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ABSTRACT

There has been little improvement in the prognosis for adolescent and young 
adult (AYA) tumor patients. Hence, there is an urgent need to understand the etiology 
of tumor development and identify actionable gene aberrations to improve prevention 
and therapy. Here, 76 sporadic tumors (48 breast, 22 ovarian, and six uterine) from 
76 AYA females (age range, 25–39 years) were subjected to whole exome and RNA 
sequencing to determine their mutational signatures and actionable gene profiles. Two 
individuals with breast cancer (4.2% of cases) and one with ovarian cancer (5.3% 
of cases) carried germline BRCA2 mutations. The two cases with breast tumors also 
each carried an additional deleterious germline mutation: one in TP53 and the other 
in CHEK2. Mutational signature analysis of the 76 tumors indicated that spontaneous 
deamination of 5-methylcytosine and activity of the APOBEC cytidine deaminase 
protein family are major causes of mutagenesis. In addition, 18 breast or ovarian 
tumors (18/70, 26%), including the three cases with germline BRCA2 mutations, 
exhibited a predominant “BRCAness” mutational signature, an indicator of functional 
BRCA1/BRCA2 deficiency. Actionable aberrations and high tumor mutation burdens 
were detected in 24 breast (50%), 17 ovarian (77%), and five uterine (83%) tumor 
cases. Thus, mutational processes and aberrant genes in AYA tumors are largely 
shared with those identified in non-AYA tumors. The efficacy of molecular targeting 
and immune checkpoint inhibitory therapies should be explored for both AYA and 
non-AYA patients.
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INTRODUCTION

Nearly 68,000 adolescents and young adults (AYAs) 
aged 15 to 39 years were diagnosed with cancer in the US 
in 2002 [1], and females with breast, ovary, and uterine 
cancers constituted a large proportion of cases [2]. Since the 
prognosis for AYA patients with cancer has improved less 
than that for patients in the non-AYA age group [1, 3], better 
characterization of the properties of AYA cancers is urgently 
needed to facilitate understanding of the etiology of their 
early development and improve diagnosis and therapy.

The clinical and histopathological characteristics 
of tumors in AYA patients have been revealed by 
comparison with those of non-AYA patients in European/
US populations [2]. Tumors of the breast in AYAs often 
lack expression of therapeutic targets, such as estrogen 
receptor (ER), progesterone receptor (PgR), and human 
epidermal growth factor receptor 2 (HER2) oncoprotein 
(i.e., they are of the triple-negative subtype), and have a 
poor prognosis [2, 4]. Malignant and borderline ovarian 
tumors are rare in adolescents compared with adults; 
however, they pose serious issues in that age group. Such 
ovarian tumors encompass a variety of subtypes; the most 
common are epithelial in origin; however, non-epithelial 
tumors, such as malignant germ cell and sex cord-stromal 
tumors, constitute a major fraction [5-8]. Cervical and 
endometrial carcinomas comprise a large proportion of 
AYA uterine tumors [9, 10].

Genome-wide mutation profiling of cancer 
genomes is a powerful method to identify actionable gene 
aberrations, and can facilitate elucidation of the mutagenic 
processes underlying the development of a variety of 
cancers [11-13]; however, few studies have focused on 
tumors in AYAs, and hence information on their associated 
gene aberrations is very limited. Approximately 2.5% of 
cancers in the Japanese population are diagnosed among 
the AYA age group, and, as in the US [2], breast, ovarian, 
and uterine cancers are the major types identified [14]. 
Here, we present gene aberration profiles of breast (N 
= 48), ovary (N = 22), and non-cervical uterine (N = 6) 
tumors from 76 AYA Japanese females at diagnosis.

RESULTS

Study cohort for genome-wide mutation profiling

The characteristics of the 76 sporadic AYA tumor 
cases studied here are presented in Table 1. The 48 
breast tumors consisted of 47 carcinomas and one (2.1%) 
angiosarcoma. The histological and subtype distributions 
in the study cohort, including frequent luminal type 
carcinomas, were consistent with previous reports of breast 
tumors in Japanese AYAs [15]; however, they were different 
to the distributions among European/US patients, in whom 
both luminal and triple-negative tumors are common [16].

The 22 ovarian tumors consisted of 14 carcinomas, 
five borderline tumors, and three others, while the six 
uterine tumors consisted of five endometrioid carcinomas 
and one carcinosarcoma. All four major histological types of 
ovarian carcinoma were represented [17]. The histological 
distribution was consistent with that previously reported for 
ovarian and uterine tumors of Japanese patients [18, 19].

Germline mutations

Exome sequencing data generated from non-tumor 
DNA from 73/76 cases (three ovarian tumor cases without 
informed consent for germline mutation analysis were 
excluded) were analyzed to identify germline mutations in 25 
known cancer susceptibility genes [20]. Germline mutations 
were identified in three cases: 2/48 cases with breast (4.2%) 
and 1/19 cases with ovarian (5.3%) cancer carried pathogenic 
deleterious germline mutations in the BRCA2 gene. The two 
cases with breast tumors also each carried an additional 
deleterious germline mutation: one in TP53 and the other in 
CHEK2. No other cases showed germline mutations in the 25 
genes tested (Figure 1, Supplementary Table 1).

Somatic mutations

Next, we searched for somatic mutations by 
examining exome sequencing data from tumors from 
all 76 cases. A high tumor mutation burden (TMB), 
recently defined as > 10 SNVs/Mb [21], was found in two 
breast carcinomas (BR15-035T, TMB = 50.4 and BR15-
045T, TMB = 16.4) and an ovarian carcinoma (OV15-
005T, TMB = 250.9). Deleterious germline and somatic 
mutations, i.e., nonsense and frameshift insertion/deletion 
(indel) alterations, in six hypermutator genes consisting 
of four mismatch repair (MMR) genes (MLH1, MSH2, 
MSH6, and PMS2) and two DNA polymerase genes with 
proofreading function, POLD and POLE, were examined 
as potentially responsible for high TMB, since their 
aberration is established as associated with high TMB in a 
variety of human cancers [21-24]. The case with ovarian 
cancer had a deleterious somatic mutation in MSH6, a 
MMR gene, while the two cases with breast cancer lacked 
mutations in the six genes (Figure 1, Supplementary Table 
1). The TMBs of the remaining breast and ovarian, and all 
six uterine, tumors were similar (medians 0.60, 0.64, and 
0.59, respectively; P > 0.05 by Kruskal-Wallis test).

The 76 tumors exhibited five mutational signatures, 
four of which showed high cosine similarity (≥ 0.9) 
with 30 known signatures deposited in the Catalogue of 
Somatic Mutations in Cancer (COSMIC) database (http://
cancer.sanger.ac.uk/cosmic/signatures) and had been 
detected in breast, ovarian, and uterine cancer genomes 
in previous studies [12, 25] (Supplementary Figure 1). 
Hierarchical cluster analysis of mutational signatures 
revealed that the 76 cases could be divided into five 
groups (Figure 2). The largest group (N = 48; 63%) 
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comprised cases in which COSMIC-signature 1 (resulting 
from spontaneous deamination of 5-methylcytosine) 
was predominant. In the second largest group (N = 18; 
24%) COSMIC-signature 3 (associated with BRCA1 and 
BRCA2 mutations) was predominant; all three cases with 
germline BRCA2 mutations were included in this group. In 
the third largest group (N = 8; 11%) COSMIC-signature 
2 (attributed to activity of members of the APOBEC 
cytidine deaminase family) was predominant; however, 
expression levels of APOBEC genes were similar between 
these cases and those in other COSMIC signature groups 
(Supplementary Figure 1E). The remaining two groups 
each contained a single high TMB case. Case OV15-005T 
with the somatic MSH6 mutation showed strong identity 

with the COSMIC-signature 6 cluster associated with 
MMR deficiency. BR15-035T showed strong identity 
with an unknown signature pattern enriched in CpC to 
CpA mutations.

Profiles of aberrations in cancer gene census 
genes

MutSigCV analysis identified several Cancer 
Gene Census (CGC) genes (http://cancer.sanger.ac.uk/
census/) as having significant roles in the development/
progression of AYA tumors; PIK3CA and TP53 were 
prominent in breast tumors, and PIK3CA, KRAS, TP53, 
and ARID1A in ovarian tumors (Figure 1), all of which are 

Table 1: Characteristics of the 76 female AYA tumor cases

Breast tumor 
(N=48)

Ovarian 
tumor (N=22)

Uterine 
tumor (N=6)

N % N % N %

Age Mean (±SD) 36.6 (±2.9) 34.5 (±4.3) 34.5 (±3.9)

Stage 0 2 4.2 - - 0 0

I 16 33.3 12 54.5 1 16.7

II 22 45.8 4 18.2 1 16.7

III 7 14.6 6 27.2 4 66.7

IV 0 0 0 0 0 0

Unknown 1 2.1 0 0 0 0

Histology DCIS 2 4.2 Serous (BM) 4 (2) 18.1 Endometrioid 5 83.3

IDC 43 89.6 Mucinous (BM) 8 (2) 36.3 Carcinosarcoma 1 16.7

ILC 1 2.1 Endometrioid 
(BM) 3 (1) 13.6

Mucinous 1 2.1 Clear cell 4 18.1

Angiosarcoma 1 2.1 Carcinosarcoma 1 4.5

Immature teratoma 1 4.5

Primitive 
neuroectodermal 

tumor and 
adenosquamous 
cell carcinoma

1 4.5

Subtype Luminal 36 75

Luminal HER2 3 6.3

HER2 2 4.2

Triple negative 6 12.5

Other 1 2.1

SD, standard deviation; DCIS, ductal carcinoma in situ; IDC, invasive ductal carcinoma; ILC, invasive lobular carcinoma; 
BM, borderline malignancy.
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also frequently mutated in non-AYA breast and ovarian 
tumors [12, 16, 26-28]. A deleterious mutation in CDH1 
was identified in the invasive lobular carcinoma (ILC), 
BR15-016T, consistent with a previous study showing 
frequent CDH1 mutation in ILC [29]. Among the ovarian 
tumors, KRAS mutations were more frequent in mucinous 
tumors than in other types (7/8 vs. 2/14; P = 0.0015 by 

Fisher’s exact test). PIK3CA and ARID1A mutations were 
more frequent in clear cell or endometrioid tumors than 
in other types (6/7 vs. 4/15 and 4/7 vs. 3/15; P = 0.016 
and 0.11, respectively), consistent with previous studies 
of all-age-group ovarian tumors [13, 15, 27]. Mutations 
in CTNNB1, PTEN, and ARID1A were recurrent among 
the six uterine tumors (50%, 50%, and 33%, respectively), 

Figure 1: Gene aberration profiles of tumors of AYA Japanese females. (A) Forty-eight breast, (B) 22 ovarian, and (C) six 
uterine tumors. Clinical and histological factors, tumor mutation burden, mutational signature cluster groups (see Figure 2), germline 
mutations in 25 cancer susceptibility genes [20], and somatic mutations in representative cancer census genes known to be aberrant in 
female tumors are shown. High tumor burden cases were defined as those with > 10 single nucleotide variants per Mb [21]. A/B subtypes 
of luminal type tumors are indicated by the characters A and B. ND, not determined; N/A, not applicable; *, significantly mutated genes in 
breast and ovarian tumors defined by the MutSigCV program.
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which is also consistent with previous reports from all-
age-group uterine tumors [30]. These findings indicate that 
aberrations in the same sets of genes contribute to breast, 
ovarian, and uterine tumorigenesis in both AYA and non-
AYA individuals.

RNA sequencing detected a novel in-frame 
fusion gene, ESR1-ARMT1, between ESR1, encoding 
estrogen receptor 1, and ARMT1, encoding acidic residue 
methyltransferase 1, in an ER+ luminal type invasive 
ductal carcinoma, case BR15-035T (Supplementary Figure 
2). The increased genome copy numbers of both loci in 
this case, together with the location of these two genes 
neighboring CCDC170 on chromosome 6q25, suggest 
that this fusion was generated by tandem duplication of 
the ARMT1-CCDC170-ESR1 locus, as identified in breast 
cancers bearing the recurrent ESR1-CCDC170 fusion [31].

Proportion of cases with actionable gene 
aberrations

Hot spot activating mutations in the PIK3CA, KRAS, 
BRAF, and AKT1 genes, copy number gains in HER2, 
and deleterious BRCA1, BRCA2, PTEN, and ARID1A 

mutations were considered actionable gene aberrations 
(Figure 3), since drugs targeting the molecules encoded 
by these loci are available or being developed in clinical 
trials. In addition, high TMB was deemed an actionable 
aberration, as this feature is associated with response to 
immune checkpoint inhibitory therapy [21, 32]. Based on 
these criteria, 24 breast (50%), 17 ovarian (77%), and five 
uterine (83%) tumor cases were judged to have actionable 
gene aberrations.

DISCUSSION

Here, the genome-wide profiles of 76 sporadic 
tumors of AYA Japanese females were investigated 
to determine the underlying mutagenic processes and 
elucidate actionable gene aberrations. Germline mutations 
in 25 genes established as involved in hereditary tumors 
[20] were detected only in a small fraction of patients: 
4.2% of cases with breast tumors and 5.3% of those with 
ovarian tumors. The frequencies among breast and ovarian 
tumor cases were considerably lower than those found in 
sporadic cases among AYAs in the US (Supplementary 
Table 2). Thus, germline mutations in those susceptibility 

Figure 2: The spectrum of mutational signatures within 76 AYA female tumors. Samples are ordered according to hierarchical 
clustering performed on signatures. The IDs of the three cases with germline BRCA2 mutations are boxed in black. The top panel shows 
the proportion of each signature in each sample (increasing with color intensity as shown bottom left). The proportion of each signature in 
representative cases is represented bottom right.
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genes may contribute to the development of a smaller 
subset of sporadic AYA tumors in females in Japan than 
in those in the US. It was noted that two individuals with 
breast cancer with germline BRCA2 mutation also carried 
another deleterious germline mutation, respectively. 
Double germline mutations have been observed in several 
US patients (Supplementary Table 2), therefore, their 
pathogenic and clinical significance in AYA-tumors should 
be further investigated in larger sets of samples.

Mutational signature analysis revealed that our 
cases had the same signatures as those observed in all-
age-group studies of breast, ovarian, and uterine tumors 
[11-13]. The prevalence of COSMIC-signatures 1 and 2 in 
female AYA tumors was in common with that in a variety 
of tumors [11], indicating that the mutagenic mechanisms 
are similar [11]. By contrast, a substantial proportion of 
the cases (24%) bore a signature of mutagenesis associated 
with BRCA1 and BRCA2 deficiency, which is exclusively 
observed in breast, ovarian, and pancreatic tumors [11]. 
This mutational signature profile of AYA tumors is quite 
similar to that of sporadic breast and ovarian cancers in 
general [12, 13]. Therefore, the mutation burden during 
tumorigenesis is likely to be similar between tumors in 
AYA and non-AYA females. The breast cancer case, BR-
035T, showed a signature highly enriched in CpC to CpA 
mutations. To the best of our knowledge, this patient had 
not suffered from specific carcinogen exposure; therefore, 
the underlying process that initiated mutagenesis remains 
unclear.

Consistent with the mutational signature data, AYA 
tumors showed mutations in the same set of genes as 
non-AYA tumors. Deleterious mutations in GATA3, an 
activating SF3B1 mutation (K700E), and an activating 
AKT1 mutation (E17K) were observed in eight (16.7%), 
three (6.3%), and three (6.3%) breast tumors, respectively. 

These frequencies are higher than those in overall breast 
cancers [12, 16, 33]. Thus, these gene aberrations could 
be preferentially involved in the development of tumors 
in AYA females. In the present study, significant fractions 
of breast (50%), ovarian (77%), and uterine (83%) tumors 
had actionable gene mutations and gains (Figure 3), while 
actionable oncogene fusions, as frequently observed in 
AYA lung tumors [34, 35], were not discovered. Recently, 
it was reported that a mutational “BRCAness” signature 
is a predictor for functional BRCA1/BRCA2 deficiency 
[36]; therefore, the 15 BRCA1/2 mutation-negative 
breast/ovarian tumors with a predominant COSMIC-
signature 3 could be responsive to PARP inhibitors and 
platinum agents due to deficiency in DNA double strand 
break repair. If that were the case, the fractions of breast 
and ovarian tumors with actionable gene aberrations 
in the current study would increase to 74% and 86%, 
respectively (Supplementary Figure 3).

An ESR1-ARMT1 fusion was detected in a case of 
breast carcinoma. Several types of gene fusions including 
ESR1 have been reported in ER+ breast cancers [37]. All 
known ESR fusion proteins have a common structure, 
where the ligand-binding domain of the ESR1 protein 
is absent, but the hormone-independent transactivation 
domain and DNA-binding domain are retained, suggesting 
their significance in resistance to endocrine therapy. The 
ESR1-ARMT1 fusion protein identified in the current 
study retains the ligand-binding and transactivation 
domain, but lacks the DNA-binding domain 
(Supplementary Figure 2A), and patient BR15-035T, from 
whom it was isolated, had not received endocrine therapy. 
Thus, the effect of ESR1-ARMT1 fusion on resistance to 
endocrine therapy is unknown.

Overall, our results from gene profiling of tumors 
from 76 female AYAs lead us to conclude that the 

Figure 3: Fractions of AYA female tumors with potentially actionable gene aberrations. Gene aberrations and their 
corresponding therapeutic agents are shown for each case.
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mutational processes in these malignancies, as well as 
their aberrant genes, are largely shared with non-AYA 
tumors. High frequencies of actionable gene aberrations, 
including high TMB and the “BRCAness” mutational 
signature, indicate that the efficacy of molecular targeting 
and immune checkpoint inhibitory therapies should be 
studied in AYA patients, along with non-AYA patients. 
In addition, more extensive study of germline mutations 
in genes other than the 25 examined in this study will 
facilitate our understanding of hereditary factors involved 
in AYA tumor development.

MATERIALS AND METHODS

Patients

The AYA tumors analyzed in the present study were 
obtained from consecutive cases aged 15 to 39 years, who 
were diagnosed with breast, ovarian, or uterine tumors and 
underwent surgery at the National Cancer Center Hospital 
(NCCH), Tokyo, Japan, or at the Jikei University Hospital 
(JUH), Tokyo, Japan, and for whom snap-frozen tumor 
and non-tumor tissues were available in the NCCH and 
JUH-Gynecology Biobanks. None of the 76 patients had 
received any pre-surgical treatment, and there was no 
obvious family history of cancers. Seventy-three patients 
provided informed consent for both somatic and germline 
gene aberration analysis. The remaining three, OV15-
016, OV15-017, and OV15-018, only provided informed 
consent for somatic mutation analysis, in which non-tumor 
DNA is used as a reference to identify somatic mutations 
in tumor DNA; these three patients did not give consent 
for germline mutation analysis, where non-tumor tissue 
DNA is used for detection of germline mutations. The 
institutional review boards of the National Cancer Center 
and Jikei University approved the study. Clinical data 
for each patient, including their age, and tumor stage, 
histology, and subtype, were collected retrospectively. 
Breast tumors were diagnosed according to the Union 
for International Cancer Control TNM classification 
(7th edition). Subtyping of breast tumors was performed 
based on the status of ER, PgR, HER2, and Ki67, 
which were examined by immunohistochemistry, as 
previously described [19]. Ovarian and uterine tumors 
were diagnosed in accordance with the International 
Federation of Gynecology and Obstetrics (FIGO) system 
and classified according to the World Health Organization 
(WHO) classification of tumors [38].

Whole exome and RNA sequencing

Exome sequencing was conducted using 200 ng of 
genomic DNA isolated from snap-frozen tumor and non-
tumor tissues obtained from 76 patients. Exome capture 
was performed using the Agilent SureSelect Human V5 
platform, according to the manufacturer’s instructions. The 

median sequencing depths of tumor and non-tumor DNA 
were 203 (range, 128–228) and 104 (79–136), respectively. 
Somatic single nucleotide variants (SNVs) were called 
using the MuTect program for variants present in bi-
directional reads [39]. Somatic insertion/deletion (indel) 
mutations were called using the GATK Somatic Indel 
Detector, while germline SNVs and indels were called using 
the GATK program (https://www.broadinstitute.org/gatk/). 
Significantly mutated genes were defined by a q value of 
< 0.10, using the MutSigCV program [28]. Pathogenic 
germline mutations in 25 known cancer susceptibility genes 
[20] were defined as “pathogenic variants” deposited in the 
ClinVar database (http://www.ncbi.nlm.nih.gov/clinvar/), 
and as deleterious variations, i.e., nonsense SNVs and 
frameshift indel variants. The 25 genes examined consisted 
of 12 breast cancer susceptibility genes (ATM, BARD1, 
BRCA1, BRCA2, BRIP1, CDH1, CHEK2, NBN, PALB2, 
PTEN, STK11, and TP53) and 13 cancer susceptibility 
genes (APC, BMPR1A, CDK4, CDKN2A, EPCAM, MLH1, 
MSH2, MSH6, MUTYH, PMS2, RAD51C, RAD51D, and 
SMAD4). These genes were selected because they are well-
documented moderate- and high-risk genes for female 
tumors [20].

RNA samples (200 ng) extracted from snap-frozen 
tissues using TRizol reagent (Thermo Fisher Scientific) 
were subjected to RNA sequencing using the TruSeq 
RNA Sample Prep Kit (Illumina). Fusion transcripts were 
detected using the TopHat-Fusion algorithm [40].

Mutational signature analysis

Mutational signatures were analyzed by non-
negative matrix factorization (NMF), which was applied 
to the 96 possible mutations occurring in a trinucleotide 
context, as previously described [11, 25]. NMF was 
performed with various numbers of signatures, from 
one to ten, in this study. Obtained signatures were 
compared with those in the COSMIC database (http://
cancer.sanger.ac.uk/cosmic/siganatures). The similarity 
was quantified using cosine similarity as previously 
described [11, 25].

Statistical analyses

Statistical analyses of differences in clinico-
pathological factors and genetic aberrations were tested 
by Mann-Whitney U, Kruskal-Wallis, Pearson’s chi2, and 
Fisher’s exact tests.

Further information

See Supplementary Materials.
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