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ABSTRACT
For many years it was believed that each mature microRNA (miRNA) existed as a 

single entity with fixed endpoints and a ‘static’ and unchangeable primary sequence. 
However, recent evidence suggests that mature miRNAs are more ‘dynamic’ and that 
each miRNA precursor arm gives rise to multiple isoforms, the isomiRs. Here we report 
on our identification of numerous and abundant isomiRs in the lymphoblastoid cell lines 
(LCLs) of 452 men and women from five different population groups. Unexpectedly, 
we find that these isomiRs exhibit an expression profile that is population-dependent 
and gender-dependent. This is important as it indicates that the LCLs of each gender/
population combination have their own unique collection of mature miRNA transcripts. 
Moreover, each identified isomiR has its own characteristic abundance that remains 
consistent across biological replicates indicating that these are not degradation 
products. The primary sequences of identified isomiRs differ from the known miRBase 
miRNA either at their 5´-endpoint (leads to a different ‘seed’ sequence and suggests 
a different targetome), their 3´-endpoint, or both simultaneously. Our analysis of 
Argonaute PAR-CLIP data from LCLs supports the association of many of these newly 
identified isomiRs with the Argonaute silencing complex and thus their functional 
roles through participation in the RNA interference pathway.

INTRODUCTION

MicroRNAs (miRNAs) are small single-stranded 
noncoding RNAs of roughly 22 nucleotides (nts) in 
length that regulate their targets in a sequence-dependent 
manner and affect their roles through either degradation or 
translational repression [1, 2]. MiRNAs are ubiquitously 
expressed across cell types and found to regulate a diverse 
array of cellular processes in health and disease [3-6]. 

MiRNAs are transcribed as large primary transcripts 
(pri-mRNA) of RNA polymerase II, then processed into 
shorter ~70 nt hairpin loop precursors (pre-miRNAs) by 
the nuclear RNase III protein Drosha and DGCR8. Pre-
miRNAs are exported by Exportin 5 to the cytoplasm 
where they are further processed by another RNase III, 
Dicer, to generate the ~22 nt mature miRNA products. 
It has long been thought that each arm of the hairpin 
precursor miRNA gives rise to a single mature product 
that is then loaded onto the Argonaute (Ago) silencing 

complex [7]. However, recent advances in NGS have 
revealed that multiple distinct mature miRNA species can 
arise from the same hairpin arm, termed isomiRs. These 
sequence variants typically differ from the mature miRNA 
sequences currently in public databases such as miRBase 
[8] at either their 5´ or 3´ ends thereby increasing the 
diversity and complexity of the miRNA-ome. While the 
biological relevance of isomiRs is not fully understood, 
they have been shown to associate with Ago [9], which in 
turn suggests a functional role. 

Recent studies of isomiR expression have either 
focused on isomiRs of a single miRNA or on the 
isomiR expression patterns within a specific tissue. For 
example, a 5´-isomiR of miR-101 was observed to be 
ubiquitously expressed in several human tissues and 
cell lines [10]. Similarly, examination of isomiRs in 
peripheral blood mononuclear cells (PBMC) identified 
tissue specific isomiRs [11]. The use of next-generation 
sequencing in these studies enabled a preliminary isomiR 
characterization but the limited number of samples (four) 
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prevented a systematic analysis. In an effort to better 
characterize isomiR space, we used the recently reported 
short RNA profiles from lymphoblastoid cell lines (LCL) 
of 452 healthy men and women belonging to five different 
populations: Utah Residents with Northern and Western 
European ancestry (CEU), Finnish from Finland (FIN), 
British from England and Scotland (GBR), Toscani Italians 
(TSI), and Yoruban Africans from the city of Ibadan (YRI) 
[12]. Summarily, our results show that LCLs exhibit a 
considerable diversity in the isomiRs that arise from any 
given miRNA arm and that there are isomiR expression 
differences across population and gender boundaries.

RESULTS

In what follows, we will use the term isomiR to 

refer to the multitude of mature miRNA products that are 
produced from a given arm (e.g. the left arm or ‘5p’) of a 
given miRNA precursor (e.g. miR-155). Any two isomiRs 
will differ from one another at either their 5´ only, their 
3´ end only, or at both ends simultaneously. Clearly, if the 
miRBase reference miRNA arising from a given precursor 
arm is expressed it will be part of the isomiR collection 
that is associated with the arm.

Multiple isomiRs arise from miRNA precursor 
arms in LCLs

We analyzed all 452 unique datasets corresponding 
to 452 individuals (i.e. neither technical replicates nor 
population-dependent groups were considered in this step 
– see Materials and Methods) and identified 194 miRNA 

Figure 1 : MiRBase and isomiR boxplots. This Fig. shows boxplots for the miR-142-5p and miR-140-3p arms. The data was 
generated using the group of 452 unique samples (no technical replicates were included). The miRBase reference entry is shown in green 
whereas other detected isomiRs are shown in red. In the miR-142-5p case, the 5´ terminus of the first shown isomiR begins 2 positions 
before that of the miRBase reference whereas its 3´ terminus ends 3 positions before that of the miRBase reference. Analogously, in the 
miR-140-3p case, we identified 4 isomiRs whose 5´ and 3´ termini differ in various ways from those of the miRBase reference and whose 
abundance is consistently higher than the miRBase reference’s.
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precursor arms each of which gave rise to one or more 
significantly expressed mature miRNAs (Supp. File 2). 
These 194 arms correspond to 153 miRNA precursors. For 
each precursor arm, we only consider those isomiRs that 
contribute to the 95th-quantile of the reads that arise from 
the arm: doing so, we find a total of 445 unique isomiRs 
(i.e. an average of 2.29 isomiRs per identified arm). 

Could it be that the mature miRNA product 
variability that we observe within the span of a precursor 
arm is due to technical artifacts or random degradation? 
We assessed this possibility by examining isomiR 
expression in the sequenced technical replicates where 
five samples (one from each population) were sequenced 
a total of seven times each [12]. We used these replicates 
to determine the extent at which the expression of isomiRs 
remained consistent across datasets generated by the 
different sequencing centers. In particular, we calculated 
the Spearman and Pearson correlations for each pair of 
replicates following normalization and found the isomiR 
profiles to be remarkably consistent across the replicates 
(Supp. File 3 and Supp. File 4). 

The reference miRBase miRNA often differs from 
the most abundant isomiR in LCLs

Looking across all 452 analyzed datasets, we 
found that for 91 of the 194 precursor arms (46.9%) 
the most abundant isomiR at that arm differs from the 
corresponding miRBase reference miRNA (Table 1 and 
Supp. File 2). This most abundant isomiR differed from 
the miRBase entry at either the 3´ end only (79 of 91 
cases), or the 5´ end only (3 of 91 cases), or both ends 

(9 of 91 cases). Fig. 1 shows two characteristic examples 
for the miR-142-5p and miR-140-3p arms respectively: 
in each case the miRBase reference variant is shown in 
green. For both arms, some of the abundant isomiRs differ 
in both the 5´ and 3´ ends from the miRBase reference. 
In Supp. Fig. 1, we show box-plots for all 194 miRNA 
precursor arms. The corresponding expression values are 
listed in Supp. File 2. 

IsomiRs from LCLs are loaded on Argonaute

As mentioned above, we found 445 isomiRs 
that are produced from the 194 identified miRNA 
precursor arms. To generate independent corroborating 
support for these isomiRs, we sought evidence of 
their loading in Argonaute silencing complexes. We 
used a publicly available deep-sequencing collection 
(GEO reference: GSE41437) that was generated from 
LCL samples [13] after performing photoactivatable 
ribonucleoside-enhanced crosslinking and Argonaute 
(Ago) immunoprecipitation (Ago PAR-CLIP). For this 
step, we worked with only the subset of sequenced reads 
that a) we could map on the genome unambiguously and 
exactly (i.e. no matching errors permitted), and b) whose 
endpoints from the Ago PAR-CLIP data matched perfectly 
the endpoints of the 445 identified isomiRs. Furthermore, 
we only consider an isomiR to be significantly loaded on 
Ago if the read support reached statistical significance 
(pVal ≤ 0.05; truncated negative binomial distribution 
fitting) for that isomiR in at least one of the Ago 
PAR-CLIP datasets. The truncated negative binomial 
distributions were generated individually for each of the 
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Figure 2 : Differential expression of isomiRs across populations. A: Using samples from both genders, we identified differentially 
expressed isomiRs separately for each pair of populations. This figure shows the resulting heat-map for the identified isomiRs. Cells shown 
in light gray correspond to cases that did not reach statistical significance for the corresponding isomiR/population combination. All other 
cells correspond to statistically significant combinations with an associated FDR value ≤ 0.05. The color intensity scale is logarithmic 
(log2 base).  Note that the Fig. depicts redundant information in that all 5x4 population pairs are shown. B: This panel shows a boxplot for 
the miR-1304-3p arm within each of the five population groups (both genders): miR-1304-3p is more abundant in the YRI population. In 
particular, an isomiR variant that is 2 nts shorter on the 3´ end compared to the miRBase reference is also present in the YRI population and 
more abundant than the other variants. C: This panel shows a boxplot for the miR-143-3p arm within each of the five population groups 
(both genders): the reference miRBase entry and an isomiR variant that is longer on the 3´ end by 1 nt compared to the miRBase reference 
is more abundant in the CEU compared to the other four populations. 
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Ago PAR-CLIP datasets because the required number of 
reads needed to reach statistical significance is dependent 
on the number of sequenced reads for the dataset and 
consequently differs across datasets. Of the 134 miRBase 
reference miRNAs that are present in the 452 analyzed 
datasets, 73 (54.5%) are supported by the Ago PAR-CLIP 
data at the chosen threshold of statistical significance. 
Repeating the calculation for the remaining 311 isomiRs 
that differ from the miRBase miRNA reference, we find 
PAR-CLIP support for 139 (44.7%) of them (Supp. File 
10). In other words, the isomiRs that we have identified, 
whether they match the miRBase miRNA reference or 
not, receive similar levels of corroborating support by an 
independently generated Ago PAR-CLIP dataset as the 
known miRBase reference entries.

Some isomiRs exhibit population-dependent 
expression profiles

Not surprisingly, when considering the samples 
within and across population groups, we find that the five 
population groups show a very similar profile in terms 
of the numbers and endpoint characteristics (i.e. 5´ and/
or 3´ differences) of isomiRs that are present in their 
respective samples (Table 2 and Supp. File 5). Moreover, 
and not surprisingly, the five populations show extensive 
overlap in the identity of isomiRs that are present in 
each group (Table 3 and Supp. File 5). However, when 
we examine the expression of the statistically significant 
isomiRs we find that many are differentially expressed 
across different population boundaries. As can be seen 

in Fig. 2A and Supp. File 6, the statistically significant 
isomiRs exhibit expression that in some instances changes 
by as much as 8-fold (3 log2 units) between the two 
examined populations. Several isomiRs stand out in these 
comparisons with the ones from the right arm of miR-1304 
and the right arm of miR-143 being the most notable. The 
two isomiRs from the miR-1304-3p arm are between 5.6 
and 9.5 times more abundant in the YRI group compared 
to the other four populations with associated false 
discovery rate (FDR) values for the pair-wise comparisons 
ranging between 2.06 e-08 and 3.02 e-10 (Fig. 2B and 
Supp. File 6). Similarly, the two isomiRs produced from 
the miR-143-3p arm are much more abundant in the CEU 
group compared to the other four populations (between 
2.8 and 4.1 times) with associated FDR values for the four 
comparisons ranging between 1.66 e-02 and 5.18 e-03 
(Fig. 2C and Supp. File 6A). Supp. Fig. 2 shows in detail 
the results of the pair-wise population comparisons. The 
heat-map of Fig. 2 makes it apparent that a fair number 
of isomiRs are differentially expressed between any two 
of the five populations considered here; generally, the 
“distinguishing” isomiRs are different for each of the 10 
possible population pairs.

Some isomiRs exhibit gender-dependent 
expression profiles

Given that some isomiRs exhibit expression profiles 
that depend on the population, we hypothesized that some 
isomiRs may exhibit gender-dependent differences. 
To address this question, we examined single gender 
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isomiR expression across populations. Fig. 3A shows 
a heat-map of the results when only the expression 
profiles among the male members of each population are 
analyzed: there are 76 unique isomiRs whose expression 
levels show population-dependent differences that 

are statistically significant (FDR ≤ 0.05). Of these 76 
isomiRs, 68 (of which only 22 match a miRBase reference 
miRNA) exhibit a log2 fold change of 0.585 or higher. 
The complete list of isomiRs together with expression 
changes among populations and the associated FDR 

Figure 3 : Differential expression of isomiRs across populations by gender. Using samples of the same gender, we identified 
differentially expressed isomiRs separately for each pair of populations. This figure shows the resulting heat-map for the identified 
isomiRs. Cells shown in light gray correspond to cases that did not reach statistical significance for the corresponding isomiR/population 
combination. All other cells correspond to statistically significant combinations with an associated FDR value ≤ 0.05. The color intensity 
scale is logarithmic (log2 base). A: Result from processing only the male samples. B: Result from processing only the female samples. Note 
that each panel depicts redundant information in that all 5x4 population pairs are shown.
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values is shown in Supp. File 6B-C. Fig. 3B shows an 
analogous heat-map this time analyzing the expression 
profiles of only the female members of each population: 
the expression levels for 146 unique isomiRs show 
population-dependent differences that are statistically 

significant (FDR ≤ 0.05). Of these 146 isomiRs, 120 
(of which only 34 match a miRBase reference miRNA) 
exhibit a log2 fold change of 0.585 or higher. As can 
be seen from Fig. 3B and Supp. File 6C, the miR-143-
3p precursor arm (see above) is more abundant in CEU 

Figure 4 : Distribution of termini combination separately for each population and gender combination. Each isomiR 
is mapped to an (X, Y) point based on how its termini differ from those of the miRBase reference: negative (respectively positive) values 
indicate that the isomiR terminus is positioned to the left (respectively to the right) in the 5´3´ direction of the corresponding terminus of 
the miRBase reference. The X-axis shows differences between the 5´ terminus of the isomiR compared to 5´ terminus of the corresponding 
miRBase entry. Analogously, the Y-axis shows differences between the 3´ terminus of the isomiR compared to the 3´ terminus of the 
corresponding miRBase entry. Within an arm, each isomiR’s (X, Y) point has an associated height Z, whose value is between 0 and 1 and 
captures the isomiR’s portion of the contribution to the reads that arise from the arm. The Figure shows the contours of the mesh formed by 
these points and separately for each of the 10 gender/population pairs: most of the isomiRs differ by +/- 1 nt at either the 5´ terminus or 3´ 
terminus, or both (see also Supp. Figure 5).
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females (log2 fold change of 1.75 or higher with an 
associated FDR value ranging from 1.89 e-03 to 9.00 e-03) 
compared to the other four populations. However, and 
somewhat surprisingly, no isomiRs from the miR-143-3p 
arm show differential expression in any males-vs.-males 
population comparisons. On the other hand, the isomiRs 
from the miR-1304-3p arm are more abundant in YRI 
compared to the other four populations in both males-
vs.-males and females-vs.-females comparisons (log2 
fold change of 2.20 or higher with an associated FDR 
value ranging from 8.10 e-03 to 2.70 e-07). Supp. Fig. 3 
(males) and Supp. Fig. 4 (females) show the heat-maps 
for these population pairs in more detail. Details regarding 
the isomiRs within a population are listed in Supp. File 7 
(males) and Supp. File 8 (females). Additional examples 
of precursor arms that give rise to differentially expressed 
isomiRs include: miR-34a-5p (isomiRs are less abundant 
in YRI compared to the other four populations in only 
females-vs.-females comparisons; miR-221-3p and 
miR-222-3p (isomiRs from both loci are less abundant 
in CEU compared to the other four populations in only 
females-vs.-females comparisons), and other. Fig. 3 and 
Supp. File 6 make it evident that when comparing any 
two population groups there are many more isomiRs that 
are differentially expressed (and statistically significant) 
among females than are among males, an unexpected 
finding. Interestingly, and for all five populations, when 
we compared males vs. females within a population we 
did not find any isomiRs whose differential expression 
reached statistical significance.

IsomiRs exhibit more variation in their 3´ ends

In light of the fact that frequently the miRBase entry 
does not correspond to the most abundant variant from 
the corresponding arm, we sought to determine whether 
the observed isomiR variants exhibit specific preferences 
in their 5´ or 3´ termini. To this end, we examined how 
the isomiRs’ termini are distributed relative to those of 
the corresponding miRBase entries (Fig. 4 and Supp. 
Figure 5). Of the 445 unique isomiRs that we identified 
(Supp. File 2) 296 (67%) show 3´ changes whereas only 
39 (9%) show 5´ changes. Fig. 4 shows the contours of 
the resulting distributions while Supp. Figure 5 provides 
count and distribution information separately for the 5´ 
and 3´ terminus. Generally, the 5´ ends show a narrower 
range (+/-1 nt) of modifications compared to the 3´ ends 
(+/-3 nts) – see Supp. Figure 5. As can also be seen from 
Fig. 4, the distribution of isomiR types (5´ differences 
with respect to the miRBase reference, 3´ differences with 
respect to the miRBase reference, etc.) remains consistent 
across the five population groups. The findings indicate 
that the majority of the diversity in the observed isomiRs 
is the result of a concomitant diversity in the 3´ termini of 
the isomiRs.

GO term analysis for miR-1304-3p and miR-143-
3p

We took a closer look at the two miRNA precursor 
arms, miR-1304-3p (YRI vs. each of the other four 
groups) and miR-143-3p (CEU vs. each of the other four 
groups) that the above analysis highlighted as being most 
highly differentially expressed across population pairs. For 
the isomiRs arising from these two arms we used rna22 
(see Materials and Methods) to predict targets among the 
8,501 mRNAs that are expressed across the 452 analyzed 
datasets and whose RPKM value is ≥ 1/1024 of the 
RPKM for ACTB, i.e. 10 PCR cycles away from ACTB 
(data obtained from the Geuvadis project website http://
www.ebi.ac.uk/arrayexpress/files/E-GEUV-1/analysis_
results/). There are 2,355 predicted targets for miR-1304-
3p isomiRs and 2,358 predicted targets for miR-143-3p 
isomiRs. The complete list of results is shown in Supp. 
File 9. We generated GO terms for these targets using 
DAVID [14, 15] and clustered them using REVIGO [16]. 
We only considered terms that per DAVID analysis had an 
associated FDR value ≤ 0.05 and a fold enrichment ≥ 2.0. 
Summarily, among the predicted targets for miR-143-3p 
we find a strong enrichment for genes that participate 
in ribonucleoprotein complex biogenesis and mRNA 
splicing. Among molecular functions, enriched GO terms 
include helicase activity and nuclear hormone receptor 
binding. Among the pathways whose component genes 
were enriched among the predicted targets we find the 
one for ‘ubiquitin-mediated proteolysis.’ Analogously, for 
miR-1304-3p we find a strong enrichment for genes that 
participate in DNA replication, ribonucleoprotein complex 
biogenesis, mRNA metabolism and catabolism, RNA 
splicing, response to DNA damage etc. Among molecular 
functions, enriched GO terms include chromatic binding 
and helicase activity. Finally among the pathways whose 
component genes were enriched among the predicted 
targets we find the one for ‘spliceosome.’ As with miR-
143-3p, we only considered terms that per DAVID 
analysis had an associated FDR value ≤ 0.05 and a fold 
enrichment ≥ 2.0.

DISCUSSION

For a long time, miRNA research proceeded under 
the assumption that each arm of a miRNA precursor gives 
rise to a single mature miRNA [1, 7]. In recent years, the 
advent of next generation sequencing permitted the in-
depth exploration of the transcriptomes from many cell 
types. Some of the findings that emerged from these early 
studies began to challenge the notion of “one mature 
miRNA per precursor arm” [17]. However, the various 
analyses to date examined collections with relatively small 
numbers of samples thus making it difficult to draw general 
conclusions. The recent release of RNA-sequencing data 
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from the GEUVADIS project for 452 individuals presented 
us with an unprecedented opportunity to study the isomiR 
question in more depth. What makes this sample collection 
particularly appealing is that it comprises samples from a 
single cell type with both genders and five different human 
populations represented evenly.

The studies we were able to carry out add further 
strength to the emerging view that the concept of “mature 
miRNA” cannot be associated with a single sequence. 
Instead, as we find, multiple distinct mature miRNA 
products can arise from the same arm of a miRNA 
precursor (Fig. 1 and Supp. Figure 1). These ‘variants’ 
are not random degradation products or artifacts of the 
RNA sequencing step, but rather the result of apparently 
marshaled processing. This is evidenced by several 
observations: a) the isomiRs from a given precursor arm 
are the same, in terms of both composition and relative 
abundance across technical replicates from the same 
sample (Supp. File 3 and Supp. File 4); b) the isomiRs 
from a given precursor arm remain consistent across 
different population groups (Table 3) and across same-
gender individuals that belong to different populations 
(Supp. File 7 and Supp. File 8); c) the isomiRs from a 
given precursor arm also remain consistent between 
males and females that belong to the same population 
group (Supp. File 7 and Supp. File 8); lastly, d) many of 
the isomiRs we identified are also found to be part of the 

Ago silencing complex in Ago PAR-CLIP data that were 
independently generated from LCLs by a different group 
(Supp. File 10). 

Another and perhaps somewhat surprising 
observation relates to our finding that the miRBase 
reference entry is the most abundant variant among the 
mature products from a given precursor arm only ~53% 
of the time (Table 1). Additionally, we find that the 
majority of the produced variants result from differences 
in the 3´ terminus of the isomiR: in some isomiRs the 
terminus occurs before the terminus of the miRBase 
reference entry (in the 5´3´ direction) whereas in other 
it occurs after (Supp. Figure 1). In fact, the majority of the 
isomiR termini occur within a 5-nt window centered at 
the 3´ terminus of the miRBase entry. By comparison the 
5´ termini of the isomiRs show less variability with the 
majority of them occurring within a 3-nt window centered 
at the 5´ terminus of the miRBase entry (Fig. 4 and Supp. 
Figure 5). It is however possible that these observations 
are specific to the LCLs, and may not be mirrored in future 
studies involving other tissues and cell types. 

The samples we analyzed represent five distinct 
population groups; in turn, this allowed us to also examine 
the possibility of differences in isomiR expression 
across populations. Indeed, we found a few miRNAs 
to be statistically up-regulated in a single population 
compared to the remaining four populations (Fig. 2 



Oncotarget8799www.impactjournals.com/oncotarget

and Fig. 3). In particular, isomiRs from the miR-1304-
3p precursor arm, a locus previously associated with 
regulating enamel formation in Neanderthals [18], were 
significantly up-regulated in the YRI population (in both 
males and females) whereas isomiRs from the miR-143-
3p precursor arm were significantly up-regulated in the 
CEU population (but only in females). We generated 
target predictions separately for each isomiR from each of 
these arms and analyzed them with DAVID and REVIGO 
(Supp. File 9) and found that the predicted targets were 
enriched in several GO categories that among other 
included: helicase activity, nuclear hormone receptor 
binding, ribonucleoprotein complex biogenesis, mRNA 
splicing, DNA replication, response to DNA damage, etc. 
Even though the associated FDR values strongly argue 
for the findings’ statistical significance, the biological 
implications of the categories and pathways that emerge 
from this analysis is not currently understood. As these 
two miRNAs were population-specific and gender-specific 
respectively, there is the possibility that they may underlie 
various aspects of disease (e.g. differences in disease onset 
triggers, differences in disease progression, differences in 
response to specific therapies, etc.). For example, while 
the incidence of chronic lymphocytic leukemia is lower 
in African Americans than Caucasians, African Americans 
are more than twice as likely to die from the disease [19]. 

When we compared the levels of expression 
across population groups separately for each gender, 
we found many more isomiRs among females that were 
differentially expressed between population groups than 
among males. This result holds true for all pair-wise 
population group comparisons. The observed difference 
suggests that more of the contribution to the differential 
expression signal that is observed between populations is 
contributed by the female members of the population. 

A particular hallmark of miRNAs is their association 
with the Ago silencing complex that mediates the effect 
on their targets. Even though multiple mature products 
are expressed from a given miRNA precursor arm it is 
not clear how many of them are actually loaded onto the 
silencing complex. To investigate this we searched Ago 
PAR-CLIP datasets for the presence of the isomiRs we 
identified by analyzing these 452 datasets. As the Ago 
PAR-CLIP datasets were also from LCLs, it is reasonable 
to assume that they would have a similar isomiR 
expression profile, but that they may not necessarily 
express all of the isomiRs that we identified here. Our 
findings show that miRBase reference entries as well as 
the newly identified isomiRs are represented at roughly 
equal levels in the Ago PAR-CLIP data (Supp. File 10), 
which in turn suggests that in addition to the miRBase 
reference the isomiR variants can also be functionally 
active. One possible implication of this observation could 
be that the different isomiRs from the same precursor arm 
can work cooperatively to repress target genes or that they 
have slightly different targeting profiles that permit an 

increased diversity of the targeted transcripts [10, 20-22].
The samples we analyzed were sequenced in 

the context of the GEUVADIS project [12] and were 
originally collected as part of the HapMap [23] and 1000 
genomes projects [24]. Many of the samples have been 
in culture for many years (CEU and YRI are the oldest 
followed by TSI; FIN and GBR are most recent – see 
http://geuvadiswiki.crg.es/index.php). With that in mind 
one might argue that the findings regarding the isomiRs 
from the miR-1304-3p (YRI-vs.-others) and miR-143-3p 
(CEU-vs.-others) precursor arms are artifacts due to cell 
line age. We explain next why we believe this to not be 
the case.

For argument’s sake let us assume for the moment 
that the miRNA profile was affected in a tangible manner 
by the age of the CEU and YRI samples. It is reasonable 
to assume that such an effect would be systemic in nature 
impacting uniformly both the males and females of the 
CEU and YRI populations and many, if not all, of the 
expressed (protein-coding and non-coding) transcripts. 
This would mean that any would-be-systemically-
affected miRNAs should be identically present in both the 
male-vs.-male and female-vs.-female population group 
comparisons involving the CEU and YRI. However, the 
pair-wise comparisons for males-vs.-males (Supp. Figure 
3 and Supp. File 7) and females-vs.-females (Supp. Fig. 
4 and Supp. File 8) demonstrate that with regard to the 
miRNAs and isomiRs such a system-level impact is not 
supported by the data. Indeed, the isomiRs from the miR-
143-3p (CEU) and miR-1304-3p (YRI) arms are the only 
miRNAs distinguishing the older CEU and YRI samples 
from the remaining three younger FIN, GBR and TSI 
samples. Moreover, these two miRNAs exhibit differential 
expression when we compare the (older) CEU samples 
with the (older) YRI samples: had these two miRNAs 
been the result of cell line age they would not have been 
differentially expressed in the (older) samples of these 
two populations. Lastly, we stress that miR-143-3p is 
differentially expressed only in the females-vs.-females 
comparisons across population groups: had this been the 
result of sample age it should have been exhibited by 
both genders in CEU, but this is not the case. On a related 
note, it is worth noting that the original 492 samples were 
randomly distributed, cultured and processed at seven 
different European laboratories, a procedure that has 
quenched any signal that might have been contributed 
by random processes introduced during RNA extraction, 
RNA library preparation and sequencing. Taken together, 
the above observations argue against the possibility that 
these two differentially expressed miRNAs are the result 
of either the older age of the CEU and YRI samples, or of 
a processed or deep-sequencing artifact.

In summary, our analyses indicate that the concept 
of a mature miRNA product needs to be expanded to 
accommodate the findings that a single precursor arm 
gives rise to more products than the single reference 
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sequence that is currently listed in miRBase. These 
isomiR products are frequently more abundant than the 
miRBase reference entry. In terms of their composition, 
the isomiRs are produced in a consistent manner within 
and across genders, and within and across population 
groups. However, their relative expression levels are 
found to differ across gender and population boundaries. 
Naturally, in the absence of additional systematic analyses 
it is unclear how many and which ones of the similarities 
and differences we observed among the LCLs’ isomiRs 
will carry over to other tissues and cell types. In fact, it is 
conceivable that additional factors define the exact isomiR 
population from a given precursor arm and it could well be 
the case that different expression rules govern a given arm 
across different cell types.

METHODS

Samples analyzed

From the Geuvadis RNA sequencing project (http://
www.geuvadis.org/web/geuvadis/RNAseq-project) [12] 
we obtained the deep sequencing data for the 492 short 
RNA LCL samples. Among the 492 samples were 10 that 
did not pass quality control checks [12] and were removed 
from further consideration. Of the 482 samples, 452 are 
unique samples and represent five populations as follows: 
Utah Residents with Northern and Western European 
ancestry (CEU, 87 subjects), Finnish from Finland (FIN, 
93 subjects), British in England and Scotland (GBR, 94 
subjects), Toscani Italians (TSI, 89 subjects), and Yoruban 
Africans from the city of Ibadan (YRI, 89 subjects). The 
remaining 30 samples correspond to technical sequencing 
replicates comprising six additional sequencing runs for 
one sample from each of the five population groups (1 x 
5 x 6 = 30).

Sequence read mapping

Prior to mapping, adapters were removed and 
quality trimming was performed using the cutadapt tool 
[25] as we previously described [26, 27]. The sequenced 
reads were mapped, using Shrimp2 [28], to the GRCh37 
(hg19) reference genome allowing a mismatch rate of no 
more than 4% per the reads length, and no insertion or 
deletions. Only reads that were at least 16 nucleotides 
(nts) in length and mapped unambiguously to the genome 
were kept and used in our analyses: by doing so we ensure 
that we can unambiguously assign read counts to those 
genomic loci to which reads can be mapped. Details on the 
mapping statistics can be found in Supp. File 1.

Identification of isomiRs

We extracted the genomic location of each reference 
mature miRNA contained in Rel. 20 of miRBase [29] 
and flanked it by six nts on each side. Only reads that 
were wholly contained within this wider window were 
treated as belonging to a miRNA precursor arm and 
considered further. Distinct reads that had identical 5´ and 
3´ endpoints within a miRNA arm were combined into 
a single isomiR: the union of distinct categories that we 
formed at each miRNA arm comprised the collection of 
isomiRs arising from the arm. 

Description of our isomiR notation

To facilitate our labeling of the various isomiRs 
from a given precursor arm, e.g. miR-142-5p, we use a 
notation that uses the endpoints of the corresponding 
miRBase entry as a reference. If the 5´ or the 3´ terminus 
of the isomiR is to the left (i.e. upstream in 5´3´ 
direction) of the miRBase entry’s corresponding terminus, 
then we use a negative sign ( −) to indicate this. On the 
other hand, we use a positive sign (+) to indicate that 
the 5´ or the 3´ terminus of the isomiR is to the right (in 
the the 5´3´ direction) of the corresponding miRBase 
terminus. A number following the sign shows how many 
nucleotides away the isomiR’s terminus is with regard to 
the miRBase entry’s terminus. For example: [5´end−1]
[3´end+2] denotes an isomiR whose 5´ terminus begins 
one nucleotide to the left of the miRBase entry’s 5´ 
terminus and ends two nucleotides to the right of the 
miRBase entry’s 5´ terminus. 

Quantification of isomiR expression

The 482 samples were divided into the following 
groups: a) one subgroup comprised 452 samples and 
excluded all technical replicates; b) five subgroups 
each comprising a single sample from each of the five 
populations (YRI, CEU, FIN, GBR, and TSI) and its 
respective six technical replicates (35 samples in total); 
c) five subgroups each comprising all the samples 
(excluding the technical replicates) from each of the five 
populations at hand; and, lastly, d) ten subgroups per 
human population separated by gender and excluding 
the technical replicates (5 subgroups for male-only and 
5 subgroups for female-only representing a grand total of 
452 sets). 

The number of uniquely mapped sequence reads 
across the 482 LCL samples spans a wide range (~2 
to ~50 million reads). In order to enable comparisons 
of relative isomiR frequency across samples of such 
varying sequencing depth, we used R to perform quantile 
normalization [30] across the samples after passing to the 
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module the expression levels of each isomiR. For each 
miRNA precursor arm, we kept only those isomiRs that 
a) were in an arm where the top-isomiR had a normalized 
average of at least 25 reads per sample; and, b) the 
individual isomiR was within the 95th-quantile of reads 
for that arm; if no isomiRs of an arm satisfied these 
conditions, we discarded the arm. For each isomiR we 
kept we calculated a P-value using a one-sample t-test. 
This abundance-based thresholding is stringent and leaves 
us with approximately one third of the 644 miRNA arms 
described in [12] for this dataset.

Differential Expression

To evaluate whether isomiRs are differentially 
expressed across the various subgroups we used DESeq 
[31]. For each comparison, we adjusted for multiple-
testing using the Benjamini and Hochberg procedure and 
only considered an isomiR to be differentially expressed 
if the associated false discovery rate (FDR) was ≤ 0.05. 

Prediction and functional analysis of miRNA 
targets. 

MiRNA targets were predicted using the RNA22 
algorithm [32] – see also http://cm.jefferson.edu/rna22v2/ 
for an interactively accessible implementation – and 
targets were allowed to be present in the 5´UTR, CDS, 
and 3´UTR of the candidate mRNA. The predicted targets 
were analyzed further using DAVID [14, 15] and predicted 
gene ontology (GO) terms were clustered with REVIGO 
[16] to determine possible enrichment of GO terms among 
each miRNA’s predicted targets.
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