
Oncotarget9645www.impactjournals.com/oncotarget

Molecular characterization of breast cancer cell response to 
metabolic drugs

Lucía Trilla-Fuertes1,2, Angelo Gámez-Pozo1,2, Jorge M. Arevalillo3, Mariana Díaz-
Almirón4, Guillermo Prado-Vázquez1, Andrea Zapater-Moros1, Hilario Navarro3, 
Rosa Aras-López5, Irene Dapía6,7, Rocío López-Vacas1, Paolo Nanni8, Sara Llorente-
Armijo1, Pedro Arias6,7, Alberto M. Borobia9, Paloma Maín10, Jaime Feliú11,12,13, 
Enrique Espinosa11,12 and Juan Ángel Fresno Vara1,2,12

1 Molecular Oncology and Pathology Lab, Institute of Medical and Molecular Genetics-INGEMM, La Paz University Hospital-
IdiPAZ, Madrid, Spain 

2Biomedica Molecular Medicine SL, Madrid, Spain 
3Operational Research and Numerical Analysis, National Distance Education University (UNED), Madrid, Spain 
4Biostatistics Unit, La Paz University Hospital-IdiPAZ, Madrid, Spain 
5 Congenital Malformations Lab, Institute of Medical and Molecular Genetics-INGEMM, La Paz University Hospital, IdiPAZ, 
Madrid, Spain

6 Pharmacogenetics Lab, Institute of Medical and Molecular Genetics-INGEMM, La Paz University Hospital-IdiPAZ, Autonomous 
University of Madrid, Madrid, Spain 

7Biomedical Research Networking Center on Rare Diseases-CIBERER, ISCIII, Madrid, Spain 
8Functional Genomics Center Zurich, University of Zurich/ETH Zurich, Zurich, Switzerland 
9 Clinical Pharmacology Department, La Paz University Hospital School of Medicine, IdiPAZ, Autonomous University of 
Madrid, Madrid, Spain 

10 Department of Statistics and Operations Research, Faculty of Mathematics, Complutense University of Madrid, Madrid, 
Spain 

11Medical Oncology Service, La Paz University Hospital-IdiPAZ, Madrid, Spain
12Biomedical Research Networking Center on Oncology-CIBERONC, ISCIII, Madrid, Spain 
13Cátedra UAM-AMGEN, Universidad Autónoma de Madrid, Madrid, Spain

Correspondence to: Juan Ángel Fresno Vara, email: juanangel.fresno@salud.madrid.org 
Keywords: breast cancer; flux balance analysis; metabolism; perturbation experiments; proteomics

Received: October 29, 2017    Accepted: January 03, 2018    Published: January 08, 2018
Copyright: Trilla-Fuertes et al. This is an open-access article distributed under the terms of the Creative Commons Attribution Li-
cense 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author 
and source are credited.

www.impactjournals.com/oncotarget/                   Oncotarget, 2018, Vol. 9, (No. 11), pp: 9645-9660

ABSTRACT

Metabolic reprogramming is a hallmark of cancer. It has been described that breast 
cancer subtypes present metabolism differences and this fact enables the possibility of 
using metabolic inhibitors as targeted drugs in specific scenarios. In this study, breast 
cancer cell lines were treated with metformin and rapamycin, showing a heterogeneous 
response to treatment and leading to cell cycle disruption. The genetic causes and 
molecular effects of this differential response were characterized by means of SNP 
genotyping and mass spectrometry-based proteomics. Protein expression was analyzed 
using probabilistic graphical models, showing that treatments elicit various responses 
in some biological processes such as transcription. Moreover, flux balance analysis 
using protein expression values showed that predicted growth rates were comparable 
with cell viability measurements and suggesting an increase in reactive oxygen species 
response enzymes due to metformin treatment. In addition, a method to assess flux 
differences in whole pathways was proposed. Our results show that these diverse 
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approaches provide complementary information and allow us to suggest hypotheses 
about the response to drugs that target metabolism and their mechanisms of action.

INTRODUCTION

Breast cancer is one of the most prevalent cancers 
in the world [1]. In clinical practice, breast cancer is 
divided according to three biomarkers, estrogen receptor 
(ER), progesterone receptor (PR) and Her2; into positive 
hormonal receptors (ER+), HER2+ and triple negative 
(TNBC), characterized by a lack of expression of these 
receptors. These biomarkers are associated with specific 
treatments. ER+ tumors are treated with selective ER 
modulator or aromatase inhibitors [2, 3] and Her2 tumors 
are treated with antibodies against this receptor [4]. 
However, TNBC tumors don´t have a specific treatment.  
In addition to the clinical classification, molecular profiles 
based on mRNA expression are also established [5]. 

Reprogramming of cellular metabolism is a 
hallmark of cancer [6]. Normal cells obtain energy mainly 
from mitochondrial metabolism, but cancer cells show 
increased glucose uptake and fermentation into lactate, 
which is known as the Warburg effect or aerobic glycolysis 
[7]. Cancer cells also exhibit increased glutamine uptake 
to maintain the pool of nonessential amino acids and to 
further increase lactate production [8]. In addition, we 
previously observed significant differences in glucose 
metabolism between two of the main breast cancer 
subtypes: ER+ and TNBC [9, 10]. 

Metabolic alterations enable the possibility of using 
metabolic inhibitors as targeted drugs. Metformin (MTF), 
a drug for diabetes, has begun clinical trials in cancer 
patients [11]. It activates AMP-activated protein kinase 
and subsequently inhibits mammalian target of rapamycin 
(mTOR) [12].  On the other hand, everolimus, a rapamycin 
analog, has clinical activity and has been approved for 
use in patients with breast cancer and other tumors [13]. 
Rapamycin (RP) or sirolimus was the first available 
mammalian target of rapamycin (mTOR) inhibitor.

High-throughput mass spectrometry-based 
proteomics allow the quantification of thousands of 
proteins and the acquisition of direct information about 
biological process effectors. Combined with probabilistic 
graphical models (PGM), proteomics enables the 
characterization of various biological processes between 
different conditions using expression data without other a 
priori information [9, 10].

Flux Balance Analysis (FBA) is a widely used 
approach for modeling biochemical and metabolic 
networks in a genome scale [14–16]. FBA calculates 
the flow of metabolites through metabolic networks, 
allowing the prediction of growth rates or the rate of 
production of a metabolite. It has traditionally been used 
to estimate microorganism growth rates [17]. However, 
with the appearance of complete reconstructions of human 
metabolism, FBA has been applied to other areas such as 

the modelling of red blood cells metabolism [18] or the 
study of the Warburg effect in cancer cell lines [19]. 

In the present study, we used proteomics and 
computational methods, such as PGM and a genome-scale 
model of metabolism analyzed using FBA, to explore the 
molecular consequences of metformin and rapamycin 
treatment in breast cancer cell lines.

RESULTS

Design of the study 

We studied response against MTF and RP in six 
breast cancer cell lines, establishing sub-lethal doses to 
perform subsequent perturbation experiments. On the 
other hand, we studied single nucleotide polymorphisms 
(SNP) to check if the heterogeneity to treatment  response 
observed among breast cancer cell lines can be associated 
to genetic causes. Then, perturbation experiments 
followed by mass spectrometry-based proteomics were 
done to characterize these differences at the molecular 
level. Differential protein expression patterns were 
analyzed and probabilistic graphical models (PGM) and 
flux balance analysis (FBA) were performed in order 
to characterize the molecular consequences of response 
against MTF and RP (Figure 1). SNP genotyping was 
used to study genetic variants associated with response 
and proteomics data were used to complement this 
information, study functional differences by probabilistic 
graphical models and improve prediction accuracy of 
FBA. PGM allowed characterizing differences due to the 
treatments at functional level and FBA was useful to study 
effects in the metabolic pathways.  These approaches 
provide complementary information about genetic causes 
and molecular effects respectively.  

Breast cancer cell lines showed heterogeneous 
response when treated with drugs against 
metabolic targets

First, we evaluated the response of ER+ and TNBC 
breast cancer cell lines treated with two drugs targeting 
metabolism, metformin (MTF) and rapamycin (RP). Cell 
viability was assessed for six breast cancer cell lines, 
three ER+ (T47D, MCF7 and CAMA1) and three TNBC 
(MDAMB231, MDAMB468 and HCC1143). Dose-
response curves for each drug treatment in each cell were 
calculated (Tables 1 and 2). A heterogeneous response 
was observed among breast cancer cell lines treated 
with a range of MTF and RP concentrations (Figure 2). 
Regarding RP, this heterogeneous response is related to 
breast cancer subtypes, showing an increased effect over 
ER+ cell line viability compared with those of TNBC.
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SNP genotyping of breast cancer cell lines

SNP genotyping was performed to evaluate the 
association of polymorphisms to MTF and RP treatment 
response. Polymorphisms previously related to these drugs 
sensitivity were studied using a custom expression array. 
Regarding the response to MTF, polymorphism rs2282143 
in SLC22A1 was detected in homozygosis in MDAMB468 
cells. This SNP appears with a frequency of 8% in the 
black population, which is the population origin of this 
cell line, and it is associated with decreased clearance of 
MTF. On the other hand, the rs628031 polymorphism, 
also in SLC22A1, was found in homozygosis in MCF7 
and HCC1143 cells and in heterozygosis with a possible 
duplication in MDAMB468 cells. The presence of this 
polymorphism has been associated with a decreased 
response to MTF (PharmGKB; www.pharmgkb.org) 
(Supplementary Table 1). 

Regarding the response to RP, MDAMB468 cells 
present a polymorphism in heterozygosis in CYP3A4 
(rs2740574), which has been previously related to a 
requirement for an increased dose of RP as compared with 
a wild-type homozygote (PharmGKB; www.pharmgkb.
org). Additionally, rs2868177 SNP in POR gene was 
detected in heterozygosis in hormone receptor-positive cell 
lines. The relationship of rs2868177 with RP or another 
rapalog has not been previously described, although it is 
demonstrated that POR regulates CYP3A family [20]. On 
the other hand, rs1045642 SNP in ABCB1 gene appears in 
heterozygosis in all ER+ cell lines, but its effect regarding 
RP concentration is controversial (PharmGKB; www.
pharmgkb.org) (Supplementary Table 1).

Molecular characterization of breast cancer 
cell lines response to treatment with drugs 
against metabolic targets using perturbation 
experiments and proteomics

SNP genotyping did not fully explain the 
heterogeneous response between cell lines to MTF and 

RP treatment, thus we characterized the molecular basis 
of this heterogeneous response using proteomics in a 
perturbation experimental setting. Six breast cancer cell 
lines, treated or not with suboptimal concentrations of 
MTF and RP (40 mM of MTF [except for MDAMB468, 
in which a 20 mM concentration was used] and 625 nM of 
RP) were analyzed in duplicate using shotgun proteomics. 
Raw data normalization was performed adjusting by 
duplicate values as previously described [9]. Mass 
spectrometry-based proteomics allowed the detection 
of 4052 proteins presenting at least two unique peptides 
and detectable expression in at least 75% of the samples 
(Supplementary Table 2). No decoy protein passed 
through these additional filters. Label-free quantification 
values from these 4052 proteins were used in subsequent 
analyses.

We first identified proteins with differential 
expression between the treated and the control cells. 
Proteins with delta expression values between the control 
and treated cells higher than 1.5 or lower than −1.5 
were identified for each cell line/treatment combination 
(Supplementary Tables 3 and 4). Then, gene ontology 
analyses of either increased or decreased proteins was 
performed. Regarding MTF treatment, MCF7 cells 
showed decreased expression of proteins related to 
mitochondria and cell cycle and increased expression 
of proteins involved in mitochondria and cytoskeleton 
as majority ontologies. T47D cells presented increased 
expression of proteins mostly related to mitochondria and 
the Golgi apparatus. CAMA1 proteins showing differential 
expression did not shown overrepresented functions. 
MDAMB231 cells showed decreased expression of 
proteins mostly related to mitochondria. MDAMB468 
cells presented decreased expression of proteins also 
related to mitochondria, and increased expression in 
proteins mainly related to the extracellular matrix. Finally, 
HCC1143 showed decreased expression in proteins, 
mostly related to mitochondria and mRNA processing, 
and increased expression in proteins related to cytosol and 
protein binding. 

Figure 1: Workflow followed in this study.
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Differentially expressed proteins were compared 
with gene interaction information contained in the 
Comparative Toxicogenomics Database. PIR, RELA, 
SIRT5, CMBL, PPP4R2 and MYD88 showed decreased 
expression, whereas SIRT2, SERPINE1 and HTATIP2 
proteins showed increased expression in cells treated with 
MTF in both the database and in our experiments in at 
least one cell line. 

Concerning RP treatment, MCF7 showed 
decreased expression in proteins mainly related to 
cellular transport and an increased expression in 
proteins related to the mitochondrial matrix. T47D 
presented decreased expression in proteins involved 
in cell division and an increase in proteins related to 
lysosomes. CAMA1 had a decrease in expression of 
proteins associated with mRNA processing, splicing 
and mitochondria and an increase in the expression of 
proteins related to mitochondria, apoptosis processes and 
especially with the role of mitochondria in the apoptotic 
pathway. MDAMB231 had a decrease in proteins 
related to mRNA processing and cytoskeleton and an 
increase in proteins related to exosomes. MDAMB468 
proteins showing differential expression did not shown 
overrepresented functions. Lastly, HCC1143 showed a 
decreased expression in proteins related to lysosomes 
and an increased expression in proteins related to 
mitochondria.

Gene interaction information contained in the 
Comparative Toxicogenomics Database showed a decrease 
in CDK4, CKS1B, COL1A1, IGFBP5, KIFC1, mTOR 
and SCD expression and an increase in CASP8, NR3C1, 

PKP4, RPS27L, TEAD1 and XIAP due to RP treatment 
in both the database and in our experiments in at least one 
cell line.

Then, we applied linear regression models using 
protein expression data to discover molecular markers 
predicting the response to MTF and RP treatment. 
MMGT1, IDH1, PSPC1 and TACO1 showed the 
strongest correlation with the response to MTF 
(Supplementary Table 5), whereas ACADSB, CCD58, 
MPZL1 and SBSN correlated with the response to RP 
(Supplementary Table 6).

The next step was to explore molecular functions 
and biological pathways deregulated by MTF and 
RP treatment. Protein expression data from treated 
and untreated cells were used to build a probabilistic 
graphical model without other a priori information. 
The resulting graph was processed to seek a functional 
structure (Figure 3), i.e., whether the proteins included in 
each branch of the tree had some relationship regarding 
their function, as previously described [9]. Thus, we 
divided our graph into 36 branches and performed gene 
ontology analyses. Twenty-nine of them had a significant 
enrichment in proteins related to a specific biological 
function.

Functional node activity was calculated for each 
branch with a defined biological function using protein 
delta values between control and treated cells. MTF 
treatment caused decreased activity in mitochondria B, 
mRNA processing, DNA replication and ATP binding 
functional nodes in all cell lines (Supplementary Figure 1). 
In the case of RP treatment, decreased activity was 

Table 1: Cell viability measurements in MTF treated cells 

Cell viability measurements in six breast cancer cell lines treated with MTF (0–160 mM). Red-white-blue color scale.

Table 2: Cell viability measurements in RP treated cells

Cell viability measurements in six breast cancer cell lines treated with RP (0–10,000 nM). Red-white-blue color scale.

MTF mM 0 5 10 20 40 80 160
MCF7 100.00 135.07 95.00 61.49 30.61 28.36 2.47
T47D 100.00 85.74 70.15 59.87 42.11 7.10 0.00
CAMA1 100.00 88.08 112.76 93.70 108.67 63.25 3.49
MDAMB231 100.00 65.08 58.36 57.78 37.82 11.45 1.77
MDAMB468 100.00 40.05 55.39 21.82 1.31 1.71 0.00
HCC1143 100.00 105.48 85.25 73.19 52.89 20.49 0.00

RP nM 0 156.25 312.5 625 1250 2500 5000 10000

MCF7 100.00 29.36 22.34 31.62 19.88 16.29 7.53 3.32

T47D 100.00 33.02 33.76 43.74 24.39 17.73 8.69 11.15

CAMA1 100.00 70.22 46.25 45.99 26.28 22.46 13.45 7.71

MDAMB231 100.00 79.92 82.09 67.84 62.16 62.43 31.95 24.50

MDAMB468 100.00 48.25 48.51 71.92 75.75 52.74 55.31 4.49

HCC1143 100.00 125.74 136.39 137.53 144.66 130.58 85.55 24.85
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observed in mRNA processing node activity in all cell 
lines (Supplementary Figure 2).

Functional node activities were then evaluated 
using multiple linear regression models to explore the 
relationship between functional deregulation and MTF/
RP treatment. The response to RP treatment was explained 
using metabolism A and B node activities (adjusted  
R2 = 0.955). Metabolism A node is primarily related to 
fatty acid biosynthesis and pyrimidine metabolism and 
Metabolism B node is related to glycolysis, oxidative 
phosphorylation and carbon metabolism (Supplementary 
Table 7). The response to MTF could not be predicted 
using this approach.

Cytometry experiments showed cytostatic effects 
of metformin and rapamycin treatment in breast 
cancer cells

The proteomics analysis workflow and gene 
ontology of delta values suggested that MTF and RP 
cause cell cycle alterations due to the recurrent replay of 
cell cycle category in ontology analyses. To confirm this 
hypothesis, flow cytometry assessment of the cell cycle 
was performed. MCF7 and MDAMB231 cells treated 
with MTF showed an increased proportion of G2/M cells 
when compared with the control, suggesting a cell cycle 
arrest in the G2 phase. However, CAMA1 cells show an 
increase in G1 phase percentage. Regarding RP, the ER+ 
cell lines MCF7 and T47D treated with RP presented 
an increased percentage of G0/G1 cells when compared 
with the control, suggesting a cell cycle arrest in G1. On 
the other hand, the HCC1143 cycle showed an increase 
in G2 percentages (Figure 4, Supplementary Table 8). 

Flux balance analysis predicts alterations in 
growth rate in metformin-treated cells 

To evaluate the impact of MTF and RP treatment on 
cellular metabolism, an FBA, including proteomics data 
from perturbation experiments, was applied to estimate 

cell growth rates for both control and treatment conditions. 
FBA can be used to evaluate a metabolic computational 
model to obtain a prediction of the tumor growth rate. 
This analysis can incorporate gene or protein expression 
data to improve prediction accuracy. Protein data allows 
constraining 2414 reactions of the 4253 reactions 
contained in Recon2, which have a defined gene-protein-
reaction (GPR) rule, which include information of the 
genes/proteins involved in each enzymatic reaction. FBA 
predicts a lower growth rate in TNBC and MCF7 cell lines 
treated with MTF compared with control cells. However, it 
predicts a higher growth rate in the case of CAMA1 cells 
treated with MTF (Supplementary Table 9). FBA predicts 
no differences in growth rate between the control and the 
RP-treated cells.

FBA growth predictions match with 
experimental data from breast cancer cell 
cultures

Growth studies in ER+ (MCF7 and T47D) and 
TNBC (MDAMB231 and MDAMB468) cell lines were 
performed to validate FBA predictions using a dynamic 
FBA cell growth model. The starting concentration of 
glucose in medium (200 mg/dl) was incorporated into the 
dynamic FBA inputs.  Initial experimental cell density 
was estimated by direct counting of seeded cells in the 
delimited area and used as a function input (MCF7= 
37, T47D= 31, MDAMB231= 30 and MDAMB468 
= 58 cells respectively). Growth rate predictions were 
comparable with experimental measurements in cell 
cultures over 72 hours (Figure 5). The highest deviation 
in absolute values is observed in MDAMB468 cells, 
whereas MCF7 predictions coincided with experimental 
observations. 

Flux activity characterization

In order to compare fluxes from complete metabolic 
pathways between untreated and treated cell lines, a new 

Figure 2: Dose-response curves. Dose-response curves of breast cancer cell lines treated with (A) MTF (0–160 mM) or (B) RP 
(0–10,000 nM). ER+ cell lines are represented as discontinuous lines and TNBC cells as continuous lines.
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method named flux activities was proposed. Flux activities 
were calculated as the sum of the fluxes of each reaction in 
each pathway defined in the Recon2. Then, flux activities 
were used to build linear regression models to predict 
response. Pathways related to glutamate and pyruvate 
metabolism were related to response to MTF (adjusted  
R2 =1) (Supplementary Table 10). In the case of RP, 
pathway fluxes that predict response against RP are 
cholesterol metabolism and valine, leucine and isoleucine 
metabolism (adjusted R2 = 1) (Supplementary Table 11).

Flux analyses predict activation of ROS enzymes 
by metformin

With the aim of identifying reactions that changed as 
a consequence of treatment, we performed a Monte Carlo 
analysis and chose the solution with the maximum sum of 
fluxes because it was representative of protein data (i.e., if 
a protein was measured, it indicated that the protein must 
be used by the cell). After that, we applied flux variability 
analysis (FVA) to calculate the possible maximum and 
minimum fluxes for each reaction, and therefore, the range 
of fluxes for each reaction. Next, we selected reactions 
showing a flux change between the control and the treated 
cells over 95% of this range. As long as FBA provides a 
unique optimal tumor growth rate, multiple combinations 
of fluxes can lead to this optimal value. Therefore, 

we confirmed that the results from the maximum flux 
solution were consistent throughout the multiple-solution 
landscape using a Monte Carlo approach to study a range 
of representative flux solutions from all possible solutions 
that optimize the tumor growth rate. Of all the candidates 
evaluated, we would like to highlight that FBA predicts 
a null catalase flux in control cells with the exception of 
HCC1143 cells, showing constitutive catalase activation. 
In MDAMB231 and MCF7 cell lines treated with MTF, 
the model predicts an activation of this reaction, whereas 
CAMA1 cells showed no response to MTF treatment 
regarding catalase activation (Supplementary Figure 3, 
Supplementary Files 1–12). 

Additionally, our model predicted that superoxide 
dismutase (SPODM) fluxes were increased in MCF7 
and HCC1143 cell lines treated with MTF, but not in 
MDAMB231 cells. Predictions for CAMA1 cells showed 
high SPODM fluxes in both control and MTF treated cells 
(Supplementary Figure 4 and Supplementary Files 1–12).

Finally, the Monte Carlo approach predicted 
an increase in nitric oxide synthase flux and, as a 
consequence, an increase in nitric oxide (NO) production 
due to MTF treatment (Supplementary Figure 5).

On the other hand, proteomics data showed an 
increased expression of catalase in cells treated with 
MTF, with the exception of the CAMA1 cell line 
(Supplementary Table 8). It also showed an increased 

Figure 3: Probabilistic graphical model. Probabilistic graphical model using protein expression data of control and treated breast 
cancer cell lines. Gray nodes lack a specific function.
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expression of SPODM in cells treated with MTF, 
although, SPODM expression was generally lower 
in MDAMB231 cells than in the rest of the cell lines 
(Supplementary Table 12). No protein expression data 
from NO were obtained.

Superoxide dismutase measurements confirm 
superoxide dismutase activation predictions

SPODM activities were measured in the control 
and in the MTF-treated cells using an enzyme activity 

Figure 4: Percentages of cells in each cell cycle phase obtained by flow cytometry analyses.

Figure 5: Experimental measurements of cell growth over 72 hours and a model simulation of growth during the same 
time period.
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assay. With the exception of the MCF7 cell line, model 
predictions were confirmed. In HCC1143, SPODM 
activity is similar between the control and the treated cells. 
On the other hand, MDAMB231 had the lowest SPODM 
activity, as shown in model predictions, and CAMA1 cells 
had the highest SPODM activity in the control and in the 
MTF-treated cells, as predicted in the model (Table 3).

DISCUSSION

In this study, drugs targeting metabolism elicited 
changes related to cell cycle and oxidative stress in breast 
cancer cell lines. A high-throughput proteomics approach, 
coupled with a metabolism computational model, was 
useful to predict most of these changes and propose new 
mechanisms of action and effects of these drugs. To our 
knowledge, this is the first study that combines proteomics 
data with this type of computational analyses to study 
drug’s mechanism of actions in breast cancer. However, 
FBA was successfully used in ovarian cancer cells to 
propose new therapeutic targets and to study the effect of 
drugs targeting metabolism and their synergies [21].

In previous studies, we observed significant 
differences between ER+ and TNBC glucose metabolism, 
which showed lactate production to be higher in TNBC 
cells than in ER+ cells [9]. These metabolic alterations 
suggest the possibility of using drugs against metabolic 
targets in patients with breast cancer. 

Our results show that breast cancer cells’ response 
to drugs targeting metabolism is heterogeneous. MTF 
treatment showed a broad effect on cell proliferation, with 
CAMA1 cells being the most resistant to this treatment. 
In the case of RP, the response depends on breast cancer 
subtype; it is effective in ER+ cell lines but not in those 
of TNBCs, resembling clinical results (a derivative of RP 
is used in women with hormone-receptor-positive breast 
cancer) [13]. 

With the aim of studying polymorphisms that 
could explain this heterogeneous cell response, an SNP 
array was used. Therefore, the high sensitivity to MTF 
showed by MDAMB468 cells could be partly due to 
rs2282143 SNP in the SLC22A1 carrier, which is related 
to decreased clearance of MTF. In addition, SLC22A1 
rs628031, previously associated with a poorest response 
against MTF, was presented as homozygotic in the 
MCF7 and HCC1143 cell lines. ER+ cell lines presented 
heterozygosis in the ABCB1 rs1045642 polymorphism, 
although the effects of this polymorphism in RP treatment 
response are not yet clear. In CYP3A4, rs2740574, which 
is related to higher requirement of sirolimus, is shown as 
heterozygotic in the MDAMB468 cell line. 

We discovered several differences between the 
MTF-treated cells and the control cells. Some of these 
differential proteins identified matched with described 
interactions in the Comparative Toxicogenomics Database, 
such as increased expression of SIRT2 and HTATIP2 and 

decreased expression of SIRT5, PPP4R2 and MYD88 
proteins due to MTF treatment. Increased SIRT2 protein 
expression induced by MTF treatment has been previously 
described [22]. SIRT2 also enhances gluconeogenesis, 
plays an important inhibitory role in inflammation and 
elevates ROS defense [23]. The effect of increased ROS 
stress response complies with our model predictions. 
Moreover, MTF treatment results in decreased SIRT5 
expression [22]. This decrease is also related to differences 
observed in flux predictions between treated and control 
cells. It has been reported that SIRT5 is involved in the 
regulation of SPODM 1 activity [24], in accordance with 
our FBA prediction of SPODM activation in response to 
ROS stress in cells treated with MTF. On the other hand, 
TACO1, PSPC1, IDH1 and MMGT1 protein expression 
predict response to MTF treatment. IDH1 mutations were 
previously related to hypersensitivity to biguanides [25]. 
PGM have shown that MTF treatment caused a decreased 
node activity in mRNA processing, DNA replication, 
mitochondria B and ATP binding nodes.

We also found several differences concerning RP 
treatment, such as an increased expression of NR3C1 
and RPS27L proteins and a decreased expression of 
CKS1B, COL1A1, IGFBP5, SCD, mTOR and CDK4 
proteins, as previously reported [26]. CDK4/6 inhibition 
robustly suppressed cell cycle progression of ER+/HER2- 
cellular models and complements the activity of limiting 
estrogen [27]. RP treatment also results in decreased 
expression of CKS1B mRNA [28]. Knockdown of CKS1 
expression promotes apoptosis of breast cancer cells [29]. 
RP decreased expression of KIFC1 mRNA [30], whose 
overexpression is pro-proliferative [31]. RP treatment 
also results in increased activity of the NR3C1 protein 
[32]. NR3C1 encodes the glucocorticoid receptor, which 
is involved in the inflammation response and which 
has an anti-proliferative effect [33]. RP enhances TP73 
binding to the RPS27L promoter, a direct p53 target, and 
consequently promotes apoptosis [34]. RP inhibits SCD 
mRNA expression through TP73 [35]. 17-β-estradiol 
induces SCD expression and the modulation of cellular 
lipid composition in ER+ cell lines and is necessary for 
estrogen-induced cell proliferation [36]. Overall, as these 
results showed, an anti-proliferative effect was provoked 
by RP treatment. Finally, RP also decreases mTOR-related 
protein levels [37–39]. Additionally, ACADSB, CCDC58, 
MPZL1 and SBSN protein expression predicts response 
to RP treatment. ACADSB affects valine and isoleucine 
metabolism [40], which is one of the pathways related 
to response to RP in flux activity analyses, as we will 
explain later. Probabilistic graphical models showed that 
RP treatment caused decreased node activity in mRNA 
processing. Additionally, metabolism A and B node 
activities accurately predict the response in cells treated 
with RP.

Proteomics coupled with gene ontology analyses 
allowed us to explore protein expression changes between 
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control and treated cells, suggesting that treatment with 
these drugs affects cell cycle progression. Therefore, the 
cell cycle was further assessed using flow cytometry. A 
cell cycle arrest in the G2/M phase was confirmed in all 
the MTF-treated cells except CAMA1, in which MTF had 
no effect on cell viability. Additionally, ER+ cells treated 
with RP (but not TNBC cells) had cell cycle arrest in G0/
G1, which was confirmed at the cell proliferation level. 
It is known that mTOR controls cell cycle progression 
through S6K1 and 4E-BP1 [41]. Additionally, G0/
G1 cell cycle arrest was previously described in MCF7 
cells treated with RP [42]. Therefore, MTF and RP have 
cytostatic effects in breast cancer cell lines and cause a cell 
viability reduction, coupled with a disruption of the cell 
cycle. However, this response is diverse between various 
breast cancer cell lines.

On the other hand, FBA has traditionally been 
used in microbiology to study microorganism growth. 
This approach has recently been applied to study the 
Warburg effect [19]. We have developed a genome-scale 
cancer metabolic model that uses protein expression 
data to predict tumor growth rate. Previous studies have 
described cancer metabolic models using gene expression 
data [19, 43, 44]. Our model, however, used a whole 
human metabolism reconstruction and proteomics data 
to improve predictive accuracy. We assessed the model 
reliability by growth experimental studies in ER+ (MCF7 
and T47D) and TNBC (MDAMB231 and MDAMB468) 
cells. This approach allows new hypotheses and provides 
a global vision of metabolism, and has been previously 
used to characterize metabolism in samples from patients 
with breast cancer, which enables us to address clinically 
relevant questions [10].

Model growth rate predictions were consistent with 
changes detected in viability assays in the cells treated 
with MTF. We explored the global flux for each pathway, 
calculating flux activities to identify metabolic pathways 
showing different behavior between the MTF-treated cells 
and the control cells. The pathways related to response to 
MTF treatment were glutamate and pyruvate metabolism. 
The pathways related to RP treatment response were 
valine, leucine and isoleucine metabolism and cholesterol 

metabolism. Although it is difficult to make comparisons 
between flux patterns, pathway flux activities could be a 
useful approach to understanding changes between various 
conditions.

Moreover, by using an FVA coupled with the 
Monte Carlo approach, an activation of enzymes related 
to ROS stress response associated with MTF treatment 
could be predicted. Catalase and SPODM activation by 
MTF have been described in other scenarios [45, 46] 
and, as previously mentioned, concurs in most cases with 
differences shown in protein expression, although this 
relationship is not always direct. For instance, SPODM 
showed a 1.25-fold increase in protein expression, 
but no increment at the flux level, because fluxes are 
conditioned not only by their own restrictions, but also 
by bounds from adjacent reactions. In addition, catalase 
and SPODM fluxes appear to be related to cell viability. 
For instance, CAMA1 cells treated with MTF did not 
show an increased catalase flux, perhaps due to the 
discrete effect of MTF treatment on CAMA1 viability. 
Some of these predictions have been verified in the 
SPODM activity assay. In general, SPODM activity 
measurements were consistent with FBA predictions. 
Variations between FBA predictions and SPODM 
activities could be due to the fact that FBA only take 
into account metabolic pathways. On the other hand, our 
model predicts an increase in nitric oxide synthase flux 
in MCF7 cells treated with MTF, as has been previously 
described in diabetic rats [47]. An increase in nitric oxide 
synthase implies a higher NO concentration, related to 
apoptosis processes and cytostatic effects in tumor cells, 
whereas low NO concentrations are associated with cell 
survival and proliferation [48]. This nitric oxide synthase 
activation could be related to the reduced proliferation 
observed in MCF7 cells treated with MTF. The fact that 
this effect was only predicted in MCF7 could be due to 
heterogeneity in the response mechanisms against this 
drug in various cellular contexts, and could be related 
to the observed differences in cell proliferation. It is 
remarkable that although no information about nitric 
oxide synthase abundance was provided by proteomics, 
our model reflects differences at the flux level in this 

Table 3: Superoxide dismutase activity assay measurements

Cell line Superoxide dismutase activity (%)
MCF7 Control 96.44%
MCF7 MTF 90.76%
CAMA1 Control 99.01%
CAMA1 MTF 97.09%
MDAMB231 Control 68.17%
MDAMB231 MTF 49.82%
HCC1143 Control 83.30%
HCC1143 MTF 86.44%

The experiment was performed in triplicate and one of the representative measurements is shown.
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process, suggesting that both approaches, proteomics and 
flux balance analysis, offer complementary information.

To summarize our results, mitochondria and 
ATP binding node activities calculated by PGM 
functional nodes suggested that MTF effect takes place 
at mitochondria, a well-known fact [49]. As shown in 
FBA results, it also appears to increase ROS enzymes.  
Additionally, in MCF7 cells, an increase of nitric oxide 
synthase was predicted. Susceptibility to MTF treatment 
shown by MDAMB468 cells could be related to a 
SLC22A1 SNP. As consequence of these events, MTF 
caused a heterogeneous effect on cell proliferation, 
consistent with a cell cycle arrest in the G2/M phase. .

On the other hand, RP treatment exerts greater effect 
on the cell proliferation of ER+ cells, mediated by a G0/
G1 cell cycle arrest, as previously described [25]. This 
susceptibility of ER+ cell lines to RP treatment could be 
due to a SNP related to higher drug concentration. Finally, 
our results suggest that valine and isoleucine metabolism 
could be deregulated by RP treatment. 

Our study has some limitations. FBA provides 
an optimal biomass value, but multiple combinations 
of fluxes leading to this optimum are possible, making 
assessing differential pathways between conditions 
difficult. In our study, this limitation was solved using 
resampling techniques; however, improvement of 
computational processes is still necessary. Regarding 
proteomics experiments, although they can improve 
model accuracy, because they allow direct measurement 
of enzyme levels, at this moment this approach can only 
provide values for about 57% of Recon2 reactions with 
the known GPR rule. Gene expression, however, with the 
limitation of being an indirect measurement of enzyme 
abundance, provides almost the full picture. Strikingly, 
FBA was not able to reflect cell viability changes due to 
RP treatment. Despite the potential of the FBA approach, it 
only takes into account differences at the metabolic level. 
It is well known that mTOR inhibition leads to massive 
changes in cell homeostasis; thus, it appears reasonable 
that modeling changes at the metabolism level alone could 
not predict these differences.

In this study, we propose a workflow to study 
response against drugs targeting metabolism using 
different experimental and computational methods that 
allow proposing new hypotheses and characterizing this 
response at molecular, functional and metabolic levels 
providing a whole vision of the process. Moreover, we 
have characterized differential protein expression patterns 
between cells treated with drugs targeting metabolism and 
control cells. We have also developed a computational 
workflow to evaluate the impact of metabolic alterations 
in tumor and cell growth rates, using proteomics data. 
Growth rates predicted by our model matched the viability 
results observed in vitro with drug exposure. In addition, 
probabilistic graphical models are useful to study effects 
related to biological processes instead of considering 

individual protein or gene expression patterns. Our 
holistic approach shows that various analyses provide 
complementary information, which can be used to suggest 
hypotheses about drug mechanisms of action and response 
that deserve subsequent validation. Finally, this type of 
analysis, when fully developed and validated, could be 
used to study metabolic patterns from tumor samples with 
a different response against drugs targeting metabolism.

MATERIALS AND METHODS

Cell culture and reagents

The ER+ breast cancer cell lines MCF7, T47D and 
CAMA1 and the triple-negative breast cancer cell lines 
MDAMB231, MDAMB468 and HCC1143 were cultured 
in RPMI-1640 medium with phenol red (Biological 
Industries), supplemented with 10% heat-inactivated fetal 
bovine serum (Gibco), 100 mg/mL penicillin (Gibco) 
and 100 mg/mL streptomycin (Gibco). All the cell lines 
were cultured at 37° C in a humidified atmosphere with 
5% (v/v) CO2 in the air. The MCF7, T47D and MDA-
MB-231 cell lines were kindly provided by Dr. Nuria 
Vilaboa (La Paz University Hospital, previously obtained 
from ATCC in January 2014). The MDAMB468, CAMA1 
and HCC1143 cell lines were obtained from ATCC 
(July 2014). Cell lines were routinely monitored in our 
laboratory and authenticated by morphology and growth 
characteristics, tested for Mycoplasma and frozen, and 
passaged for fewer than 6 months before experiments. The 
MTF (Sigma Aldrich D150959) and RP (Sigma Aldrich 
R8781) were obtained from Sigma-Aldrich (St. Louis, 
MO, USA).

Cell viability assays

The cells were treated with MTF and RP at a range 
of concentrations to establish an IC50 for each cell line. 
Approximately 5000 cells per well were seeded in 96-
well plates. After 24 h, an appropriate concentration of 
drug was added to the cells, which were incubated for a 
total of 72 h. Untreated cells were used as a control. The 
CellTiter 96 AQueous One Solution Cell Proliferation 
Assay (Promega) kit was used for the quantification 
of cell survival after exposure to the drugs. After 72 
h of incubation with the drug, CellTiter 96 AQueous 
One Solution was added to each well following the 
manufacturer’s instructions, and absorbance was measured 
on a microplate reader (TECAN). Experiments were 
performed in triplicate. IC50 values were calculated using 
the Chou-Talalay method [50].

DNA extraction and SNP genotyping

DNA was extracted from untreated cells using 
the ISOLATE II RNA/DNA/Protein Kit (BIOLINE) 
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following manufacturer’s instructions. We used TaqMan 
OpenArray technology on a QuantStudio 12K Flex 
Real-Time PCR System (Applied Biosystems®) with a 
custom SNP array format, which allows simultaneous 
genotyping of 180 SNPs in major drug metabolizing 
enzymes and transporters (PharmArray®). Information 
about the pharmacogenetic variants associated with 
RP and MTF response was gathered mostly from the 
variant and clinical annotations in the Pharmacogenomics 
Knowledge Base (PharmGKB; www.pharmgkb.org). 
The final selection of SNPs for our study was as follows: 
rs2032582, rs1045642, rs3213619 and rs1128503 in the 
ABCB1 gene; rs55785340, rs4646438 and rs2740574 in 
CYP3A4; rs776746, rs55965422, rs10264272, rs41303343 
and rs41279854 in CYP3A5; rs1057868 and rs2868177 in 
POR for RP; and rs55918055, rs36103319, rs34059508, 
rs628031, rs4646277, rs2282143, rs4646278, rs12208357 
in SLC22A1 and rs316019, rs8177516, rs8177517, 
rs8177507 and rs8177504 in SLC22A2 for MTF. 
Molecular analyses for rs34130495 and rs2740574 were 
performed by classic sequencing because these probes 
were not originally included in our custom SNP array 
design.

Perturbation experiments

Suboptimal concentrations (IC70 or higher) were 
chosen in order to perform perturbation experiments 
(MTF 40 mM except for MDAMB468 20 m, RP 625 nM).  
Experiments were done per duplicate for each condition. 
Approximately 500,000 cells per well were seeded in 
6-well plates. Twenty-four hours later, drugs against 
metabolism were added. After additional 24 h, proteins 
were extracted using the ISOLATE II RNA/DNA/Protein 
Kit (BIOLINE). Protein concentration was determined 
using the MicroBCA Protein Assay Kit (Pierce-Thermo 
Scientific). Protein extracts (10 µg) were digested 
with trypsin (Promega) (1:50). Peptides were desalted 
using in-house-produced C18 stage tips, then dried and 
resolubilized in 15 µl of 3% acetonitrile and 0.1% formic 
acid for MS analysis. 

Liquid chromatography - mass spectrometry 
shotgun analysis 

Mass spectrometry analysis was performed on a Q 
Exactive mass spectrometer coupled to a nano EasyLC 
1000 (Thermo Fisher Scientific). Solvent composition 
at the two channels was 0.1% formic acid for channel A; 
and 0.1% formic acid, 99.9% acetonitrile for channel B. 
For each sample, 3 μL of peptides were loaded on a self-
made column (75 μm × 150 mm) packed with reverse-
phase C18 material (ReproSil-Pur 120 C18-AQ, 1.9 μm, 
Dr. Maisch GmbH) and eluted at a flow rate of 300 nL/
min at a gradient from 2% to 35% B in 80 min, 47% B 
in 4 min and 98% B in 4 min. Samples were acquired 

in a randomized order. The mass spectrometer was 
operated in data-dependent mode, acquiring a full-scan 
MS spectra (300−1700 m/z) at a resolution of 70,000 at 
200 m/z after accumulation to a target value of 3,000,000, 
followed by higher-energy collisional dissociation (HCD) 
fragmentation on the 12 most intense signals per cycle. 
The HCD spectra were acquired at a resolution of 35,000 
using normalized collision energy of 25 and a maximum 
injection time of 120 ms. The automatic gain control was 
set to 50,000 ions. Charge state screening was enabled, and 
single and unassigned charge states were rejected. Only 
precursors with intensity above 8300 were selected for 
MS/MS (2% underfill ratio). Precursor masses previously 
selected for MS/MS measurement were excluded from 
further selection for 30 s, and the exclusion window was 
set at 10 ppm. The samples were acquired using internal 
lock mass calibration on m/z 371.1010 and 445.1200.

Protein identification and label-free protein 
quantification

The acquired raw MS data were processed by 
MaxQuant (version 1.4.1.2), followed by protein 
identification using the integrated Andromeda search 
engine. Each file is kept separate in the experimental 
design to obtain individual quantitative values. The 
spectra were searched against a forward Swiss-Prot human 
database, concatenated to a reversed decoyed FASTA 
database and common protein contaminants (NCBI 
taxonomy ID9606, release date 2014-05-06). Methionine 
oxidation and N-terminal protein acetylation were set 
as variable modification. Enzyme specificity was set to 
trypsin/P allowing a minimal peptide length of 7 amino 
acids and a maximum of two missed cleavages. Precursor 
and fragment tolerance was set to 10 ppm and 20 ppm, 
respectively, for the initial search. The maximum false 
discovery rate (FDR) was set to 0.01 for peptides and 
0.05 for proteins. Label-free quantification was enabled, 
and a 2-minute window for match between runs was 
applied. The requantify option was selected. For protein 
abundance, the intensity (Intensity) as expressed in the 
protein groups file was used, corresponding to the sum 
of the precursor intensities of all identified peptides for 
the respective protein group. Only quantifiable proteins 
(defined as protein groups showing two or more razor 
peptides) were considered for subsequent analyses. 
Protein expression data were transformed (hyperbolic 
arcsine transformation), and missing values (zeros) were 
imputed using the missForest R package [51]. The protein 
intensities were normalized by scaling the median protein 
intensity in each sample to the same values. Then values 
were log2 transformed.

All the mass spectrometry raw data files acquired 
in this study may be downloaded from Chorus (http://
chorusproject.org) under the project name “Metabolism 
targeting in breast cancer cells”. The peptides output file 
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from the MaxQuant analysis is provided as supplementary 
material (Supplementary Table 2).

Gene ontology analyses

Protein expression patterns were compared between 
the control and treated cells, and deltas were calculated for 
each drug in each cell line by subtracting control protein 
expression from treated cell protein expression values. 
Gene ontology analyses were performed to determine 
differential functions between the control and the treated 
cells. For this, we selected protein showing a change in 
expression values (delta) higher than 1.5 or lower than 
-1.5; this delta value was calculated for each protein as 
the treated cell expression value minus the control cell 
expression value. Protein-to-gene ID conversion were 
performed using Uniprot (http://www.uniprot.org) and 
DAVID [52]. The gene ontology analyses were performed 
using the functional annotation chart tool provided by 
DAVID. We used “homo sapiens” as a background list and 
selected only GOTERM-FAT gene ontology categories 
and Biocarta and KEGG pathways. Functional categories 
with p < .05 and a FDR below 5% were considered as 
significant.

Probabilistic graphical models, functional node 
activity measurements and response predicted 
models

Network construction was performed using 
probabilistic graphical models compatible with high 
dimensional data using correlation coefficients as 
associative measures as previously described [9]. To build 
this model, protein expression data without other a priori 
information was used. grapHD package [53] and R v3.2.5 
[54] were employed to build the model.

The resulting network was split into several 
branches and a gene ontology analysis was used to explore 
the major biological function for each branch, defining 
functional nodes. Again, gene ontology analyses were 
performed in DAVID webtool [52] using “homo sapiens” 
as background and GOTERM-FAT, Biocarta and KEGG 
categories. Functional node activity was calculated as 
the mean delta between treated and untreated cells of all 
proteins related to the assigned majority node function. 
In order to relate drug response to functional processes, 
multiple linear regression models were performed using 
IBM SPSS Statistics.

Cytometry experiments

Some 500,000 cells were seeded in each well per 
duplicate. Twenty-four hours later, drugs were added and, 
after 72 h, the cells were fixed in ethanol and marked with 
propidium iodide. Cells were acquired using a FACScan 
cytometer equipped with a blue laser at a wavelength of 

488 nm. Acquired data were analyzed using BD CellQuest 
Pro software, first filtering cells by size and complexity in 
order to exclude debris, and then excluding doublets and 
triplets by FL2-W/FL2-A.

Flux balance analysis and E-flux algorithm

FBA was used to build a metabolic computational 
model that predicts growth rates. FBA calculates the 
flow of metabolites through metabolic networks and 
predicts growth rates or the rate of production of a 
given metabolite. It was performed using the COBRA 
Toolbox  v2.0 [55] available for MATLAB and the human 
metabolism reconstruction Recon2 [56]. MATLAB 
R2014b and glpk solver were used. The biomass reaction 
proposed in Recon2 was used as an objective function 
representative of growth rate in tumor cells. Proteomics 
expression data were included in the model by solving 
GPR rules and using a modified E-flux algorithm [57]. 
Measuring GPR rule estimation values was performed 
using a variation of the method described by Barker 
et al. [58]. As described in previous works [10], the 
mathematical operations used to calculate the numerical 
value were the sum of “OR” expressions and the minimum 
of “AND” expressions. Finally, the GPR rule values, aj, 
were normalized to a [0, 1] interval, using a uniform 
distribution formula. The normalized values have been 
used to establish both new lower and upper reaction 
bounds. If the reaction is irreversible the new bounds are 
0 and aj, and if the reaction is reversible the new bounds 
are - aj and aj (Supplementary Figure 6, Supplementary 
File 13).

Metabolism model validation 

In order to validate model predictions we used 
dynamic FBA, which allows the prediction of cell 
growth during a period of time [43] and experimental 
growth studies of cell lines were performed. Dynamic 
FBA consists of an iterative approach based on a quasi-
steady state assumption [59]. MCF7, T47D, MDAMB468 
and MDAMB231 were seeded at an initial cell density 
of 1,000,000 cells. Cells within the same area were 
counted once a day for 3 days. To perform the dynamic 
FBA, experimental cell density at the beginning and 
experimental measured glucose concentration in the 
medium were used as inputs in the computational 
simulation. Glucose presented in the medium was 
measured using an ABL90 FLEX blood analyzer 
(Radiometer). dynamicFBA function implemented in 
COBRA Toolbox was used. The simulation was performed 
for a time of 72 hours as the cell density experimental 
measurements.
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Flux activities

With the aim of comparing the activity of the 
various pathway fluxes between the control and the treated 
cells, flux activity was calculated for each condition. Flux 
activity was defined by the sum of fluxes for all reactions 
involved in one pathway as defined in the Recon2. Then, 
linear regression models were performed.

Flux variability analysis and the Monte Carlo 
approach 

One obvious limitation to the FBA approach is that 
this analysis provides a unique optimal tumor growth rate, 
however, multiple combinations of fluxes can lead to this 
optimal value. In order to evaluate a representative sample 
of these multiple solutions, a Monte Carlo approach [60] 
was used to compare differential fluxes between treated and 
untreated cells. The solution showing the maximum sum 
of all the fluxes was then used to calculate the flux change 
between the control and the treated cells. This criterion 
was selected under the premise that if a protein was 
experimentally measured it was because that protein was 
going to be used by the cell; thus, maximum flux solution 
picks up all measured proteins. On the other hand, FVA 
provides the possible maximum and minimum fluxes for 
each reaction; therefore, the flux range for each reaction. 
This range was used to calculate the flux change between 
the control and the treated cells for a given reaction as a 
percentage of the flux range for that reaction. Reactions 
showing a flux change between the control and the treated 
cells over 95% of this range were identified for each 
condition. Monte Carlo results for these reactions were 
used to check if maximum solution flux is representative 
of the most frequent solution flux for this reaction.

Superoxide dismutase activity assay

To validate some of our model hypotheses, a 
SPODM activity assay was performed in triplicate, using 
the Superoxide Dismutase Assay Kit (Sigma-Aldrich, 
19160). Some 500,000 cells per well were seeded, and 
after 24 h, MTF was added at 40 mM (except for the 
MDAMB468 cell line, in which a 20 mM concentration 
was used). Twenty-four hours later, SPODM activities 
were measured following the manufacturer’s instructions.

Statistical analyses and software suites

Dose-response curves were constructed with 
GraphPad Prism 6. Gene and protein interactions for each 
drug were obtained from the Comparative Toxicogenomics 
Database (http://ctdbase.org/) [61]. Linear and multiple 
regression models were built using IBM SPSS Statistics.
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