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ABSTRACT

Pancreatic cancer is known for its propensity to metastasize. Recent studies have 
challenged the commonly held belief that pancreatic cancer is a stepwise process, 
where tumor cells disseminate late in primary tumor development. Instead it has 
been suggested that pancreatic tumor cells may disseminate early and develop 
independently and in parallel to the primary tumor. Circulating tumor cells can be 
found in most patients with pancreatic cancer, even in those with localized stage. 
Also, recent phylogenetic analyses have revealed evidence for a branched evolution 
where metastatic lineages can develop early in tumor development. In this Review, 
we discuss current models of pancreatic cancer progression and the importance of 
the tumor microenvironment, in order to better understand the recalcitrant nature 
of this disease. 
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INTRODUCTION

Pancreatic cancer is a devastating disease with 
a high mortality rate. Due to late symptoms, the vast 
majority of patients are deemed inoperable at the time of 
diagnosis as a consequence of locally advanced tumors 
or distant metastases. The 5-year survival rate is less than 
5%, and even in patients who undergo surgical resection, 
the prognosis is poor and recurrence of the disease is 
common [1]. Despite advances in the understanding of 
genetic and epigenetic alterations involved in pancreatic 
tumorigenesis [2–6], the diagnosis and therapy of this 
disease still remain an unmet health care need.

Most deaths due to pancreatic cancer are due to 
metastatic disease. In such a scenario, understanding 
pancreatic cancer progression becomes important. This 
has resulted in two fundamental models of metastatic 
progression. The traditional model places the genetic 
development of metastatic founder cells within the 

primary tumor. Disseminated tumor cells are thought to 
appear late in tumor development [7]. A recent model, 
on the other hand, suggests early dissemination of cancer 
cells and independent progression of metastases [8]. 

Common to both models is the emphasis on the 
tumor microenvironment, both locally and at ectopic sites. 
The pancreatic tumor microenvironment is comprised of 
tumor cells, and a variety of stromal or non-malignant 
cells including stellate cells [9–11], inflammatory and 
immune cells [12–14], as well as blood vessels [15–17], 
extracellular matrix proteins [18–20] and tumor-derived 
exosomes [21, 22]. It is created and shaped during tumor 
progression due to the tumor-host interface, leading to 
a unique microecology that plays a major role in tumor 
growth, metastasis and response to therapy [23].

Here, we review recent advances in the pathology 
and molecular genetics of pancreatic cancer, shedding 
new light on pancreatic cancer progression and factors 
contributing to disease aggressiveness. A better 
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understanding of pancreatic cancer development and 
progression may ultimately lead to more effective 
diagnostic and therapeutic strategies.

DYNAMICS OF PANCREATIC CANCER 
PROGRESSION

Metastasis is the dissemination and growth of 
neoplastic cells in an organ distinct from that in which 
they originated. A number of steps are required to take 
place for metastasis to occur, including the ability of 
cancer cells to reach and survive in the bloodstream, 
and settle in distant organs. Only a small fraction of the 
cancer cells that reach the bloodstream are able to form 
metastases. In order to do so they must be able to interact 
with the new microenvironment of the distant organ and 
adapt to the pre-metastatic niche [24, 25].

The common view of pancreatic cancer pathogenesis 
has long been a stepwise progression into metastatic 
disease, as depicted in Figure 1. Pancreatic cancer has 
been suggested to be an evolutionary disease, obeying 
the principles of Darwinian evolution. The progression of 
pancreatic cancer is divided into three major evolutionary 
stages: i) a driver gene mutation leading to tumor 
initiation, ii) clonal expansion and iii) dissemination of 
malignant cells into the microenvironment of the primary 
tumor and distant sites [26]. In this conceptual model, 
distant metastasis is the final step in the evolution of 
pancreatic cancer [7].

During recent years, however, a new model of the 
metastatic process in pancreatic cancer has gained interest. 
According to this model, high metastatic capability might 
actually be a native feature of some pancreatic tumors, 
challenging the linear progressive model [8, 27]. The 
parallel model suggests that tumor cells metastasize 
early during the tumorigenesis, and continue to evolve 

independently at distant sites (Figure 2). Of note, 
circulating tumor cells have been found in most patients 
with pancreatic cancer, even when the disease was 
classified as localized by current staging systems [28–30]. 
Furthermore, it has been found that metastatic lineages 
can occur early in tumor development and develop from 
divergent lineages within the primary tumor [31]. What 
are the consequences of the parallel progression model? It 
means that not even radical surgery prevents development 
of potential metastases from early disseminated cancer 
cells (Figure 3). Until we have the necessary tools to 
detect the disease before it becomes invasive, pancreatic 
cancer must be viewed upon and treated as a systemic 
disease at the time of diagnosis.

TUMOR BIOLOGY

The current TNM staging system is the gold 
standard for determining prognosis and directing treatment 
in pancreatic cancer. The size of the primary tumor has 
a fundamental impact on staging. However, previous 
studies have shown that even the smallest of tumors are 
able to metastasize. The relationship between the primary 
tumor size and distant metastatic rates and survival was 
recently evaluated in a large population-based study [32]. 
A total of 58,728 patients with pancreatic cancer from 
the Surveillance, Epidemiology and End Results (SEER) 
database were analyzed. It was found that the rate of 
distant metastasis increased in a non-linear fashion with 
increasing size of the primary tumor. Importantly, these 
data showed that as much as one third of the minimal 
tumors (1-5 mm) already were associated with distant 
metastases. Clearly, pancreatic cancer is a heterogeneous 
disease, and some tumors progress rapidly, while others 
behave in a more indolent fashion [33]. Many attempts 
have been made to subclassify pancreatic tumors at the 

Figure 1: Traditional model of pancreatic cancer progression. In the linear progression model accumulation of genetic and 
epigenetic changes occurs over a long period of time and metastases develop in a late phase when the tumor has reached a detectable size.
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molecular level [2, 34, 35], but still no subclassification 
has yet received clinical translation.

THE MICROENVIRONMENT

The tumor microenvironment plays a key role in the 
development and progression of pancreatic cancer. The 
microenvironment is comprised of tumor cells, non-tumor 
cells, extracellular matrix, cytokines, growth factors, 
and exosomes that regulate autocrine, paracrine and 
endocrine communication, affecting tumor progression 
(Figure 4). Unlike the cancer cells, the stromal cells are 
genetically stable and represent a potential therapeutic 
target [36]. However, stromal re-programming rather 
than eradication per se may be more effective based on 
previous experimental work [37].

Tumor-initiating cells

The cancer stem cell theory proposes that solid 
tumors contain a small subpopulation of tumor-initiating 
cells or cancer stem cells that are responsible for tumor 
initiation, progression and chemoresistance [38–40]. 
The identification of pancreatic cancer stem cells has 
been based on their increased tumorigenic potential in 
immunocompromised mice [41]. However, it has been 
proposed that only a subset of cancer stem cells have 
the ability to metastasize. A subpopulation of CD133+ 
CXCR4+ pancreatic cancer stem cells was been identified 
at the tumor invasive front. Elimination of these cells 
inhibited metastasis formation [42]. On the other hand, it 
has been suggested that all tumor cells are biologically 
homogenous and have the potential to promote tumor 

Figure 2: Alternative model of pancreatic cancer progression. Tumor cells disseminate at any point of tumor progression and 
develop independently into metastases in parallel to the primary tumor.

Figure 3: Early resection of the primary tumor without detectable metastases prevents further tumor growth and 
thereby further tumor dissemination and prolongs survival. Unfortunately, not even a radical surgery prevents development of 
potential metastases from early disseminated cancer cells. 



Oncotarget6647www.impactjournals.com/oncotarget

initiation, growth and progression [43]. Tumorigenesis 
has been suggested to occur in normal somatic cells as a 
result of stochastic events caused by intrinsic factors such 
as genomic instability and extrinsic factors originating 
from the tumor microenvironment. 

Epithelial-mesenchymal transition

Local invasion is facilitated by changes in the shape 
and function of tumor cells. This epithelial–mesenchymal 
transition (EMT) is a profound feature of pancreatic 
cancer that occurs already in the very first stages of tumor 
development [44]. It implies changes in the adhesion 
molecules expressed by the cell, with acquisition of a 
migratory and invasive phenotype, which favors cellular 
disassociation, degradation of the basement membrane 
and ultimately contribute to early dissemination and drug 
resistance [45, 46]. The process of EMT is characterized 
by downregulation of epithelial markers (e.g. E-cadherin) 
and upregulation of mesenchymal markers (e.g. 
N-cadherin, vimentin and fibronectin) [47]. Several 
transcription factors, such as Snai1, Slug and Twist1, are 
involved in activating EMT programs in pancreatic cancer 
[48]. According to recent data, inflammation is a major 
driver of EMT in pancreatic cancer cells [49]. While EMT 
promotes dissemination of cancer cells, it has also been 
found that metastases show an epithelial histology. The 
reverse process, i.e. mesenchymal-epithelial transition 
(MET), is believed to induce the epithelial phenotype at 
distant sites [50].

Cancer-associated fibroblasts

Pancreatic stellate cells are a subset of pancreatic 
cancer-associated fibroblasts. The stellate cells have many 
functions in the normal pancreas, such as maintenance 
of normal tissue architecture through regulation of 
extracellular matrix turnover, as well as immunological 
functions [51, 52]. In pancreatic cancer, stellate cells 
change morphology into a myofibroblast-like cell, 
which is characterized by alpha-smooth muscle actin 
expression and induction of a fibroinflammatory response, 
including excessive production of extracellular matrix 
proteins, growth factors and cytokines. Accumulating 
evidence suggest that stellate cells play a central role in 
pancreatic tumor invasion and progression. Interestingly, 
it has been reported that pancreatic stellate cells support 
tumor metabolism and growth through the secretion of 
non-essential amino acids, importantly alanine [11]. In 
experimental models of pancreatic cancer, the reversion 
of activated stellate cells to their quiescent state has shown 
anti-tumor effects. All-trans retinoic acid (ATRA) has been 
found to reprogram the pancreatic stellate cells to a more 
quiescent phenotype through the RAR-β/MLC-2 pathway, 
which downregulates contractility and mechanosensing 
in the stellate cells, leading to reduced migration, less 
desmoplasia and suppression of cancer invasion [53]. 
However, more research is needed into studying stellate 
cells, not only in pancreatic cancer, but also under 
physiological conditions in healthy tissue, in order better 
understand normal function and pathological activation.

Figure 4: The microenvironment regulates pancreatic cancer progression and metastasis. Tumor-derived exosomes, bone 
marrow-derived cells and local stromal components promote metastasis by inducing pre-metastatic niches in distant organs, which are 
conducive to the survival and outgrowth of tumor cells before their arrival at these sites. BMDC: bone marrow-derived cell; CAF: cancer-
associated fibroblast; ECM: extracellular matrix; MDSC: myeloid-derived suppressor cell; TAM: tumor-associated macrophage.
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Inflammation

Inflammatory processes are highly involved in 
pancreatic cancer pathogenesis [54]. In the clinical setting, 
a pronounced inflammatory response has been associated 
with disease progression and poor survival in patients 
with manifest pancreatic cancer [55–58]. Much effort 
has been put into elucidating the underlying mechanisms 
that contribute to inflammation-induced tumorigenesis 
and potential ways to attenuate this process. It has been 
suggested that the presence of inflammation cooperates 
with the Kras oncogene to drive pancreatic cancer 
progression, while mutant Kras alone is not sufficient to 
drive pancreatic tumorigenesis [59]. Recent work suggests 
that the fibroinflammatory response, induced by pancreatic 
stellate cells, can influence the epigenome and metabolome 
in pancreatic cancer cells, including downstream Kras 
targets (e.g. Csf2, Rrm2, Sc4mol) [60]. Some potential 
paracrine factors of interest include connective tissue 
growth factor (CTGF), hepatocyte growth factor (HGF), 
insulin-like growth factors (IGFs) and interleukin-6 (IL-6) 
involved in Ras-MAPK, MYC and STAT3 signaling. 

Immunity

Pancreatic cancer is characterized by an 
immunosuppressive microenvironment [61, 62]. Key 
regulators of the host tumor immune response include T 
cells, natural killer cells, macrophages, myeloid derived 
suppressor cells and dendritic cells [13]. Furthermore, 
pancreatic tumors actively recruit bone marrow-derived 
cells, which contribute to neovascularization and 
establishing the pre-metastatic niche [63–65]. The study 
of long-term survivors has provided valuable insights into 
the heterogeneous immunological profile of pancreatic 
cancer [66]. Interestingly, the tumors of long-term 
survivors displayed higher amounts of CD8+ T cells, 
cytolytic CD8+ cells, regulatory T cells, mature dendritic 
cells and macrophages, while the numbers of of CD4+ T 
cells were reduced. The long-term survivors had enhanced 
neoantigen quality (including MUC16) and neoantigens 
with homology to infectious disease-derived peptides.

Exosomes

Exosomes are extracellular vesicles with a size 
of 40–100 nm that provide a means of intercellular 
communication [67]. They may contain DNA fragments, 
mRNAs, miRNAs, proteins and lipids. Evidence 
suggests that tumor-derived exosomes can shape the 
tumor microenvironment by facilitating recruitment 
and reprogramming of individual stromal components  
[68–70]. It has been reported that pancreatic tumor-derived 
exosomes induce liver pre-metastatic niche formation 
in experimental models of pancreatic cancer [21]. The 
exosomes were found to target and activate Kupffer cells, 

induce fibrotic pathways, leading to recruitment of bone 
marrow-derived cell migration to the liver. Depletion 
of macrophage migration inhibitory factor (MIF) in 
exosomes inhibited pre-metastatic niche formation and 
liver metastasis.  

CONCLUSIONS

The lack of progress in the management of 
pancreatic cancer by traditional methods (i.e. surgery, 
conventional chemotherapy, radiation) puts great hope into 
translational research to explore new strategies to change 
the dire course of the disease. Clinical and molecular data 
suggest that pancreatic cancer develops as a consequence 
of parallel progression and therefore must be viewed 
upon as a systemic disease even in the earliest stages of 
cancer development. As metastases can arise early in 
tumor development, research efforts should be directed 
towards a better understanding of fundamental drivers 
of tumorigenesis and better characterization of primary 
and metastatic lesions. More research should be directed 
towards understanding the tumor microenvironment, 
including its immunosuppressive role and the potentials 
for therapeutic targeting.
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