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ABSTRACT
The purpose of this part of the meta-analysis was to summarize data regarding 

associations between minimum apparent diffusion coefficient (ADCmin) and KI 67 in 
different tumors. 

MEDLINE library was screened for associations between ADCmin and KI 67 
in different tumors up to April 2017. Overall, 23 studies with 944 patients were 
identified. Associations between ADC and KI 67 were analyzed by Spearman's 
correlation coefficient. 

The pooled correlation coefficient between ADCmin and KI 67 for all included 
tumors was ρ = -0.47. In detail, the correlation coefficients for separate tumors were 
as follows: cerebral lymphoma: ρ = –0.61 (95% CI = [–0.82; –0.41]); cervical cancer: 
ρ = –0.56 (95% CI = [–0.68;–0.43]); pituitary adenoma: ρ = –0.55 (95% CI = [–1.31; 
0.22]); glioma: ρ = –0.40 (95% CI = [–0.55; –0.24]);  breast cancer: ρ = –0.37 (95% 
CI = [–0.74; –0.01]); meningioma, ρ = –0.15 (95% CI = [–0.38; 0.07]). 

INTRODUCTION

Apparent diffusion coefficient (ADC) is a 
quantitative parameter of water diffusion in tissues [1]. 
Previously, numerous studies investigated associations 
between ADC and several histopathological features 
in different tumors [2–5]. Some reports indicated that 
ADC can predict proliferation activity and, therefore, 
behavior of several malignancies [2, 3, 5]. As already 
mentioned, ADC can be divided into three sub-
parameters: ADC minimum or ADCmin, mean ADC or 
ADCmean and ADC maximum or ADCmax [5]. As shown 
in the part 1 of this meta-analysis, several tumors 
showed different inverse correlations between ADCmean 
and KI 67 [6]. Overall, the calculated correlation 
coefficients ranged from –0.22 in breast cancer to –0.62 
in ovarian cancer [6]. 

There were studies, which showed that ADCmin 
had stronger correlations with KI 67, and can better 
reflect proliferation potential of malignant lesions [7, 8]. 
However, the reported data were based on small number 
of investigated tumors/patients. 

The purpose of this part of the meta-analysis was 
to provide evident data regarding associations between 
minimum ADC (ADCmin), and KI 67 in different tumors. 

RESULTS

Overall, the identified 22 studies [7–28] contained 
data about associations between ADCmin and KI 67 for 944 
patients (Table 1). 

The pooled correlation coefficient for all patients 
(Figure 1) was –0.47 (95 % CI = [–0.58; –0.35]), 
heterogeneity Tau2 = 0.06, Chi2 = 193.62, df = 22 
(P < 0.00001), I2 = 89 %, and test for overall effect Z = 
7.76 (P < 0.00001). 

On the next step correlation analysis for every 
identified entity was performed. Thereby, only primary 
tumors with more than two reports were included into the 
analysis. There were 6 entities with 632 patients (Table 
2). The calculated correlation coefficients were as follows 
(Figure 2): -cerebral lymphoma: ρ = –0.61 (95% CI = 
[–0.82; –0.41]); -cervical cancer: ρ = –0.56 (95% CI = 
[–0.68;–0.43]); -pituitary adenoma:ρ = –0.55 (95% CI 
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= [–1.31; 0.22]); -glioma: ρ = –0.40 (95% CI = [–0.55; 
–0.24]);  - breast cancer: ρ = –0.37 (95% CI = [–0.74; 
–0.01]); -meningioma, ρ = –0.15 (95% CI = [–0.38; 0.07]). 

DISCUSSION

The present meta-analysis summarizes data 
about associations between ADCmin and KI 67 in 
different tumors

Previously, some investigations focused on 
relationships between ADC and histopathology, such as 
cell count and/or proliferation potential, in several tumors 
[2, 5]. However, the reported data were inconsistent: 
while some authors mentioned that ADC fractions can 
be associated with cellularity and KI 67, others did not 
confirm this finding [5, 7, 8]. Our previous meta-analysis 
regarding correlation between ADCmean and tumor 
cellularity showed that several tumors have different 
associations between the investigated parameters [29]. 
In detail, the calculated correlation coefficients ranged 
significantly and were as follows: ρ = –0.25 in lymphoma, 
ρ = –0.45 in meningioma, ρ = –0.48 in breast cancer, ρ 

= –0.53 in renal cell carcinoma, ρ = –0.53 in head and 
neck squamous cell carcinoma, ρ = –0.56 in prostatic 
cancer, ρ = –0.57 in uterine cervical cancer,  ρ = –0.63 in 
lung cancer, ρ = –0.64 in ovarian cancer, and ρ = –0.66 in 
glioma [29]. Almost similar results were also identified 
for associations between ADCmean and KI 67 in the part 1 
of the present work [6]. Because of these findings it can 
be postulated that ADCmean does not reflect cellularity and 
proliferation potential in all tumors and tumor-like lesions 
as assumed previously. 

According to some authors, another ADC parameter, 
namely ADCmin has been reported to be more sensitive in 
prediction of cell count and proliferation activity than 
ADCmean [2, 7, 8]. However, a recent meta-analysis showed 
that ADCmin did not better correlate with tumor cellularity 
than ADCmean [30]. 

There were also inconsistent data about 
correlation between ADCmin and proliferation 
activity

As seen, in the present analysis, ADCmin correlated 
moderately with KI 67 expression in overall sample. 

Table 1: Tumor types involved into the meta-analysis
Diagnosis n %

Different breast tumors 200 34.33
Glioma 144 15.25
Cervical cancer 117 12.39
Lung cancer 93 9.85
Meningioma 72 7.63
Pituary adenoma 50 5.30
Cerebral lymphoma 49 5.19
Prostatic cancer 29 3.07
Neuroendocrine tumor 22 2.33
Thyroid cancer 14 1.48
Head and neck cancer 11 1.17
Ganglioglioma 10 1.06
Neurocytoma 9 0.95
Total 944 100

Table 2: Tumor entities included into the subgroup analysis
Diagnosis n
Breast cancer 200
Glioma 144
Cervical carcinoma 117
Meningioma 72
Pituary adenoma 50
Cerebral lymphoma 49
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The calculated correlation coefficient (ρ = –0.47) was 
almost similar to those reported for ADCmean (ρ = –0.44). 
However, for the identified tumor entities, it was different 
in comparison with the coefficients for ADCmean. So, in 
breast cancer, ADCmin correlated stronger with KI 67 
(ρ = –0.37) than ADCmean (ρ = –0.22) [6], although the 
identified associations were slightly. Also in pituitary 
adenoma, and cerebral lymphoma, ADCmin tended to be 
better in comparison to ADCmean: ρ = –0.56 vs ρ = –0.44 

[6], and ρ = –0.61 vs ρ = –0.55, respectively [6]. On the 
other hand, in glioma and meningioma, ADCmin did not 
better correlate with KI 67 expression than ADCmean: ρ = 
–0.40 vs ρ = –0.51 [6], and ρ = –0.15 vs ρ = –0.43 [6], 
respectively.

The exact cause of our findings is unclear. They 
supported previous suggestions that different ADC fractions 
reflect different histopathological features [2]. Obviously, 
there is no general rule regarding ADC parameters and 

Table 3: Methodological quality of the involved 23 studies according to the QUADAS criteria
QUADAS criteria Yes (%) No (%) Unclear (%)

Patient spectrum 23 (100)  
Selection criteria 20 (86.96)  3 (13.04)
Reference standard 23 (100)
Disease progression bias 23 (100)
Partial vertification bias 23 (100)
Differential vertification bias 23 (100)
Incorporation bias 23 (100)
Text details 23 (100)
Reference standard details 23 (100)
Text review details 12 (52.18) 3 (13.04) 8 (34.78)
Diagnostic review bias 15 (65.22) 3 (13.04) 5 (21.74)
Clinical review bias 23 (100)
Uninterpretable results 23 (100)
Withdrawls explained 23 (100)

Figure 1: Forest plots of correlation coefficients between ADCmin and KI 67 in all included studies (n = 22).
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tumor proliferation, i.e. for some tumors ADCmin and for 
other ADCmean predicts better proliferation potential.

 Also for this part of the meta-analysis, already 
the mentioned limitations [6] do apply: only 6 named 
above tumor entities were involved into the work. For 
other malignancies and tumor-like lesions no data could 
be provided. In addition, the number of patients in the 
groups of pituitary adenoma, cerebral lymphoma, and 
meningioma was very small that questions the validity of 
the estimated correlation coefficients.

In conclusion, there are different inverse 
correlations between ADCmin and KI 67 in several tumors. 
In comparison with ADCmean, ADCmin seems to correlate 
better with proliferation activity in breast cancer, cerebral 
lymphoma, and pituitary adenoma.

In meningioma and glioma, however, ADCmean 
reflects better tumor proliferation than ADCmin.

MATERIALS AND METHODS

Data acquisition and proving

The search strategy and data acquisition are 
described precisely in the part 1 of the meta-analysis [6]. 
For this part, only data regarding associations between 
ADCmin derived from diffusion weighted imaging (DWI) 
and expression of KI 67 in different tumors and tumor-
like lesions were collected. The Preferred Reporting Items 
for Systematic Reviews and Meta-Analyses statement 
(PRISMA) was used for the research [31].

Figure 2: Forest plots of correlation coefficients between ADCmin and KI 67 in different primary tumors.  
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Overall, 22 studies were included into the present 
analysis [7–28]. The following data were extracted from 
the literature: authors, year of publication, number of 
patients, tumor type, and correlation coefficients.

Meta-analysis

The methodological quality of the 23 studies was 
independently checked by two observers (A.S. and 
H.J.M.) using the Quality Assessment of Diagnostic 
Studies (QUADAS) instrument according to previous 
descriptions [32, 33]. The results of QUADAS proving is 
given in Table 3. 

Associations between ADCmin and KI 67 were 
analyzed by Spearman’s correlation coefficient. The 
reported Pearson correlation coefficients in some studies 
were converted into Spearman correlation coefficients as 
described previously [34].

The meta-analysis was undertaken by using RevMan 
5.3 (Computer program, version 5.3. Copenhagen: The 
Nordic Cochrane Centre, The Cochrane Collaboration, 
2014). Heterogeneity was calculated by means of the 
inconsistency index I² [35, 36]. In a subgroup analysis, 
studies were stratified by tumor type. Furthermore, 
DerSimonian and Laird random-effects models with 
inverse-variance weights were used without any further 
correction [37].
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