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Quantitative radiomic profiling of glioblastoma represents 
transcriptomic expression
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ABSTRACT

Quantitative imaging biomarkers have increasingly emerged in the field of 
research utilizing available imaging modalities. We aimed to identify good surrogate 
radiomic features that can represent genetic changes of tumors, thereby establishing 
noninvasive means for predicting treatment outcome. From May 2012 to June 2014, we 
retrospectively identified 65 patients with treatment-naïve glioblastoma with available 
clinical information from the Samsung Medical Center data registry. Preoperative MR 
imaging data were obtained for all 65 patients with primary glioblastoma. A total 
of 82 imaging features including first-order statistics, volume, and size features, 
were semi-automatically extracted from structural and physiologic images such as 
apparent diffusion coefficient and perfusion images. Using commercially available 
software, NordicICE, we performed quantitative imaging analysis and collected the 
dataset composed of radiophenotypic parameters. Unsupervised clustering methods 
revealed that the radiophenotypic dataset was composed of three clusters. Each 
cluster represented a distinct molecular classification of glioblastoma; classical type, 
proneural and neural types, and mesenchymal type. These clusters also reflected 
differential clinical outcomes. We found that extracted imaging signatures does not 
represent copy number variation and somatic mutation. Quantitative radiomic features 
provide a potential evidence to predict molecular phenotype and treatment outcome. 
Radiomic profiles represents transcriptomic phenotypes more well.
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INTRODUCTION

Glioblastoma (GBM) is the most common and 
fatal type of glioma, accounting for 40% of all malignant 
primary brain tumors and showing a median survival of 14 
months despite treatment by surgical resection followed by 
concurrent chemoradiotherapy. This dismal prognosis is 
largely attributed to the cancer heterogeneity of GBM [1]. 
Thus, great effort has been made to advance technology 
in the fields of molecular and genomic biology in order to 
better characterize individual cancer.

Quantitative magnetic resonance (MR) imaging 
can be defined as the extraction of quantifiable features 
from advanced magnetic resonance images and 
quantitatively describes the tumor phenotypes [2, 3]. 
At the initial diagnosis or during treatment, quantitative 
imaging biomarkers can represent a biomarker of normal 
biological or pathological processes or treatment response 
to therapeutics [2]. To date, MR-based morphological 
measurements using T1 contrast-enhancement or T2 
FLAIR imaging are well-known and widely accepted 
quantitative methods under some clinical situations such as 
Alzheimer disease, osteoarthritis, and a variety of cancers 
[2]. Several studies have demonstrated that MR imaging 
signatures can indicate clinical outcomes in high-grade 
gliomas [4]. However, few studies have demonstrated that 
physiologic biomarkers derived from conventional imaging 
data are closely associated with clinical outcome or have 
investigated their association with the underlying genetic 
messages [5]. Recently, rapid developments in advanced 
imaging analysis for tumor classification or quantification 
of tumor vascularity and permeability have been introduced. 
In radiographic studies of glioblastoma, physiologic 
imaging biomarkers are gradually being uncovered and are 
believed to be crucial for predicting the treatment response 
of the tumor or natural course of tumor progression.

Here, we report a comprehensive radiogenomic study 
of glioblastoma based on integration of quantitative large-
scale radiomic profiling and genomic data. We integrated 
structural and physiologic MR imaging data with multi-
platform genomic data from 65 glioblastomas. We also 
evaluated quantitative large-scale radiomic profiling to 
identify statistically significant associations between 
genomic features and radiomic signatures in glioblastomas.

RESULTS

Patient characteristics

From May 2012 to June 2014, we retrospectively 
identified 65 patients with treatment-naïve GBM with 
available clinical information from the Samsung Medical 
Center data registry. The median age of the patients was 
58.7 years (range, 29-74 years), and the population was 
composed of 35 males and 30 females. 46 of 65 patients 
(70.8%) were expired at the investigation and median 

overall survival of the total population was 13.2 months 
(95% CI 9.3-17.6 months). The metadata for the 65 GBM 
samples are provided in Table 1.

Consensus clustering identifies three subtypes of 
GBM

We performed a quantitative study to investigate the 
association of genomic features such as gene expression or 
copy number variation with 82 radiomic phenotypes (Table 
1). Table 1 summarizes the name and brief description of 
all 82 radiomic profiles. A total of 5,330 quantitative MR 
imaging features (representing first-order statistics, size, and 
volume) were extracted from volume masks to maximize 
characterization of the tumor (82 x 65, no of features 
x no of patients). Using a high-throughput approach, 
we identified radiomic signatures consisting of 82 MR 
imaging features that segregated patients with GBM into 
three distinct consensus clusters (Figure 1A). The similarity 
matrix formed by Pearson’s correlation coefficients of the 
65 samples suggested three robust stable clusters. Based 
on the gene functions of discriminatory mRNA transcripts, 
radiomic clustering represented interpretation in the context 
of existing molecular subclassification of GBM.

Association between genetic pathway and 
radiomic phenotypes

For each of the 82 radiomic phenotypes, we 
investigated the Gene Set Enrichment Analysis (GSEA) 
for identifying the KEGG pathways whose transcriptional 
changes associated with the change of tumor radiomic 
phenotype. The gene-level statistics used to characterize 
the association between gene expression and radiomic 
phenotype were obtained by the p-value resulted from the 
Spearman rank correlation test. ClaNC, a nearest centroid-
based classifier that balances the number of genes per class, 
identified signature genes for all three subtypes. An 840 
gene signature (210 genes per class), was established from 
the smallest gene set with the lowest cross validation (CV) 
and prediction error. As a proof of concept, we showed that 
a significant number of genes overexpressed in radiomic 
subgroup 1 were associated with anion channel activity, 
peroxisome, and the classic subtype of GBM suggested 
by Verhaak et al. [1]. Group 2 was characterized by high 
expression of genes associated with mitosis, cell cycle, 
ribosomes, and the proneural or neural subtype. The third 
group showed overexpression of extracellular matrix 
molecules, defense response, immune signaling molecules, 
and the mesenchymal subtype (Figure 1B).

Sample-specific differentially expressed genes

We investigated the correlation matrix between 
radiomic data and gene expression profiles in the 
heatmap (Figure 2A). We found that each radiomic 
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Table 1: The parameters used in this study
Feature No. Parameters Image sequence Definitions

Volume

1 T1CE_PIXEL T1CE Number of pixel intensity based on ROI of T1CE

2 T1CE_AREA T1CE Mask area (cm2) based on ROI of T1CE

3 T1CE_VOL T1CE Mask volume (mL) based on ROI of T1CE

4 T2FLAIR_PIXEL T2FLAIR Number of pixel intensity on ROI of T2FLAIR

5 T2FLAIR_AREA T2FLAIR Mask area (cm2) based on ROI of T2FLAIR

6 T2FALIR_VOL T2FLAIR Mask volume (mL) based on ROI of T2FLAIR

7 rADCnT1_PIXEL rADC Number of pixel intensity on T1CE ROI

8 rADCnT1_AREA rADC Mask area (cm2) on T1CE ROI

9 rADCnT1_VOL rADC Mask vol (mL) on T1CE ROI

10 rADCnT2_PIXEL rADC Number of pixel intensity on T2FLAIR ROI

11 rADCnT2_AREA rADC Mask area (cm2) on T2FLAIR ROI

rADCnT2_VOL rADC Mask vol (mL) on T2FLAIR ROI

Cerebral 
blood flow

13 rCBFnT1_MEAN rCBF Mean based on ROI of T1CE

14 rCBFnT1_MEDIAN rCBF Median based on ROI of T1CE

15 rCBFnT1_SD rCBF SD based on ROI of T1CE

16 rCBFnT1_X5P rCBF 5 percentile of total intensity on ROI of T1CE

17 rCBFnT1_X95P rCBF 95 percentile of total intensity on ROI of T1CE

18 rCBFnT1_Q1 rCBF 25 percentile of total intensity on ROI of T1CE

19 rCBFnT1_Q3 rCBF 75 percentile of total intensity on ROI of T1CE

20 rCBFnT2_MEAN rCBF Mean based on ROI of T2FLAIR

21 rCBFnT2_MEDIAN rCBF Median based on ROI of T2FLAIR

22 rCBFnT2_SD rCBF SD based on ROI of T2FLAIR

23 rCBFnT2_X5P rCBF 5 percentile of total intensity on ROI of T2FLAIR

24 rCBFnT2_X95P rCBF 95 percentile of total intensity on ROI of T2FLAIR

25 rCBFnT2_Q1 rCBF 25 percentile of total intensity on ROI of T2FLAIR

26 rCBFnT2_Q3 rCBF 75 percentile of total intensity on ROI of T2FLAIR

Cerebral 
blood volume

27 rCBVnT1_MEAN rCBV Mean based on ROI of T1CE

28 rCBVnT1_MEDIAN rCBV Median based on ROI of T1CE

29 rCBVnT1_SD rCBV SD based on ROI of T1CE

30 rCBVnT1_X5P rCBV 5 percentile of total intensity on ROI of T1CE

31 rCBVnT1_X95P rCBV 95 percentile of total intensity on ROI of T1CE

32 rCBVnT1_Q1 rCBV 25 percentile of total intensity on ROI of T1CE

33 rCBVnT1_Q3 rCBV 75 percentile of total intensity based on ROI of T1CE

34 rCBVnT2_MEAN rCBV Mean based on ROI of T2FLAIR

35 rCBVnT2_MEDIAN rCBV Median based on ROI of T2FLAIR

36 rCBVnT2_SD rCBV SD based on ROI of T2FLAIR

37 rCBVnT2_X5P rCBV 5 percentile of total intensity on ROI of T2FLAIR

38 rCBVnT2_X95P rCBV 95 percentile of total intensity on ROI of T2FLAIR

39 rCBVnT2_Q1 rCBV 25 percentile of total intensity on ROI of T2FLAIR

40 rCBVnT2_Q3 rCBV 75 percentile of total intensity on ROI of T2FLAIR

(Continued)
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Feature No. Parameters Image sequence Definitions

Mean transit 
time

41 MTTnT1_MEAN MTT Mean based on ROI of T1CE

42 MTTnT1_MEDIAN MTT Median based on ROI of T1CE

43 MTTnT1_SD MTT SD based on ROI of T1CE

44 MTTnT1_X5P MTT 5 percentile of total intensity based on ROI of T1CE

45 MTTnT1_X95P MTT 95 percentile of total intensity based on ROI of T1CE

46 MTTnT1_Q1 MTT 25 percentile of total intensity based on ROI of T1CE

47 MTTnT1_Q3 MTT 75 percentile of total intensity based on ROI of T1CE

48 MTTnT2_MEAN MTT Mean based on ROI of T2FLAIR

49 MTTnT2_MEDIAN MTT Median based on ROI of T2FLAIR

50 MTTnT2_SD MTT SD based on ROI of T2FLAIR

51 MTTnT2_X5P MTT 5 percentile of total intensity on ROI of T2FLAIR

52 MTTnT2_X95P MTT 95 percentile of total intensity on ROI of T2FLAIR

53 MTTnT2_Q1 MTT 25 percentile of total intensity on ROI of T2FLAIR

54 MTTnT2_Q3 MTT 75 percentile of total intensity on ROI of T2FLAIR

Time to 
perfusion

55 TTPnT1_MEAN TTP Mean based on ROI of T1CE

56 TTPnT1_MEDIAN TTP Median based on ROI of T1CE

57 TTPnT1_SD TTP SD based on ROI of T1CE

58 TTPnT1_X5P TTP 5 percentile of total intensity based on ROI of T1CE

59 TTPnT1_X95P TTP 95 percentile of total intensity based on ROI of T1CE

60 TTPnT1_Q1 TTP 25 percentile of total intensity based on ROI of T1CE

61 TTPnT1_Q3 TTP 75 percentile of total intensity based on ROI of T1CE

62 TTPnT2_MEAN TTP Mean based on ROI of T2FLAIR

63 TTPnT2_MEDIAN TTP Median based on ROI of T2FLAIR

64 TTPnT2_SD TTP SD based on ROI of T2FLAIR

65 TTPnT2_X5P TTP 5 percentile of total intensity on ROI of T2FLAIR

66 TTPnT2_X95P TTP 95 percentile of total intensity on ROI of T2FLAIR

67 TTPnT2_Q1 TTP 25 percentile of total intensity on ROI of T2FLAIR

68 TTPnT2_Q3 TTP 75 percentile of total intensity on ROI of T2FLAIR

Apparent 
diffusion 
coefficient

69 rADCnT1_MEAN rADC Mean based on ROI of T1CE

70 rADCnT1_MEDIAN rADC Median based on ROI of T1CE

71 rADCnT1_SD rADC SD based on ROI of T1CE

72 rADCnT1_X5P rADC 5 percentile of total intensity based on ROI of T1CE

73 rADCnT1_X95P rADC 95 percentile of total intensity based on ROI of T1CE

74 rADCnT1_Q1 rADC 25 percentile of total intensity based on ROI of T1CE

75 rADCnT1_Q3 rADC 75 percentile of total intensity based on ROI of T1CE

76 rADCnT2_MEAN rADC Mean based on ROI of T2FLAIR

77 rADCnT2_MEDIAN rADC Median based on ROI of T2FLAIR

78 rADCnT2_SD rADC SD based on ROI of T2FLAIR

79 rADCnT2_X5P rADC 5 percentile of total intensity on ROI of T2FLAIR

80 rADCnT2_X95P rADC 95 percentile of total intensity on ROI of T2FLAIR

81 rADCnT2_Q1 rADC 25 percentile of total intensity on ROI of T2FLAIR

82 rADCnT2_Q3 rADC 75 percentile of total intensity on ROI of T2FLAIR
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profile representing volume, blood flow or volume 
and diffusion had his own molecular characteristics. 
To identify pathways that are differentially correlated 
with radiomic phenotypes, using these four gene sets, a 
single-sample GSEA (ssGSEA) enrichment score was 
calculated for all samples. We used ssGSEA projection as 
a hypothesis-generating gene set identification tool. Single 
sample GSEA identifies biologically relevant gene sets 
that correlate with a radiomic phenotypes by estimating 
pathway activities of the radiomic phenotypes in this study. 
We performed an unsupervised clustering analysis to 
associate transcriptional activities of all genetic pathways 
in the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) database with radiomic phenotypes (Figure 
2B). As a result, we found each physiologic or structural 
MR imaging features showed its own transcriptomic 
pathway. Specifically, pathway transcriptional activities 
were associated with radiomic phenotypes with statistical 

significance. Radiomic features related to CBV and 
CBF showed upregulation of Wnt, PDGF, EGFR, ALK, 
Rb, VEGF, and Myc pathways and downregulation of 
PTEN pathway (p < 0.01). In contrast, radiomic features 
representing volumetric parameters based on T1CE, 
T2FLAIR, or ADC demonstrated an inverse relationship 
with radiomic features representing CBV or CBF.

Associations between somatic gene mutations/ 
CNV and radiomic phenotypes

We compared measurements of a radiomic 
phenotype for patients harboring somatic mutations in 
a gene versus those without. For each mutation/ CNV 
and each radiomic phenotype, a linear regression was 
used to fit the value of the radiomic phenotype and 
examine whether the mutation has a significant effect 
on the phenotype. However, the number of patients 

Figure 1: Three radiomic clusters. (A) Similarity matrix based on Pearson’s correlation coefficients among 65 glioblastoma cases. 
(B) Gene-set enrichment analysis (GSEA) results for each radiomic cluster. Identified associations are enriched for certain categories of 
genomic features and radiomic phenotypes, evaluated by the adjusted p-values from the Fisher’s exact tests.

Figure 2: Overview of identified statistically significant associations. (A) Heatmap of RNA sequencing data demonstrating 
correlations between transcriptomic profile and radiomic signatures. (B) Correlation matrix between radiomic data and gene expression 
profiles are plotted in the heatmap. Associations were deemed as statistically significant if the adjusted p-value ≤ 0.01.
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with exactly the same mutation was quite small and 
might not provide reliable statistics. Compared to the 
transcriptional activities of genetic pathways, the CNVs 
and representative somatic mutations showed far fewer 
statistically significant associations (Figure 3).

DISCUSSION

Radiogenomics investigates the association between 
imaging phenotypes and genomic features and is an 
emerging field in cancer medicine. As an inexpensive 
and noninvasive method, quantitative radiomics can 
provide the great promise of personalized medicine 
by inferring underlying genomic phenotypes. It can 
also serve as an imaging biomarker to characterize the 
underlying genomics. If the radiomic data can represent 
the temporal-spatial intra/inter tumoral heterogeneity, 
repeated MR imaging would be a powerful tool to show 
the molecular status of a tumor sample using a non-
invasive technique [9]. In the field of radiologic studies 
of glioblastomas, physiologic MR imaging and structural 
MR imaging provide invaluable information about the 
tumor characteristics. For instance, dynamic susceptibility 
contrast (DSC) perfusion MR imaging is commonly used 
in clinical practice to interpret the tumor microvasculature 
for the purpose of estimation of rCBV or MTT for cerebral 
blood flow or volume. In addition, apparent diffusion 
coefficient (ADC) imaging is another important MR 
imaging biomarker that represents the cellular density 
and the movement of free fluid water. Interpretation 
of advanced physiologic imaging requires specialized 
well-trained radiologists; however, interpretation is 
still subjective and can produce potential inter-observer 

variability. To overcome this drawback, attempts to 
quantify the imaging data have aimed to identify and 
characterize imaging biomarkers, but prediction of the 
genomic characteristics remains challenging.

To date, several studies have reported that imaging 
features represent the clinical outcome in patients 
with malignant glioma [4, 9–17]. Most studies have 
investigated clinical application in glioblastomas by 
quantification of structural imaging such as volume or 
shape [13, 15, 18–23], while comprehensive integration 
of physiologic imaging such as diffusion or perfusion 
imaging, clinical outcome, and genomic profiles has been 
rarely reported [4, 9, 16, 24, 25]. Integrated analyses 
using gene expression, copy number, methylation, and 
somatic mutation patterns have demonstrated distinct 
GBM subtypes, possibly related to the treatment 
response and clinical outcome [1, 26]. Several authors 
have demonstrated that specific molecular subtypes in 
glioblastoma correlate with certain imaging traits [22, 
27]. We present a comprehensive radiogenomic study 
of glioblastoma based on the integration of multi-omics 
molecular data from our genome data bank with MRI-
based radiomic data for 65 glioblastomas. We found 
that radiomic data could provide information about 
molecular subtypes of GBM based on the transcriptomic 
profile. In addition, the radiomic group associated with 
mesenchymal subtypes showed a worse prognosis than 
other groups. Compared with the close relationship 
between transcription level and radiomic phenotype, we 
identified far fewer statistically significant associations 
for CNVs and gene somatic mutations. This finding was 
compatible with the results of a breast cancer study by 
Zhu et al. [28]. Genetic mutations are further upstream 

Figure 3: Genetic profiles of each radiomic cluster for representative genes. I means group 1, II means group 2, and III means 
group 3. The number of patients with exactly the same mutation and CNV was quite small and might not provide reliable statistics. (A) 
Copy number alterations (log2CN). (B) Somatic mutations.
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in the functional activities of the cellular system, and 
Zhu et al. suggested that gene expressions are therefore 
more closely associated with phenotype in the process 
of genetic events influencing phenotype development. 
On unsupervised clustering analysis between radiomic 
features and transcriptomic profiles, multiple parameters 
representing CBV and CBF had similar transcriptomic 
patterns and parameters, indicating that MTT and TTP 
have their own genomic signatures. Volumetric radiomic 
data had a similar genomic pattern to ADC. This finding 
demonstrates that specific radiomic phenotypes have 
similar genomic signature patterns.

However, our study has some limitations for 
interpreting the association between genomic signature 
and imaging phenotype. Genomic data in this study were 
generated using a single tissue sample from each primary 
tumor. A single biopsy sample of a tumor cannot represent 
a heterogeneous cell population; therefore, the genomic 
data of a single sample only partially reflects the overall 
genomic landscape of the entire tumor. In the future, 
topographic analysis of radiomic data combined with 
multiple biopsies will provide more intensive and accurate 
information. Through the study of radiogenomics, we 
aimed to identify good surrogate radiomic features that 
can reveal genetic changes of tumors, thereby establishing 
noninvasive means for monitoring tumor progression. We 
believe that our initial results provide the motivation to 
investigate the relationships between the multi-layer 
molecular system of the tumor and the various quantitative 
radiomic phenotypes of glioblastoma.

MATERIALS AND METHODS

Patient enrollment

Between May 2012 to June 2014, we retrospectively 
identified 65 patients who met the following criteria: (1) 
previously untreated and histologically confirmed grade 
IV GBM according to the World Health Organization 

(WHO) classification; (2) available clinical variables 
including patient demographics; (3) available genomic 
data such as transcriptome and exome; and (4) available 
preoperative MR imaging data consisting of pre-contrast 
axial T1-weighted (T1), post-contrast axial T1-weighted 
(T1CE), T2-weighted fluid attenuation inversion recovery 
(T2FLAIR) images, MR-diffusion weighted imaging (DWI) 
for assessment of apparent diffusion coefficient (ADC), 
and MR-perfusion weighted imaging (PWI) for assessment 
of relative cerebral blood flow (rCBF), relative cerebral 
blood volume (rCBV), mean transit time (MTT), and time 
to perfusion (TTP). These data were obtained from the 
medical records at Samsung Medical Center, Seoul, Korea. 
Patients with recurrent GBM, secondary GBM, grade III 
glioma, or previous history of treatment were excluded 
from this study. All tissue samples were collected with 
written informed consent under a protocol approved by 
the Institutional Review Board (IRB) of Samsung Medical 
Center (2010-04-004, Seoul, Korea). All patients were 
treated by the concomitant chemo-radiotherapy followed 
by adjuvant Temozolomide 6 cycles. Enrolled patients in 
this study were not enrolled for any clinical trials.

MRI data acquisition and preprocessing

All MR imaging was preoperatively conducted on 
a 3-T scanner, and post-contrast images were acquired 5 
minutes after injection of contrast agent. The standard MRI 
protocol included axial T1-weighted imaging, T2-weighted 
imaging, fluid-attenuated inversion recovery (FLAIR), 
perfusion-weighted, and diffusion-weighted MR images. 
Diffusion-weighted images (DWI) were acquired before 
injection of contrast and were obtained with TE/TR 80 
ms/3 s, section thickness 5 mm with 1 mm intersection gap, 
matrix size 164 × 162, and FOV 24 cm using monopolar 
spin-echo echo-planar preparation. Apparent diffusion 
coefficient (ADC) images were calculated from acquired 
DWI with b-values of 0 s/mm2 and 1,000 s/mm2, and 
dynamic susceptibility contrast perfusion-weighted 

Table 2: Demographic data of 65 glioblastomas

Total (n=65)

Age (years) 57.7 (29.0-74.0)

Gender (male) 35 (53.8)

IDH

 IDH-mutant 5 (7.7)

 IDH-wild type 60 (92.3)

MGMT status methylated/unmethylated 24/ 41

KPS (%) 89.0 ± 14.3

Overall survival (months) 13.2(95% CI 9.3-17.6)

Values are number (%), median (range), or mean ± SD.
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images (PWI) (TR/TE 1720/35 ms, flip angle 40°, section 
thickness 5 mm, acquisition matrix 128 × 128, 50 volumes, 
acquisition time 1 minute 30 seconds) were performed. 
ADC maps were generated using an EWS Workstation 
(Philips Healthcare), and dynamic susceptibility contrast 
perfusion images were processed using a dedicated software 
package (nordicICE; NordicNeuroLab, Bergen, Norway).

All Digital Imaging and Communications in 
Medicine (DICOM) images were adjusted for spatial 
smoothing, noise filtering, and motion correction as 
supported in the dedicated software. Gamma variate fitting 
was applied to avoid a recirculation effect and dynamic 
curves were corrected mathematically to reduce contrast 
agent leakage effects.

Volumetric segmentation and ROI analysis

For region of interest (ROI) analysis, T1CE and 
T2FLAIR images were evaluated to define tumor margins 
by manual segmentation. The image processing software 
package (nordicICE; NordicNeuroLab, Bergen, Norway) 
was used for the manual ROI-based image segmentation 
and volume measurement. In detail, two ROI were 
obtained from both T1CE- and T2FLAIR-based image 
in each patient. An ROI was drawn on each slice where 
the contrast-enhancing area on the T1CE image and high 
signal intensity area on the T2FLAIR image were visible. 
Each tumor lesion was segmented by two independent 
neuro-radiologists (ST Kim and HY Kim) for both T1CE 
and T2FLAIR modalities. Regions with central necrotic 
area and normal vascular structures were subtracted 
from ROIs. Single ROIs from each case were selected 
for further analysis with consensus between reviewers. 
Volumes of masked ROIs were also validated with a 
fully automated method using BraTumIA v1.2 [6], which 
shows results consistent with previous studies [7, 8]. 
All MR images were transferred to a high-performance 
cluster server for post-processing. After post-processing 
of perfusion and diffusion-weighted images to generate 
rCBV and ADC maps from both T1CE and T2FLAIR 
images (5%, 25%, 75%, 95% of total intensity, mean, 
standard deviation and median value), histogram statistics 
from voxels in the ROI were extracted. Several volumetric 
parameters (number of pixels in mask on ROI, mask area 
(cm2) on ROI, mask volume (mL) on ROI from T1CE 
and T2FLAIR) were separately investigated, obtaining 
segmental volumes of contrast-enhancing tumor region 
and edematous or infiltrative peritumoral T2FLAIR 
region, and other relevant volumetric parameters. 
Overall, 82 volumetric and physiologic parameters were 
investigated in this study (Table 2).

Tissue specimens

Following receipt of informed consent in accordance 
with the appropriate IRB, glioblastoma specimens were 

obtained from patients undergoing surgery. For genomic 
analysis, tumor specimens that were diagnosed by the 
pathologists were snap-frozen and preserved in liquid 
nitrogen. Genomic DNA and mRNA were extracted using 
the DNeasy kit and the RNeasy kit (Qiagen), respectively 
for whole exome and transcriptomic sequencing.

Next-generation RNA sequencing (RNA-Seq)

RNA-Seq was performed for all 65 patients. RNA-
Seq–based transcriptome profiling was performed by 
the Samsung Institute for Intractable Cancer Research 
(Seoul, Korea) using the Illumina TrueSeq RNA Sample 
Prep kit. Trimmed sequenced reads of 30 nucleotides (nt) 
were mapped on hg19 using GSNAP and the resulting 
alignment SAM files were summarized into BED files 
using SAMtools and bedTools (bamToBed). DEGseq R 
package was used to calculate RPKM (Reads Per Kilobase 
of transcript per Million reads) values from the hg19 
refFlat file downloaded from the UCSC genome browser 
and the BED files during the per nucleotide coverage 
analysis. Log transformation was applied to correct for 
the skewed distribution.

Somatic mutation

The sequenced reads in FASTQ files were aligned 
to the human genome assembly (hg19) with Burrows-
Wheeler Aligner version 0.6.2. Before mutation calling 
using SAMtools, Picard version 1.73, and Genome Analysis 
ToolKit (GATK version 2.5.2.), the initial alignment BAM 
files were subjected to conventional preprocessing We used 
MuTect (version 1.1.4), SomaticIndelDetector (GATK 
version 2.2) and Variant Effect Predictor (VEP).

Copy number variation

The ngCGH python package was used to generate 
aCGH-like data from whole exome sequencing (WES). 
Matching normal samples were used as the reference for 
calculating copy number variations in tumors. Segmentation 
and copy number calculation of each gene were performed.

Data analysis

Unsupervised hierarchical clustering was performed 
on the radiomic phenotypes extracted from the quantitative 
MR imaging data using NordicICE software program. 
Before clustering analysis, all radiomic phenotypes were 
standardized to have a zero mean and a unit standard 
deviation for clustering analysis and producing heatmap. We 
then performed consensus clustering (Pearson’s correlation 
coefficients) on the radiomic phenotypes. We selected k = 3 
as it gives sufficiently stable similarity matrix. Putative 
candidates of which radiomic phenotypes correlated to 
mRNA gene expression were identified to determine 
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subtypes or clusters that are driven by different mechanisms. 
This was done using Mann Whitney U-test with p<0.05, and 
Spearman Correlation Coefficient test with Rho >0.6.
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