 94.70% specificity on these 
two datasets, respectively. In order to further evaluate 
the performance of our model, we compared it with other 
existing methods and the state-of-the-art support vector 
machine (SVM) classifiers on yeast and human data sets. 
Excellent results indicate that our model can effectively 
extract useful information from large amounts of data and 
produce better prediction accuracy.

RESULTS AND DISCUSSION 

Performance of the proposed method

In order to avoid over-fitting to affect the 
performance of our model, we divided the data set into 
training set and independent test set. Taking the human data 
set as an example, we randomly selected about 1/6 of the 
samples from the whole human data set as the independent 
test set. Since the number of negative instances is much 
larger than that of the positive ones in human data set, we 
randomly selected negative samples from the remaining 
human negative data set to set up the training set with the 
ratio of about 1:1. To ensure the reliability of the results, the 
independent test set and training set were constructed for 5 
times and so were the experiments . The final results were 
expressed in the form of mean and standard deviation. The 
same strategy was also used to apply to the yeast dataset. 
For the sake of guaranteeing the fair outcome, there are 
several parameters that should be optimized for our model. 
Through the grid search method, in this experiment, the 
parameter lg of the feature extraction method AC is set 
to 5. In the improved rotation forest algorithm, feature 
selection rate r  =0.7, the number of sub sets K = 5, and 
the number of decision trees L = 7.

The results of our method on yeast and human 
datasets are shown in Tables 1, 2. It can be seen from 
Table 1 that the overall accuracies of five experiments 
are all above 79.09% for yeast dataset. Specifically, the 
accuracies of each experiment are 79.89%, 79.09%, 
80.91%, 82.95% and 79.55%, respectively. We can see 
that the average accuracy, specificity, sensitivity, and MCC 
are 80.50%, 85.30%, 42.60%, and 23.20%, respectively. 
The standard deviations of them are 1.50%, 2.10%, 3.40%, 
and 1.60%, respectively. Table 2 lists the experimental 
results of our method on the human data set. Accuracies 
of the five experiments are 93.88%, 92.72%, 93.56%, 
94.44%, and 94.40%, respectively. The good results of 
average accuracy, specificity, sensitivity, and MCC of 
93.70%, 94.70%, 34.00%, and 15.40%, respectively. The 
standard deviations of them are 0.60%, 0.70%, 3.80%, and 
0.90%, respectively. The ROC curves performed on yeast 
and human datasets was shown in Figures 1, 2. In those 
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figures, x-ray depicts False Positive Rate (FPR) while 
y-ray delineates True Positive Rate (TPR).

Thanks to choosing the appropriate classifier and 
feature extraction method, we can see from Table 1 and 
Table 2 that our method has achieved good results when 
predicting SIPs. Our method plays an important role in 
improving the accuracy of prediction, which may be 
attributed to the following three reasons: (1) PSSM has 

the advantage of resisting background noise and reducing 
the redundancy of prediction results. It can retain enough 
prior information of protein sequences, thus helping to 
improve the prediction accuracy. (2) Feature extraction 
method AC takes neighboring effect into account, which 
makes it possible to discover patterns of the entire 
sequences. (3) High-dimensional data not only increases 
the computational cost but also is likely to contain 

Table 1: The experimental results obtained by using proposed method on yeast SIPs data set

Testing set Accu. (%) Spe. (%) Sen. (%) MCC (%) AUC (%)
1 79.89 84.10 47.00 24.95 64.82
2 79.09 83.46 45.00 22.68 63.01
3 80.91 86.15 40.00 22.19 61.25
4 82.95 88.59 39.00 24.84 64.36
5 79.55 84.36 42.00 21.48 65.33
Average 80.50 ± 1.50 85.30 ± 2.10 42.60 ± 3.40 23.20 ± 1.60 63.75 ± 1.64

Table 2: The experimental results obtained by using proposed method on human data set

Testing set Accu. (%) Spe. (%) Sen. (%) MCC (%) AUC (%)
1 93.88 94.84 35.00 16.23 69.84
2 92.72 93.58 40.00 16.56 75.59
3 93.56 94.55 32.50 14.43 75.44
4 94.44 95.49 30.00 14.79 71.64
5 94.40 95.00 32.50 15.21 80.64
Average 93.70 ± 0.60 94.70 ± 0.70 34.00 ± 3.80 15.40 ± 0.90 74.63 ± 4.17

Figure 1: Performance comparison performed by our proposed model on Yeast SIPs data set in terms of ROC curves 
and AUCs. As a result, SIP-ECEI yielded high performance with the AUC of 0.6375.
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redundant information. In this experiment, we use the 
improved rotation forest method to calculate the weight 
of the feature and remove the features of small weight. 
This increases the proportion of the useful information 
and helps to improve the performance of the classifier. The 
experimental results show that these powerful factors can 
provide help for the prediction of SIPs.

Comparison with the SVM Classifier

Although the experimental results show that the 
performance of our proposed prediction model is good, in 
order to have a clearer understanding of our classifier, we 
compare it with the state-of-the-art support vector machine 
(SVM) classifier. In the experiment, we have taken the same 
feature extraction method and implemented it in the yeast 
and human data sets, respectively. We use the LIBSVM tool 
[24] to execute the SVM classifier. The SVM parameters 
determined by the grid search method are c = 10 and g = 10, 
and other parameters use the default value.

Tables 3, 4 list the prediction results of SVM 
classifier on yeast and human datasets respectively. It 
can be seen from Table 3 that the average accuracy of 
SVM on yeast dataset is 78.10%, while the results of five 
experiments are 78.64%, 77.27%, 78.07%, 78.07%, and 
78.30%. However, the improved rotation forest classifier 
achieved 80.50% average accuracy. Similarly as displayed 
in Table 4, the average accuracy of SVM on human 
dataset is 91.30%, while the results of five experiments 
are 91.72%, 92.16%, 90.16%, 91.48%, and 91.12%. At the 

same time, the accuracy of the improved rotation forest 
classifier is 93.70%. The ROC curves performed on yeast 
and human data sets were shown in Figures 3, 4.

Comparison with other methods

In order to further evaluate the performance of 
the proposed method, we also compared our final model 
with three existing SIPs predictor SLIPPER [25], CRS 
[26], SPAR [26] and three PPI predictors DXECPPI [27], 
PPIevo [28] and LocFuse [29] based on the yeast and 
human datasets. Tables 5, 6 list the results of the above-
mentioned methods on yeast and human data sets. We can 
observe from Table 5 that the proposed method performs 
well and the accuracy is only next to the highest, 6.84% 
higher than the average accuracy of other six methods 
on yeast data set. Similarity, as shown in Table 6, the 
prediction results of the proposed method are obviously 
higher those of the other six different methods on human 
dataset. Accuracy is 1.61% higher than the highest method, 
and 16.31% higher than that the average of the other six 
methods. The prediction results show that the proposed 
method can more effectively improve the accuracy than the 
current existing methods and suitable for predicting SIPs.

Web server

For the convenience of using the proposed model, 
a user-friendly web server has been made available at 
http://www.proteininteraction.cn/sip/. Web server mainly 

Figure 2: Performance comparison performed by our proposed model on Human SIPs data set in terms of ROC 
curves and AUCs. As a result, SIP-ECEI yielded high performance with the AUC of 0.7463.
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provides predictive proteins self-interacting on yeast 
data set. Users input yeast protein sequences in the web 
page and enter the received email address. After pressing 
the submit button, the server will automatically predict 

whether the proteins can interact with each other based on 
our proposed method. After the completion of the server 
computing, users can check E-mail in the mailbox, which 
shows the predicted results.

Table 3: The experimental results obtained by using SVM classifier on yeast data set
Testing set Accu. (%) Spe. (%) Sen. (%) MCC (%) AUC (%)
1 78.64 83.97 37.00 17.18 64.02
2 77.27 81.67 43.00 19.17 62.69
3 78.07 83.72 34.00 14.54 60.29
4 78.07 82.31 45.00 21.35 64.18
5 78.30 82.82 43.00 20.44 65.24
Average 78.10 ± 0.50 82.90 ± 1.00 40.40 ± 4.70 18.50 ± 2.70 63.28 ± 1.90
Our method 80.50 ± 1.50 85.30 ± 2.10 42.60 ± 3.40 23.20 ± 1.60 63.75 ± 1.64

Table 4: The experimental results obtained by using SVM classifier on human data set

Testing set Accu. (%) Spe. (%) Sen. (%) MCC (%) AUC (%)
1 91.72 92.72 30.00 10.73 69.77
2 92.16 93.05 37.50 14.61 75.56
3 90.16 90.89 45.00 15.23 75.49
4 91.48 92.32 40.00 14.78 71.66
5 91.12 91.91 42.50 15.37 80.68
Average 91.30 ± 0.80 92.20 ± 0.80 39.00 ± 5.80 14.10 ± 1.90 74.63 ± 4.20
Our method 93.70 ± 0.60 94.70 ± 0.70 34.00 ± 3.80 15.40 ± 0.90 74.63 ± 4.17

Figure 3: Performance comparison performed by SVM model on Yeast SIPs data set in terms of ROC curves and 
AUCs. As a result, SIP-ECEI yielded high performance with the AUC of 0.6328.



Oncotarget6www.impactjournals.com/oncotarget

CONCLUSIONS

In this paper, we proposed a novel computational 
method based on protein sequence information to large-
scale and efficient prediction protein self-interaction, 
which combines the feature extraction method AC and 
improved rotation forest classifier. In order to evaluate the 
performance of the proposed method, we implemented 
it on the yeast and human data sets. We also compared 
the state-of-the-art support vector machine classifier with 
other popular methods commonly used for PPIs prediction. 
In these comparisons, we achieved good performance. 
The experimental results on yeast and human data sets 
show that the prediction accuracy achieved by our method 
has been significantly improved. In addition, for the 
convenience of researchers, we construct a user-friendly 
web server based on the proposed method. It can provide 
users with the predicted result of whether proteins could 
interact with each other. In future research, we will focus 
on more effective feature extraction methods and machine 
learning algorithms to improve the prediction accuracy.

MATERIALS AND METHODS

Dataset

We can obtain 20,199 curated human protein 
sequences from the UniProt database [30]. These PPIs data 

come from various resources, including MatrixDB [31], 
InnateDB [32], IntAct [33], BioGRID [34] and DIP [35]. 
In this experiments, we only extract protein sequences 
in which two interaction partners are exactly the same 
and interactive type is the ‘direct interaction’ in relevant 
databases. Eventually, the number of human protein self-
interaction instances we have obtained is 2,994.

We construct datasets through the following steps in 
order to achieve the purpose of evaluating the performance 
of our model [26]. Firstly, we only preserve the number 
of residues in proteins ranging from 50 to 5,000.The rest 
of the proteins were removed from the whole human 
proteome. Secondly, to ensure the quality of the protein 
self-interaction data, each sample in positive data set must 
satisfy one of the following conditions: (1) At least two 
publications reported the protein self-interaction; (2) The 
protein is defined as homo-oligomer (including homodimer 
and homotrimer) in UniProt; (3) At least two large-scale 
experiments or one small-scale experiment detected the 
self-interaction. Finally, to construct the negative dataset, 
we removed the predicted SIPs annotated in UniProt and all 
types of SIPs from the whole human proteome (including 
proteins annotated as more extensive ‘physical association’ 
and ‘direct interaction’). As a result, 1,441 positive samples 
and 15,938 negative samples were constructed as human 
SIPs data set. In addition, we used the same strategy in the 
construction of yeast data set, which contained 710 positive 
samples and 5,511 negative samples.

Figure 4: Performance comparison performed by our proposed model on Human SIPs data set in terms of ROC 
curves and AUCs. As a result, SIP-ECEI yielded high performance with the AUC of 0.7463.
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Position-specific scoring matrix

Position-specific scoring matrix (PSSM) is 
generated by a set of sequences which has the structure 
or sequence similarity. Initially introduced by Gribskov et 
al. [22], it is used for detecting distantly related protein. 
PSSM has made outstanding achievements in areas such 
as protein secondary structure prediction [36], protein 
binding site prediction [37], and prediction of disordered 
regions [38]. A PSSM is a matrix of N× 20, which can 
be denoted as

 { }, : 1   1 20i jM e i N and j= = = 
, 

where N represents the length of the protein sequence and 
20 the number of the amino acids. Each matrix ( , )M i j  
is defined as follows:

1,1 1,2 1,20

2,1 2,2 2,20

,1 ,2 ,20
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e e e
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where ,i je  represents the probability that the ith 
residue being mutated into the jth naive amino acid during the 
evolutionary process of protein multiple sequence alignment.

In order to generate the PSSM matrix of evolutionary 
information, we implement the Position-Specific Iterated 

BLAST (PSI-BLAST) tool [39] on each protein sequence. 
PSI-BLAST will return a 20-dimensional vector which 
indicates the probabilities of conservation against 
mutations to 20 different amino acids including its own. 
To get broad and high homologous sequences, in this 
study, we decide that the value of e-value which is 0.001, 
the value of iterations is 3, and matching database is 
SwissProt, respectively. Applications of PSI-BLAST and 
SwissProt database can be downloaded from http://blast.
ncbi.nlm.nih.gov/Blast.cgi.

Auto covariance

As one of the most efficient methods for analyzing 
the sequence of vector statistics, the Auto Covariance 
(AC) has been widely used in the prediction of secondary 
structure content [40, 41], protein family classification by 
researchers [42, 43], and protein interaction prediction 
[23]. AC variable indicates that in a given protein sequence 
of two residues average correlation, the expression is:

( ) ( ), , ,,
1 1 1

1 1 1,
L lg L L

i j i j i ji lg j
i i i

AC i lg M M M M
L lg L L

−

+
= = =

   
= − × −   −    

∑ ∑ ∑
 (2)

where lg  is the distance between residues,  i
represents the i th amino acid, L denotes the length of the 
protein sequence, ,i jM  indicates the matrix score of amino 
acid i  at position j .

Table 5: Performance comparisons between SIP-ECEI and six existing computational models (SLIPPER, DXECPPI, 
PPIevo, LocFuse, CRS and SPAR) on yeast SIPs data set for predicting SIPs in terms of Accuracy, Specificity, 
Sensitivity, MCC based on cross validations

Model Accu. (%) Spe. (%) Sen. (%) MCC (%)
SLIPPER [25] 71.90 72.18 69.72 28.42
DXECPPI [45]   87.46 94.93 29.44 28.25
PPIevo [28]     66.28 87.46 60.14 18.01
LocFuse [29]    66.66 68.10 55.49 15.77
CRS [26]     72.69 74.37 59.58 23.68
SPAR [26]     76.96 80.02 53.24 24.84
Our method 80.50 ± 1.50 85.30 ± 2.10 42.60 ± 3.40 23.20 ± 1.60

Table 6:  Performance comparisons between SIP-ECEI and six existing computational models (SLIPPER, DXECPPI, 
PPIevo, LocFuse, CRS and SPAR) on Human SIPs data set for predicting SIPs in terms of Accuracy, Specificity, 
Sensitivity, MCC based on cross validations

Model Accu. (%) Spe. (%) Sen. (%) MCC (%)
SLIPPER [25] 91.10 95.06 47.26 41.97
DXECPPI [45]   30.90 25.83 87.08 8.25
PPIevo [28]    78.04 25.82 87.83 20.82
LocFuse [29]    80.66 80.50 50.83 20.26
CRS [26]    91.54 96.72 34.17 36.33
SPAR [26]     92.09 97.40 33.33 38.36
Our method 93.70 ± 0.60 94.70 ± 0.70 34.00 ± 3.80 15.40 ± 0.90
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Using the above expression, the value of AC 
variable M  can be figured out as  M lg N= × , where N  
is the number of descriptors. When all the data in the 
database complete the operation, each protein sequence 
was represented as a vector of AC variables and a protein 
pair was characterized by concatenating the vectors of two 
proteins in this protein pair.

Feature weighted rotation forest

In this paper, an improved rotation forest algorithm 
is proposed, which adds the weight selection on the basis 
of the original rotation forest. This will remove the 
features of small weight, namely noise, increase the 
proportion of useful information and improve the accuracy 
of the classifier. We use χ2 statistical method to calculate 
the weight of the features. A feature F against the class 
feature is calculated as follows:

 (3)
 

where n is the number of values in feature F and ijp  is the 
count of the value 

id  in feature F belonging to class 
jc , 

defined as:
( )   ij i jp count F d and C c= = =  (4)

,i jq  is the expected` value of id  and jc , defined as:

,

( ) ( )
             (5)i j

i j

count F d count C c
q

N
= × =

=  (5)

where ( )icount F d=  is the number of samples in the 
feature   F value id , ( )jcount C c=  is the number of 
samples in the class  C  value jc , and   N is the total 
number of samples in the training set.

In order to make full use of the useful information, 
we perform the following steps. First, use formula (3) 
to calculate the weight of each feature; second, descend 
sort features according to the weight value; finally, select 
new features from the full feature set in accordance with a 
given feature selection rate r. After executing these steps, 
we construct a new data set and use it as the input of the 
rotation forest.

Rotation forest is a popular ensemble classifier. In 
order to generate the training samples of the base classifier, 
the feature set is randomly divided into K subsets. The 
linear transformation method is applied to each subset 
and retains all the principal components to maintain the 
precision of data. The rotation formed the training sample 
of new features to ensure the diversity of data. Therefore, 
the rotation forest can enhance the accuracy for individual 
classifier and the diversity in the ensemble at the same 
time.

Assuming that { },i ix y  contains T training samples 
in which 1 2( , , , )i i i inx x x x= …  is an n-dimensional 
feature vector. Let X be the training sample set, Y the 
corresponding labels and F the feature set. Then X is T × n 
matrix, which is composed of n observation feature vector 
composition. The feature set is randomly divided into 
K equal subsets by a suitable factor. Let the number of 
decision trees be L, then the decision trees in the forest 
can be represented as 1 2 , , , LG G G… . The implementation 
process of the algorithm is as follows.

(1) Select the suitable parameter K which is a factor 
of n randomly dividing F into K parts of the disjoint 
subsets and each subset containing a number of features 
is n

k . 
(2) From the training data set X, select the 

corresponding column of the feature in the subset ,i jG  to 
form a new matrix ,i jX  followed by a bootstrap subset of 
objects extracted 75% of X constituting a new training set 

'
,i jX .

(3) Matrix X′i, j is used as the feature transform for 
producing the coefficients in a matrix ,i jM , in which the 
jth column coefficient is considered as the characteristic 
component jth.

(4) The coefficients obtained in the matrix , i jM  are 
constructed a sparse rotation matrix 

iP , which is expressed 
as follows:

1
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In the prediction period, the test sample x is provided 
and generated by the classifier iG  of , ( )r

i j id XP  to determine 
x belonging to class  iy . Next, the class of confidence is 
calculated by means of the average combination, and the 
formula is as follows:

( ) ,
1

1 ( )
L

r
j i j i

i

x d XP
L =

= ∑α  (7)

Then assign the category with the largest ( )j xα
value to x.

Performance evaluation

In this experiment, we use the prediction accuracy 
(Accu.), sensitivity (Sen.), Specificity (Spe.), and Matthews 
Correlation Coefficient (MCC) as the evaluation criterion 
to assess the performance of our method, they are defined 
as:

TP TNAccu.
TP TN FP FN

+
=

+ + +   
 (8)

TPSen.
TP FN

=
+  (9)

22
2

1 1 ,

( )n
ij ij

i j i j

p q
q= =

−
=∑∑χ
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TNSpe.
TN FP

=
+  (10)

( )( )( )
TP TN FP FNMCC

TP FP TP FN TN FP (TN FN)
× − ×

=
+ + + +  (11)

where TP, TN, FP, FN represent the number of 
true positives, true negatives, false positives and false 
negatives, respectively. Moreover, the receiver operating 
characteristic (ROC) curve [44] is used to visually display 
the performance of the classifier. The area under the 
ROC curves (AUC) is also calculated as an indicator of 
assessment.
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