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ABSTRACT

Current prognostic markers allocate the majority of lymph node (LN) negative 
and estrogen receptor (ER) positive breast cancer patients into the high-risk group. 
Accordingly, most patients receive systemic treatments although approximately 
40% of these patients may have been cured by surgery and radiotherapy alone. 
Two studies identified seven prognostic microRNAs in systemically untreated, LN 
negative and ER positive breast cancer patients which may allow more precise patient 
classification. However, six of the seven microRNAs were analyzed in both studies 
but only found to be prognostic in one study. To validate their prognostic potential, 
we analyzed microRNA expression in an independent cohort (n = 110) using a pair-
matched study design minimizing dependence of classical markers. The expression 
of hsa-miR-548c-5p was significantly associated with abridged disease-free survival 
(hazard ratio [HR]:1.96, p = 0.027). Contradicting published results, high hsa-miR-
516-3p expression was associated with favorable outcome (HR:0.29, p = 0.0068). 
The association is probably time-dependent indicating later relapse. Additionally, 
re-analysis of previously published expression data of two matching cohorts  
(n = 100, n = 255) supports an association of hsa-miR-128-3p with shortened disease-
free survival (HR:2.48, p = 0.0033) and an upregulation of miR-7-5p (p = 0.0038; p =  
0.039) and miR-210-3p (p = 0.031) in primary tumors of patients who experienced 
metastases. Further analysis may verify the prognostic potential of these microRNAs.
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INTRODUCTION

Breast cancer is the most frequent cancer in women 
worldwide and is associated with a high mortality rate 
of approximately 15% despite recent improvements in 
diagnosis and treatment [1, 2]. The main cause of death is 
not the primary tumor in the breast, but the occurrence of 
lethal metastases in essential organs like lung, liver and the 
brain. Lymph node (LN) negative breast cancer patients 

do not present any signs of distant metastasis at the time 
of diagnosis. However, clinical and histopathological 
criteria currently classify the majority of LN negative 
and estrogen receptor (ER) positive patients as high-
risk patients who accordingly receive adjuvant systemic 
treatments after surgical removal of the primary tumor 
[2]. In fact, approximately 40% of these patients do not 
benefit from the systemic treatment and would be cured 
by the removal of the primary tumor and radiotherapy 
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alone [3, 4]. Consequently, improved prognostic markers 
are required to prevent adverse side-effects in systemically 
treated patients and to reduce health care costs.

Larger studies were conducted to establish various 
multi-analyte tests like MammaPrint, Oncotype DX, 
Breast Cancer Index, EndoPredict or Prosigna (PAM50) to 
improve outcome prediction and stratify therapy selection 
in breast cancer patients [5, 6]. Nevertheless, comparable 
studies among LN negative and ER positive patients to 
reduce systemic treatment are rare, most likely because 
only limited sample material is available. Fresh frozen 
tissue samples are preferred for higher technical quality 
and long follow-up times are required to determine which 
patients will or will not experience metastases 10, 15 or 
20 years post diagnosis. Moreover, patients should not 
have received any systemic treatment, because markers 
developed based on treated cohorts could not distinguish 
between the future absence of metastases and positive 
treatment response. Due to today’s unspecific classification 
of patients, the collection of suitable sample sets in a 
critical scale is nowadays challenging. Esserman et al. 
used Formalin-Fixed, Paraffin-Embedded tissue samples 
collected in Sweden more than 20 years ago. They adjusted 
the mRNA expression-based MammaPrint cut-off to 
identify a smaller group of so-called ultralow-risk patients 
who may not benefit from any adjuvant systemic treatment 
[7]. However, better prognostic markers are required to 
substantially increase the ultralow patient group and to 
ensure that the rate of recurrence will not increase as a 
consequence of treatment reduction. 

In the past decades microRNAs (miRs) have 
intensively been studied in primary breast tumor tissue 
and a few prognostic miRs have been proposed [8–10]. 
Although miRs are considered as key-regulators of the 
breast cancer transcriptome, none of the so far identified 
prognostic miRs have, to our knowledge, passed 
larger clinical trials [11]. Bias concerning the analyzed 
sample material, patient cohort heterogeneity as well as 
methodological and analytical variation limits the initial 
validation of candidate miRs. Lánczky et al. recently 
succeeded in validating the predictive potential of 26 out 
of 41 selected miRs by analyzing e.g. subtype- or receptor-
specific patient cohorts with the integrated platform 
miRpower in a large group of mainly systemically 
treated patients [12]. In comparison, two studies focused 
solely on the de novo identification of prognostic miRs 
in primary tumor samples of LN negative, ER positive 
patients who did not receive any systemic treatment. 
Foekens et al. analyzed 249 miRs in 37 primary tumor 
samples via qRT-PCR and validated four prognostic 
miRs (hsa-miR-210-3p, hsa-miR-7-5p, hsa-miR-128-
3p, hsa-miR-516-3p) by analyzing 147 additional tumor 
samples [13]. D’Aiuto et al. selected erb-b2 receptor 
tyrosine kinase 2 (ERBB2) negative samples (n = 92) and 
identified hsa-miR-548c-5p, hsa-miR-30e-3p and hsa-
miR-125b-5p as differentially expressed in patients with 

and without relapse [14]. D’Aiuto et al. further validated 
the prognostic potential of hsa-miR-30e-3p (hsa-miR-
30e*; MIMAT0000693) in an independent cohort of 
223 matching samples extracted from the Molecular 
Taxonomy of Breast Cancer International Consortium 
(Metabric) data set [15, 16]. Although, both studies 
independently analyzed the expression of six out of the 
seven candidate miRs, each study identified an individual 
set of prognostic miRs. Considering this inconsistency, we 
aimed at cross-validating the suggested prognostic miRs to 
potentially identify those who could stratify classification 
of LN negative and ER positive patients in the future. 
Firstly, we collected 55 fresh frozen primary tumors from 
systemically untreated patients who developed distant 
metastasis and matching 55 fresh frozen primary tumors 
from patients who remained metastasis-free. We used a 
paired study design for increased statistical power and to 
analyze the differential expression of the candidate miRs 
and their association with outcome independently of any 
confounding prognostic factors [17, 18]. Moreover, we 
re-analyzed results presented by D’Aiuto et al. including 
ERBB2 positive patients and additionally analyzed 
candidate miRs identified by Foekens et al. in the 
independent patient cohorts published by D’Aiuto et al. 
and Metabric [14–16]. 

RESULTS

D’Aiuto et al. identified hsa-miR-1308, hsa-
miR-548c-5p (MIMAT0004806), hsa-miR-125b-5p 
(MIMAT0000423) and hsa-miR-30e-3p as differentially 
expressed (p < 0.001) in LN negative, ER positive and 
ERBB2 negative breast cancer patients [14, 19]. The 
authors confirmed the prognostic role of hsa-miR-30e-3p in 
a matching cohort of 223 untreated patients extracted from 
the Metabric cohort [15, 16]. We aimed at validating the 
candidate miRs (except for hsa-miR-1308 which was later 
identified as being part of a t-RNA) [19] in our independent 
LN negative, ER positive cohort using a paired study 
design. To match our patient characteristics and analysis 
parameters, we further re-analyzed the role of these miRs 
in the D’Aiuto et al. and Metabric cohorts (Table 1) but 
included ERBB2 positive samples and divided the samples 
into high/low expression groups as being above or below 
the median expression value. 

While we could not confirm a significant expression 
difference of hsa-miR-125b-5p or hsa-miR-30e-3p 
(Figure 1A and 1B, Table 2) we observed a trend showing 
a moderate upregulation of miR-30e-3p in primary 
tumors of patients who did not develop metastasis 
(p = 0.17). The same trend is also reflected by the survival 
curves considering disease-free and overall survival 
(Figure 1B and Table 2; hazard ratio [HR]:0.64, p = 0.31 
and HR:0.82, p = 0.66 respectively). In comparison, 
a significant expression upregulation in patients with 
relapse could be demonstrated for hsa-miR-548c-5p  
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(p = 0.012; Figure 1C). Furthermore, high hsa-miR-
548c-5p expression was associated with abridged 
disease-free survival (HR: 2.63, p = 0.020) and tended 
to result in shorter overall survival (HR:2.25, p = 0.056) 
(Figure 1C, Table 2). However, the results could not 
be reproduced in the large Metabric cohort (Figure 1C, 

Table 2). Potential reasons may be a more heterogeneous 
cohort composition with shorter follow up, varying 
sample treatment  or a possible cross-reactivity of the 
applied array format (customized Agilent array) [20] 
considering that hsa-miR-548c-5p belongs to a rather 
large miR family comprising 74 human miRs with similar 

Table 1: Patient and tumor characteristics of the 4 cohorts of systemically untreated, lymph node negative and 
estrogen receptor positive breast cancer patients included in the study

OUH
(n = 110)

D’Aiuto et al. 
(n = 100)

Metabric 
(n = 255)

Foekens et al. 
(n = 147)**

No. of patients (%)
Metastasis yes no yes no yes no yes no
 55 (50.0%) 55 (50.0%) 47 (47.0%) 53 (53.0%) 65 (25.5%) 190 (74.5%) n/a n/a
Age at diagnosis
≤50 years 10 (9.1%) 9 (8.2%) 12 (12.0%) 22 (22.0%) 22 (8.6%) 49 (19.2%) 79 (53.7%)
>50 years 45 (40.9%) 46 (41.8%) 35 (35%) 31 (31%) 43 (16.9%) 141 (55.3%) 68 (46.3%)
Tumor size 
≤ 2 cm 23 (20.9%) 23 (20.9%) 21 (21.0%) 34 (34.0) 36 (14.1%) 118 (46.3%) 82 (55.8%)
2–5 cm 32 (29.1%) 32 (29.1%) 24 (24.0%) 19 (19.0) 26 (10.2%) 62 (24.3%)

65 (44.2%)
>5 cm 1 (1.0%) 2 (0.8%) 6 (2.4%)
n/a 1 (1.0%) 1 (0.4%) 4 (1.6%)
Estrogen receptor status*

Positive 49 (44.5%) 48 (43,6%) 47 (47.0%) 53 (53.0%) 62 (24.3%) 173 (67.8%) 147 (100%)
Negative 1 (0.9%) 4 (3.6%) 1 (0.4%) 9 (3.5%)
n/a 5 (4.5%) 3 (2.7%) 2 (0.8%) 8 (3.1%)
Tumor type
Invasive ductal carcinoma 41 (37.3%) 42 (38.2%) 37 (37.0%) 38 (38.0%) 50 (19.6%) 125 (49.0%)
Invasive lobular carcinoma 9 (8.2%) 9 (8.2%) 9 (9.0%) 3 (3.0%) 7 (2.7%) 15 (5.9%)
Mucinous carcinoma 2 (1.8%) 2 (1.8%) 1 (0.4%) 9 (3.5%)
Papillary carcinoma 2 (1.8%) 1 (0.9%)
Carcinoma with metaplasia 1 (0.9%) 1 (0.9%)
mixed IDC/ILC 1 (1.0%) 5 (5.0%) 3 (1.2%) 7 (2.7%)
other 7 (7.0%) 4 (1.6%) 31 (12.2%)
n/a 3 (1.2%) 147 (100%)
Histologic grade
1 (good) 12 (10.9%) 15 (13.6%) 7 (2.7%) 33 (12.9%)

29 (19.7%)
2 (intermediate) 22 (20.0%) 19 (17.3%) 41 (16.1%) 103 (40.4%)
3 (poor) 7 (6.4%) 7 (6.4%) 12 (4.7%) 40 (15.7%) 71 (48.3%)
n/a 14 (12.7%) 14 (12.7%) 5 (2.0%) 14 (5.5%) 47 (32.0%)
Median year of surgery 1980–1999
 1993 1992 n/a n/a n/a n/a n/a n/a
Mean time to metastasis 
(months)
 57.2 n/a 29.8† n/a n/a n/a <60 n/a
Mean follow up (months) 

102.8 238.3 n/a 119.1† 108.9 133.6 84 (displayed in 
graph**)

*as defined by immunohistochemistry (IHC); **patient data of validation analysis [13]; †disease free survival; n/a: not available/applicable; 
IDC: invasive ductal carcinoma; ILC: invasive lobular carcinoma.
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sequences [19].  Although the Metabric cohort comprises 
more patients, the statistical power is not fundamentally 
superior in comparison to the other cohorts because of 
the unbalanced distribution of patients with (n = 65) and 
without (n = 190) recurrence. 

Foekens et al. identified four miRs in 37 LN negative, 
ER positive primary breast tumor samples and validated 
their association with reduced DFS when highly expressed 
in further 147 LN negative, ER positive primary tumors 
[13]. We evaluated the differential expression of these 
miRs in our matching data set but could neither confirm a 
differential expression of hsa-miR-7-5p (MIMAT0000252), 
hsa-miR-128-3p (MIMAT0000424) and hsa-miR-210-3p 
(MIMAT0000267), nor a specific association with abridged 
disease-free or overall survival (Figure 2A, 2D, 2G; Table 3)  
[19]. Furthermore, opposing Foekens et al. results, we 
found hsa-miR-516-3p (hsa-miR-516a-3p; hsa-miR-516b-
3p; MIMAT0002860; MIMAT0006778) [19] significantly 
downregulated in primary tumors of patients who developed 
later metastasis accompanied by a significant association of 
low hsa-miR-516-3p expression with metastasis formation 
(HR:0.29, p = 0.0068) and shorter overall survival (HR: 
0.26, p = 0.0079; Figure 2J). 

To further clarify the potential role of these four miR 
candidates, we additionally analyzed their expression and 
outcome association in the available D’Aiuto et al. and 
Metabric data sets (Figure 2; Table 3) [14–16]. A differential 
expression of hsa-miR-7-5p was found in the D’Aiuto et al. 
(p = 0.0038; Figure 2B) and the Metabric cohort (p = 0.039; 
Figure 2C) supporting Foekens et al. initial results. However, 
no significant association with disease free survival (DFS) 
or overall survival was detected. For hsa-miR-128-3p a 
prognostic role could be determined in the D’Aiuto et al. 
set (Figure 2E) where a high expression was significantly 
associated with poor outcome (HR:2.48, p = 0.0033). No 
significant association was computed for hsa-miR-128-3p in 
the Metabric cohort (Figure 2F). Foekens et al. demonstrated 
a prognostic role for hsa-miR-210-3p in ER positive and 
negative breast cancer, while the latter was not in the scope 
of this study, a significant correlation between outcome and 
hsa-miR-210-3p expression in ER positive patients could 
not be validated (Figure 2G, 2H, 2I; Table 3) although 
expression was significantly upregulated in samples from 
patients with relapse in the D’Aiuto et al. data set (Figure 
2H). Hsa-miR-516-3p was not analyzed in the Metabric 
study and data available for the D’Aiuto et al. cohort did not 

Figure 1: Differential expression and association with outcome for hsa-miR-125b-5p (A), hsa-miR-30e-3p (B) and hsa-miR-548c-5p (C). 
Boxplots present differences in expression patterns between patients who developed later metastasis (MET) and those who did not (NON-
MET). Whiskers correspond to the upper and lower 25% range, data points deviating more than 3*STDEV from the mean are displayed as 
dots. Lighter colors indicate the 50–75 percentile range, while darker colors indicate the 25–50 percentile range of miRs expressed in MET 
(red) and NON-MET (blue). Significance was calculated using a paired Student’s T-test for the OUH cohort (left panel) and an unpaired 
Student’s T-test for the D’Aiuto et al. and Metabric cohort. Kaplan Meier plots indicating disease free (DFS) and overall survival (OS) 
probabilities were constructed using a univariable COX regression model. Results from the OUH cohort (n = 110) are displayed in line 
with re-analyzed results for the D’Aiuto et al. (n = 100) and the Metabric (n = 255) cohort (encased in grey) as published previously [14].
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confirm an advantageous low or high expression although a 
trend towards a beneficial low expression could be observed 
(HR:0.61, p = 0.090; Figure 2K, Table 3). Methodological 
differences and variable cohort features could explain the 
bias between Foekens et al. and our results. For example, 
in comparison to the D’Aiuto et al. and the Foekens et al. 
data sets, we could grasp back to a cohort with an almost 
double so long follow-up period including patients with 
late recurrence 5 years after the initial diagnosis (Table 1). 
Considering further the intersecting arms in the survival 
curves displayed in Figure 2J, we analyzed whether hsa-
miR-516-3p expression may be time dependent using 
the Schoenfeld residual test [21]. The test revealed that 
the proportional hazards assumption was significantly 
violated with respect to DFS (p = 0.0012) and OS  
(p = 0.001) (Figure 3A and 3C), thus precluding the 
application of the COX regression model [21, 22]. To 
account for non-proportionality we conducted a landmark 
analysis using two time intervals (Figure 3B and 3D). The 
intervals were defined based on the time points at which 
the hazard ratio assessed by the Schoenfeld residuals 
changes from above one to below one. For DFS and OS an 
even more significant association of low hsa-miR-516-3p 

expression with an unfavorable prognosis was determined 
3.35 (HR:0.15, p = 0.0018) and 4.5 years (HR:0.06,  
p = 0.00030) post diagnosis, respectively (Figure 3B and 3D).  
However, no significant association could be detected in the 
first time interval although a trend was observed pointing 
in the opposite direction. In summary, our results contradict 
the initial findings by Foekens et al. but may point to a time-
dependent prognostic role of hsa-miR-516-3p.

DISCUSSION

A general challenge for the identification and 
validation of prognostic miR markers is the suspected 
low comparability between standalone studies. Potential 
prognostic candidates are individually identified 
dependent on the quality of RNA and clinical data, patient 
characteristics as well as the selected study design and 
methodology. Stringent statistical filtering and correction 
for multiple testing often limits the number of assigned 
positive hits. As a result, the majority of miRs are 
classified as negative hits although one cannot rule out 
that a number of promising candidates may have been 
filtered out. Other studies may identify these as promising 

Table 2: Overview summarizing expression and survival analysis for miRs identified by D’Aiuto et al. [14]
D’Aiuto et al.* Metabric* OUH 
 identification  1st validation 2nd validation

hsa-miR-125b-5p

Diff. Exp. p-value
down in MET

0.77 0.19
0.0015

DFS
p-value 0.018 - 0.84
HR (CI) 0.47 (0.21–0.75) - 0.92 (0.42–2.02)

OS
p-value - 0.081 1.00
HR (CI) - 0.64 (0.39–1.06) 1.00 (0.43–2.31)

hsa-miR-30e-3p

Diff. Exp. p-value
down in MET

0.61 0.17
0.0005

DFS
p-value 0.0094 - 0.31
HR (CI) 0.45 (0.25–0.82) - 0.64 (0.28–1.49)

OS
p-value - 0.028 0.66
HR (CI) - 0.57 (0.34–0.94) 0.82 (0.34–1.97)

hsa-miR-548c-5p

Diff. Exp. p-value
up in MET

0.58
up in MET

0.010 0.012

DFS
p-value 0.027 - 0.02
HR (CI) 1.96 (1.08–3.56) - 2.63 (1.16–5.93)

OS
p-value - 0.36 0.056
HR (CI) - 1.26 (0.77–2.06) 2.25 (0.98–5.18)

*re-evaluation of already published results [14]; Diff. Exp.: Differential expression; MET: primary tumors from patients 
with relapse; HR: Hazard ratio; CI: 95% Confidence interval.
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candidates such that different standalone studies rarely 
identify overlapping candidate sets [12]. Although, 
subsequent validation in independent cohorts is often 
applied to confirm the prognostic potential of a positive 
candidate, unfortunately, the confirmation rate is likely 
to be low because of the aforementioned heterogeneity 
between studies. However, the successful reproduction 
of results for a positive hit is indeed expected to have 
increased explanatory power, because it is very unlikely 
that the same biomarker shows significant results in two 
truly independent cohorts just by chance.

We evaluated the prognostic potential of seven 
previously proposed miRs in systemically untreated 
breast cancer patients independent of classical clinical and 
pathological marker. Besides analyzing publicly available 
data sets we introduce our new data set comprising 
110 paired primary tumors of systemically untreated 
patients with very long follow up time. Matching of 
the samples minimized bias concerning clinical and 
pathological characteristics as well as bias related to 
storage time, sampling method, and diagnostic procedures. 

Consequently, the chosen paired design increased the 
power of our analysis in comparison to cohort studies by 
omitting any effect potentially caused by an unbalanced 
cohort composition and by enriching for relevant clinical 
endpoints [18]. 

We found an association of hsa-miR-548c-5p with 
outcome in our data set supporting previously published 
results. For the remaining candidate miRs no significant 
validation results were obtained.  A lack of power due to 
the lower number of samples analyzed in our study may 
cause the bias. However, the use of untreated samples 
with prolonged follow up was a prerequisite to search for 
potential marker which can identify patients who may not 
benefit from any systemic treatment. 

In comparison, the re-analysis of published data 
supported a prognostic role of hsa-miR-30e-3p, hsa-miR-
7-5p, hsa-miR-210-3p and hsa-miR-128-3p. However, 
none of the analyzed candidate miRs could be confirmed 
as being prognostic in all four tested cohorts. For two 
miRs, significant results were only computed in a single 
cohort. Although we aimed at finding best matching 

Figure 2: Differential expression of hsa-miR-7-5p, hsa-miR-128-3p, hsa-miR-210-3p and hsa-miR-516-3p. Boxplots 
present differences in expression patterns between patients who developed later metastasis (MET) and those who did not (NON-MET) from 
the OUH, the D’Aiuto et al. and the Metabric cohort (panels from left to right). Whiskers correspond to the upper and lower 25% range, 
data points deviating more than 3*STDEV from the mean are displayed as dots. Lighter colors indicate the 50–75 percentile range while 
darker colors indicate the 25–50 percentile range of miRs expressed in MET (red) and NON-MET (blue). Significance was calculated using 
a paired Student’s T-test for the OUH cohort (A, D, G, J) and an unpaired Student’s T-test for the D’Aiuto et al. (B, E, H, K) and Metabric 
cohort (C, F, I). Kaplan Meier plots display disease free (DFS) and overall survival (OS) along with the univariate COX-PH regression 
significance levels.
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cohorts, we were limited to systemically untreated samples 
of LN negative and ER positive patients. Moreover, 
the comparability of the included cohorts may not be 
optimal considering e.g. that only marginal clinical data 
were available for the Foekens et al. cohort or, that the 
Metabric cohort was quite heterogeneous. Furthermore, 
in all previously published studies considerable shorter 
follow-up times were available. These differences as 
well as variances in sample handling and differences 
in the miR purification protocol may have reduced the 
reproducibility across different studies. Result bias may 
further be caused by varying platform performance 
considering reproducibility, accuracy, detection rate, 
sensitivity and specificity [20, 23, 24]. Foekens et al. 

quantified miRs using a qPCR-based approach (TaqMan, 
Applied Biosystems) while D’Aiuto et al. used MicroRNA 
expression beadchips from Illumina. Interestingly, 
results for three out of four miRs identified by Foekens 
et al. were validated using the D’Aiuto et al. data set 
potentially indicating an improved comparability between 
technologies including PCR amplification steps. In 
comparison, data collected based on miR hybridization 
on customized arrays produced by Agilent (Metabric) and 
on our own arrays based on a probe library provided by 
Exiqon verified results for three of the seven suggested 
candidates. Mestdagh et al. analyzed the differential 
expression of two identical sample groups via 12 
platforms (applying qPCR, hybridization or sequencing 

Table 3: Overview summarizing expression and survival analysis for miRs identified by Foekens et al. [13]
Foekens et al.* OUH D’Aiuto et al. Metabric
identification validation validation validation

hsa-miR-7-5p

Diff. Exp. p-value up in MET 0.83
up in MET up in MET

0.0038 0.039

DFS
p-value ≤0.05 0.51 0.082 -
HR (CI) >1 0.75 (0.32–1.78) 1.68 (0.94–3.01) -

OS
p-value - 0.66 - 0.41
HR (CI) - 0.82 (0.34–1.97) - 1.23 (0.75–2.02)

hsa-miR-128-3p

Diff. Exp. p-value up in MET 0.61
up in MET

0.95
0.008

DFS
p-value ≤0.05 0.20 0.0033 -
HR (CI) >1 1.64 (0.77–3.47) 2.48 (1.35–4.55) -

OS
p-value - 0.18 - 0.31
HR (CI) - 1.70 (0.78–3.71) - 0.77 (0.47–1.27)

hsa-miR-210-3p

Diff. Exp. p-value up in MET 0.22
up in MET

0.78
0.031

DFS
p-value ≤0.05 0.83 0.070 -
HR (CI) >1 0.91 (0.39–2.14) 1.71 (0.96–3.07) -

OS
p-value - 0.83 - 0.15
HR (CI) - 0.91 (0.39–2.14) - 1.44 (0.88–2.35)

hsa-miR-516-3p

Diff. Exp. p-value up in MET
down in MET

0.089 -
0.0051

DFS
p-value ≤0.05 0.0068 0.090 -
HR (CI) >1 0.29 (0.12–0.71) 0.61 (0.34–1.08) -

OS
p-value - 0.0079 - -
HR (CI) - 0.26 (0.098–0.70) - -

*according to published results [13]; Diff. Exp.: Differential expression; MET: primary tumors from patients with relapse; 
HR: Hazard ratio; CI: 95% Confidence interval.
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for analysis) and detected 66 differentially expressed 
miRs by at least one platform [20]. However, only two of 
these miRs were concordantly detected as differentially 
expressed by all platforms [20]. Thus, platform-dependent 
false positive and negative hits are likely to occur and the 
careful selection of similar performing platforms may be 
critical for a robust validation of candidate miRs when 
using different cohorts. 

Previous studies further attempted to causally link 
the seven miR candidates to specific functions in breast 
cancer progression. For example, D’Aiuto et al. reported 
that the prognostic hsa-miR-30e-3p is functionally linked 
to the induction of epithelial-mesenchymal-transition 
(EMT) which is a prerequisite progress for tumor cell 
dissemination [14]. This result is in line with previous 
studies suggesting a critical role of the miR-30-family 
in EMT [25, 26]. We found high hsa-miR-548c-5p 
expression significantly associated with abridged disease 
free-survival. The prognostic role of this miR may 
even be independent of the receptor status or treatment, 
because Boukerroucha et al. identified a predictive role 
of hsa-miR-548c-5p in conjunction with three other 
clinic-histopathological parameters in triple negative 

breast cancer (TNBC) [27]. On the contrary, functional 
studies in endometrial, ovarian and liver cancer suggest 
that decreased hsa-miR-548c expression promotes cell 
migration and invasion potentially by silencing the EMT 
marker TWIST [28, 29]. Accordingly, further studies 
in ER positive breast cancers are required to verify the 
functional and prognostic role of these miRs. 

In comparison, miR-7 was shown to function 
as breast cancer invasion and metastasis inhibitor and 
to mediate cytotoxic T-lymphocyte-mediated lysis of 
breast cancer cells [10, 30]. Moreover, miR-7 was shown 
to suppress cell proliferation and induce apoptosis in 
different breast cancer cell lines [31]. Conversely, Foekens 
et al. associated a high expression of hsa-miR-7-5p with 
abridged disease free survival and; we found hsa-miR-7-5p  
significantly upregulated in metastasizing tumors of the 
D’Aiuto et al. cohort. Differences in receptor status, strand 
selection and endogenous expression may compromise 
comparability of these studies and may explain varying 
functional roles for miR-7 dependent on the examined 
cellular background.

MiR-210 has also extensively been analyzed in breast 
cancer and several studies associated miR-210 expression 

Figure 3: Scaled Schoenfeld residuals for hsa-miR-516-3p and survival analysis using two time intervals. The scaled 
Schoenfeld residuals (A, C) are shown by circles. The black line is the smoothed mean of the scaled Schoenfeld residuals while the 
corresponding 95% confidence interval is indicated by the dashed lines. The blue horizontal line corresponds to a hazard ratio of one, and 
the red horizontal line is the hazard ratio assessed by the univariable COX proportional hazard ratio model (0.29 and 0.26 for DFS and 
OS, respectively; Figure 2J). The vertical green line shows the time point upon which the hazard ratio shifts from a value >1 to a value <1, 
representing the time point when the prediction association changes. These time points were used in a subsequent landmark analysis to 
define two time intervals for disease-free (B) and overall survival analysis (D) in which the proportional hazard assumption was fulfilled.
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with breast cancer survival [9, 10, 12, 32]. However, we 
could not confirm the prognostic role of hsa-miR-210-3p in 
primary tumor samples although a significant differential 
expression was detected in local versus disseminating 
primary tumors [33]. Wang et al. performed a systematic 
meta-analysis of miR-210 in different cancer types and 
found no significant association with breast cancer [34]. 

Contradicting results were reported by Xie et al. and Hong 
et al. in two meta-analysis studies [35, 36]. However, all 
studies included mixed patient cohorts including treated 
patients and varying receptor status. The same is true for 
functional studies which linked miR-210 to treatment 
resistance, hypoxia and a cancer promoting role in ER 
negative breast cancers [10, 32]. 

Aberrant expression of miR-128 was reported in 
many different malignancies including e.g. breast, colon, 
lung, brain and pancreatic tumors [37, 38]. Buffa et al. 
significantly associated high hsa-miR-128a with reduced 
distant relapse free-survival in ER positive breast cancer 
samples receiving systemic adjuvant treatments [33]. They 
further confirmed their results via an integrative meta-
analysis and Lánczky et al. independently validated the 
predictive role of miR-128a [12, 33]. These findings are in 
good agreement with our results. However, these studies 
included treated patients and Masri et al. associated high 
miR-128 expression with letrozole resistance in breast 
cancer [39]. Consequently, the results may suggest that 
miR-128a may promote breast cancer recurrence by not 
only promoting metastasis formation but also by mediating 
treatment resistances.

Surprisingly, hsa-miR-125b-5p was neither 
differentially expressed nor significantly associated with 
survival in our study, although a tumor suppressive role 
of miR-125b was recurrently reported in cell line models 
[40, 41]. Moreover, miR-125b is part of a 10-miR classifier 
which significantly predicts 5-year distant relapse free 
survival in endocrine treated, hormone receptor positive and 
ERBB2 negative breast cancer patients [42]. In summary, 
miR-125b-5p may positively support endocrine treatments 
but may not be causal for the occurrence of metastases.

In comparison to the other analyzed miRs, little 
is known about the functional role of miR-516a. White 
et al. reported, that miR-516a is one out of three miRs 
regulating kallikrein 10 expression and cell proliferation 
in breast cancer [43]. The database Tarbase (http://
www.microrna.gr/tarbase) proposes sulfatase 1 (SULF1) 
as the only validated gene target of hsa-miR-516a-3p 
[44]. SULF1 was reported to be a tumor suppressor, 
and to be downregulated in primary breast cancer tissue 
[45]. Correspondingly, an upregulation of hsa-miR-
516a-3p is assumed to reduce SULF1 and the positive 
effects mediated by the gene which is contradicting our 
findings, that a low hsa-miR-516a-3p is associated with 
unfavorable outcome. However, our findings oppose the 
initial outcome association published by Foekens et al. 
[13]. Unfortunately, no patient specific expression data 

and clinical and pathological information were available 
for the Foekens et al. cohort which would allow us to 
re-analyze the data and to potentially point out causal 
difference in the cohort composition which may explain 
contradicting results. While this miR was not included in 
the Metabric study, an analysis in the independent D’Aiuto 
et al. cohort did not significantly indicate a beneficial up- 
or downregulation of the miR, although we observed a 
slight trend towards an advantageous high expression. 
However, follow up of patients was much longer in our 
study. Furthermore, we had to divide our data into two 
time intervals to not violate the proportional hazards 
assumption of the COX model. We observed, that high 
expression is potentially associated with a worse prognosis 
within the first years after diagnosis (3.35 and 4.5 years 
for DFS and OS, respectively), while thereafter high 
expression is significantly associated with prolonged 
survival. It is acknowledged, that the Foekens et al. cohort 
includes almost double as many patients as our cohort. 
However, by using the paired design we increased the 
prognostic power for our analysis as discussed above.

In conclusion, using data of four independent 
cohorts analyzed by different analysis platforms we 
collected further indications supporting the prognostic 
potential of hsa-miR-548c-5p, hsa-miR-7-5p, hsa-miR-
210-3p and hsa-miR-128-3p. In addition, a potentially 
time-dependent role was determined for hsa-miR-516a-3p.  
We exclusively selected systemically untreated, LN 
negative and ER positive breast cancer patients for a 
treatment independent analysis. The stringent selection 
limited the number of patients to be analyzed and may 
reduce the prognostic power of the study, however, only 
this particular patient group is suitable to identify miRs 
which can better classify low-risk breast cancer patients 
and thus have the potential as clinical marker to reduce 
overtreatment in the future. Nevertheless, further studies 
in large, homogeneous cohorts with standardized sample 
treatment and long follow up using accurate and selective 
platforms are required to eventually confirm the prognostic 
potential of these candidates for clinical use.

MATERIALS AND METHODS

Tumor biopsies

Frozen tumor biopsies were collected from 110 
lymph node negative and ER positive (measured by gene 
expression) patients who were diagnosed with breast 
cancer between 1980 and 1999 on the island of Funen, 
Denmark. All patients underwent surgery to remove 
the primary tumor, but none of the patients received 
systemic neoadjuvant or adjuvant therapy. Pathological 
examination of snap-frozen tumor samples was performed 
at the Department of Pathology at the Odense University 
Hospital, Denmark which confirmed a tumor cell content 
of more than 50% in all cases. Fifty-five patients developed 
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metastasis within 10 years after diagnosis, while 55 patients 
did not experience metastasis (followed for at least 8 years; 
mean follow up 19.6 years). Patient biopsies were matched 
according to tumor type, year of surgery, tumor diameter 
(range: 6–50 mm), age (range: 33–88 years), receptor status 
(ER, PR, n/a) and histological grade (grade 1–3 or n/a) 
(Table 1). All clinic-pathological information was extracted 
from the Danish Breast Cancer Cooperative Group (DBCG) 
database, the Funen pathology database, or the nationwide 
pathology database. The study was approved by the Danish 
National Committee on Health Research (S-VF-20020142). 
The study was retrospective and no informed consent 
was obtained from the patients involved in the study as 
approved by the Ethical Committee.

RNA extraction

Total RNA was isolated from the freshly frozen 
tumor biopsies with Trizol (Invitrogen) and further purified 
with the RNeasy micro kit (Qiagen), including DNase 
treatment. NanoDrop Spectrophotometer (NanoDrop 
Technologies) was used for RNA quantification. The 
quality of extracted RNA was assessed with Bioanalyzer 
2100 (Agilent Technologies) using the RNA 6000 Nano 
Kit (Agilent Technologies).

Microarray quantification and analysis

The miRCURY LNA microRNA array ready-to-
spot probe-set was purchased from Exiqon. The set 
contains capture-probes for 1212 human miRs based 
on the miRBase version 16 (http://www.miRbase.
org/) [19]. Briefly, the probes were spotted in triplets 
on CodeLink HD (SurModics) activated glass slides 
and post-processed according to the CodeLink 
protocol. The miRCURY Power labeling kit (Exiqon), 
miRCURY LNA Array hybridization buffer (Exiqon) 
and miRCURY LNA Array Washing buffer kit (Exiqon) 
were used for sample labelling with Hy3, hybridization 
and washing, respectively. Equal amounts of RNA from 
all included samples were pooled and used as common 
reference labeled with Hy5. Hybridization, washing, and 
scanning (Agilent G2565CA Microarray scanner) were 
performed according to the recommendations provided 
by Exiqon. 

Scanned images were imported into GenePixPro6.0 
software (Molecular Devices) for quality control and 
raw data extraction. The R-package limma was used 
for LOESS and quantile normalization of raw signal 
intensities, and the ComBat function embedded in the 
sva R-package was used for adjustment of the normalized 
intensities and to eliminate potential batch effects [46, 47]. 
Gene expression was initially defined as the ratio between 
Hy3 and Hy5 signal intensities. For the purpose of 
cross dataset miR expression comparability we further 
standardized these calculated ratios and used these 

values for differential expression and survival analysis. 
Microarray data have been deposited in NCBI’s Gene 
Expression Omnibus [48] and are accessible through GEO 
Series accession number GSE103161 (https://www.ncbi.
nlm.nih.gov/geo/query/acc.cgi?acc=GSE103161). 

Validation data acquisition 

Publicly available miR expression data published 
by D’Aiuto et al. were collected from NCBI’s Gene 
Expression Omnibus database (acc=GSE59829) [48]. 
Expression data published by Dvinge et al. and Curtis  
et al. (Metabric) were retrieved from the European 
Phenome-Genome Archive (https://www.ebi.ac.uk/ega/
home) after access was granted by the Metabric consortium 
[15, 16, 49]. For consistent miR nomenclature the 
R-package miRNAmeConverter was applied and MIMAT 
numbers were used as identifier in subsequent analysis [50]. 

Statistical analysis

Student’s t-tests were performed to analyze 
differential expression. For each of the seven miRs 
we divided the samples into groups with high and low 
expression using the median expression as cut off. The 
grouping was used for subsequent analyses using the COX 
univariable proportional hazard model [22]. 

Overall survival (OS) was defined from diagnostic 
date to death or loss of follow-up. Disease free survival 
(DFS) was defined from diagnostic date to metastasis 
recurrence or loss of follow-up. The Kaplan–Meier 
method was applied to describe the OS and DFS. 
Significant discrepancies of OS or DFS were assessed by 
univariable COX proportional hazard analysis [22, 51]. 
The proportional hazards assumption and time-dependent 
effects were examined by plotting the scaled Schoenfeld 
residuals to test for significant deviation from a zero 
slope, respectively [21]. Landmark analyses were applied 
to assess the hazard ratios during particular periods. The 
landmarks were defined as the time point upon which the 
Schoenfeld assessed Hazard Ratio (HR) shifts from >1 to 
<1, thus being (0–3.35 years and >3.35 years for DFS) 
and (0–4.5 years and >4.5 years for OS). This analysis 
therefore included patients who were event free at the 
start of each period, and being censored at the end of each 
period. All survival analyses were conducted using the 
survival R-package [22, 51]. All p-values below 0.05 were 
considered statistically significant. 
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