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ABSTRACT

Besides the classical evolutionary model of colorectal cancer (CRC) defined by the 
stepwise accumulation of mutations in which normal epithelium transforms through 
an intermediary polyp stage to cancer, a few studies have proposed alternative modes 
of evolution (MOE): early eruptive subclonal expansion, branching of the subclones 
in parallel evolution, and neutral evolution. However, frequencies of MOEs and their 
connection to mutational characteristics of cancer remain elusive. In this study, we 
analyzed patterns of somatic single nucleotide variations (SNVs) and copy number 
aberrations (CNAs) in CRC with residual polyp of origin from 13 patients in order 
to determine this relationship. For each MOE we defined an expected pattern with 
characteristic features of allele frequency distributions for SNVs in cancers and their 
matching adenomas. From these distinct patterns, we then assigned an MOE to each CRC 
case and found that stepwise progression was the most common (70% of cases). We 
found that CRC with the same MOE may exhibit different mutational spectra, suggesting 
that different mutational mechanisms can result in the same MOE. Inversely, cancers 
with different MOEs can have the same mutational spectrum, suggesting that the same 
mutational mechanism can lead to different MOEs. The types of somatic substitutions, 
distribution of CNAs across genome, and mutated pathways did not correlate with MOEs. 
As this could be due to small sample size, these relations warrant further investigation. 
Our study paves the way to connect MOE with clinical and mutational characteristics 
not only in CRC but also to neoplastic transformation in other cancers.
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INTRODUCTION

The foundation for the studies of genetic evolution 
in many cancer types was built upon the finding first 
presented in the seminal work by Fearon and Vogelstein 
that the accumulation of genetic alterations led to 
neoplastic transformation in the colon to colorectal cancer 
(CRC) [1]. This widely accepted and dominant paradigm 
that CRC arises in a linear model of accumulated 
genetic mutation and large-scale genomic disruptions of 

chromosomal instability continues to be the infrastructure 
upon which extensive research on carcinogenesis is based 
[2]. In this classical model of CRC, carcinogenesis is 
presumed to follow a linear trajectory from normal colon 
tissue to a precancerous lesion, known as an adenomatous 
polyp, to cancer.

Since the introduction of next generation 
sequencing technology, improved ability to accurately 
characterize cancer genomes allowed researchers to 
explore and challenge this idea of sequential progression 
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in carcinogenesis of CRC and this effort resulted in three 
additional evolutionary models to address carcinogenesis. 
One recent study on the distribution of somatic mutations 
in CRC proposed an extension of the linear model into 
a quick eruptive accumulation of mutations in the polyp 
followed by subclonal competition and a plateau of 
extensive mutation accumulation in the resulting cancer 
[3]. This phenomenon results from a lack of selection 
pressure in combination with high rate of mutation 
accumulation. One noteworthy aspect of this model, also 
known as the ‘Big Bang,’ is that it describes how early 
mutations shape the high intratumoral heterogeneity (ITH) 
observed in the late stage of CRC and may be associated 
with a more aggressive clinical behavior and decreased 
rates of survival [4].

Another study postulated a parallel evolution 
involving a separate lineage of private, cancer- and 
adenoma-specific mutations branching out from the early 
clonal mutations shared between the two tissues [5]. Due 
to this divergence, cancer exhibits a different mutational 
architecture than the traditionally expected expansion 
of the subclonal populations present in the polyp. In 
parallel evolution, driver mutations may be present in 
subclones and multiple independent subclonal expansions 
may persist so long as they are of equal fitness. Thus 
one subclone does not confer a selective advantage over 
another subclone, which may in fact have the same driver 
mutation but unique private mutations. In some cases 
the polyp accumulates a greater number of mutations 
than cancer, while in others the cancer accumulates more 
mutations than the polyp, suggesting that the number of 
mutations alone cannot determine whether a CRC will 
undergo parallel evolution.

Lastly, the possibility of cancer evolution following 
a simple neutral power-law was explored based on 
the finding that some cancers exhibit several distinct 
distributions of the allele frequency of somatic mutations 
in their cancer lineage in which one evinces selection 
pressure while another does not. The notion is that the 
distribution of passenger mutations with low allele 
frequencies with respect to the clonal mutations near the 
allele frequency of 0.5 would follow a 1/f distribution [6]. 
On the other hand, a lineage exerting selection pressure 
would have driver mutations represented as an additional 
subclonal peak located between the peak of the passenger 
mutations and that of the clonal mutations [7].

These four Modes of Evolution (MOEs), stepwise, 
eruptive, parallel, and neutral, offer possible explanations 
for the temporal relationship among the different types 
of genome wide alterations as well as intra- and inter-
tumoral heterogeneity. The importance of knowing the 
features of MOEs with the highest impact on the polyp or 
tumor’s behavior is highlighted by the genetic evolution in 
glioblastoma multiforme (GBM). In one study, the degree 
of persistent mutations from the primary tumor that were 
also present in the recurrent tumor differed based on the 

MOE of the primary tumor [8]. The authors found that the 
recurrent tumors carried 75% of the mutations present in 
the primary tumor with linear MOE compared to those 
with parallel MOE in which recurrent tumors shared 
only 25% of the mutations in the primary tumor. The 
recurrence of the cancer, which rarely can be successfully 
treated and cured, was genetically represented by those 
early mutations present in the primary tumor that had 
developed resistance to chemotherapy. If it were possible 
to recognize all functionally relevant mutations in the 
primary tumor and to develop treatments for each of these 
mutations, conceivably it would be possible to prevent 
recurrences. Thus, studying the MOEs and understanding 
the characteristics of clinical cases in relation to the 
evolutionary path that led to malignant transformation 
may be leveraged to improve accurate prognostication and 
provide targets for personalized treatment options.

We previously reported that at least 10% of CRC 
have the contiguous residual polyp of origin (CRC RPO+) 
identifiable in the surgically resected specimen [9]. 
We performed whole genome sequencing and analysis 
of such CRC RPO+ cases, which included matched 
peripheral blood leukocytes, normal colon a minimum 
of 8 cm distant from the polyp and/or cancer edge, the 
cancer adjacent polyp (CAP) and the contiguous CRC 
(Figure 1A). Comparative analysis between CRC RPO+ 
and CRC without residual polyp of origin (RPO-) revealed 
essentially the same histology, gene expression patterns, 
mutated genes/pathways, as well as the same stage-
adjusted disease free and overall survival. Similarly, 
the CAP component is highly likely to represent the 
intermediary state between normal colon epithelium and 
CRC RPO+ because it is in direct contiguity with the 
cancer. This strongly argues that CRC RPO+ is a valid 
model to study neoplastic transformation in the colon [9].

In this study, we analyzed patterns of somatic 
mutations in the CRC RPO+ cases to determine the 
relationship between different MOEs in the transformation 
from normal colon cells to CRC and mutational 
characteristics of CRC RPO+ cases. We used the same 
samples from our previous study but excluded those 
without a matched normal colon epithelial tissue for a total 
of 13 cases (Supplementary Table 1). Four of these cases 
were clinically determined to be aggressive, having either 
recurred or presented as advanced stage IV disease.

RESULTS

Utility of mutation AFs across neoplastic 
transformation for MOE classification

We observed distinct patterns in the allele frequency 
distribution of each pair of cancer and matching polyp 
characterized by 1) two gaps in AF; 2) one gap in AF; or 
3) no gap (Supplementary Figures 1–11). We hypothesized 
that these patterns are representative of CRC evolution. 
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Consequently, we derived an expected pattern of AF 
distributions in CRC and its corresponding polyp for each 
MOE based on its key characteristics (Figure 1B). For 
stepwise and eruptive MOEs, it is expected that most SNVs 
are shared between the adenoma and its corresponding 
cancer. Moreover, selective pressure, which increases the 
AF of certain subclonal mutations nearly to the level of AF 
present in shared clonal mutations, is a common feature 
in stepwise MOE. For parallel MOE, where the adenoma 
and cancer branch early in their evolution to independent 
pathways, most SNVs are expected to accumulate after the 

branch point between a polyp and cancer. Thus, most of 
these SNVs are polyp or cancer specific, rather than shared. 
One important distinction between stepwise and parallel 
MOEs is that the parallel MOE has adenoma and cancer 
separately evolving along their respective subclonal lineage, 
implying distinct adenoma- and cancer-specific mutations 
conferring a growth advantage for each tissue compartment. 
Thus, the AF of private mutations in polyp compartment 
of parallel MOE cases would be close to 0.5 (blue dots in 
Figure 1B) while for stepwise MOE this is not the case. 
A key feature of neutral MOE is the little to no selective 

Figure 1: Modes of Evolution (MOE) in the transformation from adenoma to cancer and resulting AF distributions. 
(A) CRC with residual polyp of origin (top red box) refers to the cancer that has the polyp located physically adjacent to the cancer (bottom 
black box). (B) Schematic representation of MOEs in adenoma-to-cancer transformation: classical sequential stepwise evolution, parallel 
(branched) model, neutral evolution, and eruptive (Big-Bang) model of early bursts of single or whole chromosomal genomic disruption. 
Circles and dots depict cells and mutations respectively. Colors correspond to different clones/subclones. Plots on the right represent 2D 
AF distributions of somatic variants in polyps and cancer with dotted lines on 0.5 AF. AFs of shared SNVs could be shifted from 0.5 due 
to sample impurity. These distributions are characteristic of each mode and can be used for MOE prediction.
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pressure represented by a lack of clear distinction between 
early-shared (gray cluster) and late-shared mutations (the 
rest). CRC originating via an eruptive MOE is characterized 
by the development of all shared clonal mutations prior to 
the pre-cancer polyp phase followed by little to no selection 
so that the shared clonal mutations early in transformation 
would include clusters of early mutations (brown, green, 
and light blue cluster) in addition to the grey cluster of 
SNVs.

The anticipated AF distribution for the union of 
somatic SNVs per patient (i.e., discovered both in adenoma 
and cancer) is a characteristic feature of MOE in both the 
adenoma and cancer compartments. Gradual transition 
from adenoma to cancer in stepwise MOE will result in a 
gap in the AF distribution in cancer and small or no gap 
in adenoma. However, no such gaps are expected in the 
distributions for neutral MOE, as SNVs with all AFs are 
shared between adenoma and cancer. Long independent 
evolution of adenoma and cancer in parallel MOE will 
result in clear gaps in the two distributions. Early shaping 
of the shared clonal mutations in eruptive MOE will result 
in a gap in AF distribution of adenoma, but at no or less 
pronounced gap in AF distribution of cancer.

Purity of a sample, i.e., fraction of malignant 
cells, is generally determined by a pathologist visually 
inspecting histological slides of the tissue and the purity 
level varies from sample to sample [10]. Lower purity 
level in adenoma sample would shift down the overall 
somatic SNV AF distribution in adenoma towards zero 
and could potentially decrease the gap observable in the 
2D plot. However, while purity level can shift, shrink, 
or expand the AF distribution and affect the absolute AF, 
the relative pattern of the distribution as a whole remains 
the same. Thus, comparison of the relative AF between 
the shared and the private mutations can be used to infer 
the existence of selective pressure in a CRC without the 
influence of the purity level difference across samples.

CRCs also exhibit large chromosomal aneuploidies 
with deletion or duplication of the entire chromosomes 
and/or chromosomal arms, which can be characterized in 
a MOE-specific manner. Aneuploidies are expected to be 
noticeable beginning in adenoma for eruptive MOEs, in 
which most of the copy number alterations happen early 
in the lineage and the cancer grows out of a clone present 
in the polyp stage. In an independent evolution of polyp 
and CRC, as in parallel MOE, aneuploidies should only be 
observed in cancer. Similarly, in the stepwise evolution, 
deleterious early copy number alterations would be 
selected out, leaving only the chromosomally stable clone 
in polyp stage to grow into cancer, at which the growth 
could tolerate larger scale chromosomal changes. The 
neutral MOE’s copy number alterations status can be more 
difficult to interpret because the lack of selection could 
imply a possibility of smaller copy number alterations but 
never a larger, more damaging copy number alteration that 
only cells with selective advantage could tolerate.

Here, it is crucial to note that aneuploidies would 
not affect the shape of the distribution in the 2D plot for 
several reasons. First, large regions of the genome are 
chromosomally stable in most of the polyp cases. In fact, 
only three out of the 13 CAP cases have greater than 10% 
of its genome affected by aneuploidies. Another reason 
is that even if the adenoma is affected by aneuploidies, 
they are mostly subclonal and will not shift the AF of 
the private mutations significantly. This, along with the 
simultaneous shift in AF between the shared and the 
private SNVs mentioned above, support the notion that 
aneuploidies are unlikely to affect our interpretation of the 
2D plot in classifying cases by MOEs. All of these reasons 
also apply to genome doubling. Genome doubling, which 
is found to be commonly associated with increased rate of 
evolutionary growth in colorectal cancer, occurs early in 
the development and can either affect both adenoma and 
cancer to raise the AF distributions in both axes or, again, 
affect the entire tissue so that the AF in both the private 
and shared mutations shift together. Therefore, using 
the relative position of the AF in private mutations with 
respect to the shared mutations serves as a strong criterion 
in determining the MOE of a case.

Comparative example of stepwise and eruptive 
MOEs

Let’s consider two cases of neoplastic transformation 
to CRC in our cohort: in case A03, where we classified 
MOE as stepwise, and in case A09, where we classified 
MOE as eruptive (Figure 2). In each patient, two stages of 
adenoma (tubular and villous) were observed, harvested, 
and sequenced. In these cases, the tubular and villous polyp 
along with the corresponding resultant cancer were in direct 
contiguity and present on the same histology slide, which 
likely represents the tissue compartments involved in the 
malignancy that patient A03 developed. Tubular adenoma in 
A03 had 5,611 somatic SNVs with no aneuploidies. Tubular 
adenoma in A09 had 8,786 somatic SNVs with apparent 
aneuploidies. As expected from the classical Fearon and 
Vogelstein model, both the tubular and villous polyps had 
a stop mutation in APC, which is a gene recognized to be 
mutated in many CRC and considered to be involved in 
initiating neoplastic transformation in the colon. Each of 
the patients also had mutations in one of two well-known 
cancer-driver genes: in KRAS and TP53 in the patient case 
A03 and in TP53 in the patient case A09. The introduction 
of the TP53 also correlated with observation of large 
amounts of aneuploidies (Figure 2B, 2D). In both patient 
cases, evolution to villous adenoma did not change the copy 
number profile though the copy number alterations became 
more pronounced, likely as a result of better sample purity 
in the villous compared to the corresponding tubular polyp 
compartment. This is particularly noticeable in case A03, in 
which more somatic SNVs are detected in the villous polyp 
than in its corresponding tubular adenoma, 14,393 vs. 5,611. 
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Consistently, AF of early mutations originated in tubular, 
including stop mutations in APC and KRAS, are increasing 
and are centered close to 50%, suggesting that one clone 
dominates this stage. In A09, count of SNVs increase 
only slightly, 8,893 vs. 8,786, with AF of early mutations, 
including stop mutations in APC and TP53, unchanged. 
As an average AF of early mutations is significantly below 
50%, mutation-containing cells likely constitute only a 
small fraction of all cells in the villous polyp.

The copy number profile in the cancer from patient 
A09 is the same as, but much more pronounced, in the 
villous tissues, suggesting higher purity of cancer cells 
in the cancer compartment than in the villous tissues. In 
agreement with this, more somatic SNVs are detected in 
cancer compared to the villous polyp, 11,357 vs. 8,893, 
and the AF of early mutations in the adenoma are centered 
close to 50%, suggesting high purity level in this sample. 
Deletion of the other (not mutated) copy of TP53 gene 
in the villous compartment leads to an even higher AF 
of a stop mutation in this gene. New mutations only 
found in cancer have much lower AF, indicating that 
these mutations represent subclones in the cancer. Large 

aneuploidies becoming progressively more definitive since 
their introduction early in the lineage is consistent with 
eruptive progression.

Contrary to this, aneuploidies and CNAs in A03 are 
present only in cancer, in which a stop mutation is observed 
in TP53. However, number of detectable somatic SNVs 
decreases as compared to villous, 8,831 vs. 14,393, with 
AF of mutation observed in adenoma also decreasing. This 
is most likely due to lower purity in the cancer component. 
New mutations found only in cancer are centered at a similar 
AF despite being subclonal, suggesting a significant selective 
advantage. All these observations are consistent with the 
gradual accumulation of mutations followed by a selective 
pressure that progressively alters the genomic landscape 
mostly with SNVs until the late stage of cancer, at which 
point there are large aneuploidies and CNAs.

Rules for classifying MOEs

We defined a set of rules suggesting MOE based 
on each characteristic signature that can be observed in 
spatial-temporal pattern of SNVs (Table 1). Five rules 

Figure 2: Example of a stepwise (A03) and an eruptive MOE (A09) revealed by somatic mutations analysis. (A and C) 
Schematic representation of models for origin, presence, and propagation of clonal and subclonal mutations at each stage of transformation. 
Mutations in APC, KRAS, and TP53 are labeled at the corresponding stages of the evolution. The bars on the left represent estimated sample 
purity from SNV AF and CNA analyses. Distributions on the right represent the mutations shared by adenomas and cancer (in gray), 
those shared between the villous low and cancer (in purple), and those that are cancer-specific (in blue). Vertical dashed lines represent 
an approximate detection limit with our analytical pipeline. SNVs with AFs below detection limit are discovered in other samples. The 
middle shows schematics of presumed clonal lineage evolution. (B and D) Genome copy number profiles at each stage. In case A03, large 
aneuploidies are observed only in the cancer stage. In case A09, large aneuploidies are observed in the tubular stage and are maintained 
until the cancer stage. (E and G) Distributions of AF for somatic SNVs are consistent with stepwise MOE in A03 and eruptive MOE in A09 
(Figure 1B). (F and H) 3D representation of the AF distributions of SNVs is shown for each case. The height of the distributions, which 
shows the number of mutations, indicates large fraction of both shared SNVs and private SNVs for A03 and large fraction of polyp-specific 
SNVs and shared SNVs for A09.
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were defined to describe characteristics of each MOE. 
These rules were based on the theoretical expectations for 
the four considered MOEs (Figure 1B) and are related to 
the number of SNVs, the shape of the SNV AF distribution 
in adenoma and cancer, and the progression of CNAs. 

Rule #1 is comparing the number of adenoma- 
and cancer-specific somatic SNVs with the number of 
somatic SNVs shared between them. Rule #2 is testing 
whether a gap exists in the AF distribution of somatic 
SNVs in a 2D plot of adenoma vs. cancer (Figure 1B). 
Since selection pressure within a lineage would shift the 
private SNV AFs further away from the shared SNV AFs, 
a larger gap would signify mutational architecture in later 
stages that is far different from its shared, early clonal 
mutations. Rule #3 compares the spatial distribution of 
the shared SNV AFs with respect to the private SNV AFs. 
In evolutionary scenarios with selective pressure, almost 
all of the later cell population would derive from a cell 
that acquired driver mutations early in the lineage. The 
high prevalence of this cell leads to a private SNV AF that 
nearly matches the SNV AF of the shared, clonal SNV 
AF. Rule #4 examines whether the early shared SNVs and 
the later shared SNVs are distinguishable based on AF 
distribution. Although similar to rule #2, this rule requires 
both adenoma- and cancer-specific mutations, which will 
filter out neutral evolution in which the lack of selection 
pressure leads to all the mutations in the adenoma to be 
carried forward to the cancer. Similarly, this rule filters 
out eruptive evolution given that in eruptive evolution the 
majority of the mutations found in the cancer similar to 
those in the adenoma due to the late steady state in which 
mutations infrequently accumulate in the CRC beyond 
those that rapidly accumulated in the early precancerous 
polyp phase and persisted into the cancer. Lastly, rule 
#5 compares the earliest time point at which large 
aneuploidies are noticeable.

We then applied majority vote from all rules to 
classify MOE for each analyzed CRC case (Table 2,  
Supplementary Figures 1–11). We found that approximately 
70% of CRCs in our dataset evolved in a stepwise or a 
parallel MOE. One case demonstrated an eruptive MOE and 
three cases neutral MOE. Cases A11 and A13 both had a gap 
in the SNV AF distribution in the adenoma but not in the 
cancer, which corresponded to none of the characteristics 
of MOEs outlined earlier. For A13, the majority of the rules 
did not apply because of the lack of distinction between 
the private and the shared SNV AF distribution in addition 
to the unusual characteristics in the SNV AF gap between 
the adenoma and its related cancer. One explanation for 
the unusual gap in the 2D plot is a low purity level in the 
cancer compared to the adenoma, which is supported by the 
overall low AF distribution in cancer near 0.25. However, 
if that were indeed the case, it would still not explain the 
fact that the private mutations in cancer appear to have a 
higher AF than the shared SNVs. In fact, pathology review 
indicates that the macrodissected portion of the cancer had 

60% tumor density (Supplementary Table 2). For these 
reasons, cancer-specific mutations shifting relative to the 
mutations shared between both adenoma and cancer can 
be attributed to another possible explanation that the CRC 
and the physically adjacent CAP for cases A11 and A13 
arose from different clones independently rather than the 
CRC growing from the same clone as the CAP. This is 
supported by the AFs of the shared driver mutations TP53 
and KRAS. For A11, mutations on TP53 have AFs of 0.471 
and 0.324 in villous adenoma that are decreased to 0.167 
and 0.152 in cancer. Similarly, A13 has a mutation on TP53 
with AF of 0.424 in villous adenoma that is decreased to 
0.028 in cancer and a mutation on KRAS with 0.261 AF 
only observed in villous adenoma. Lastly, there is also a 
possibility that these cases represent an additional MOE of 
extremely rare polyclonal CRC [11]. Thus, we only applied 
the rules #1 and #5 that were pertinent to the case A13 and 
this limitation led to a classification that is less reliable 
than other cases but the relevant rule-based characteristics 
strongly suggested parallel MOE.

It should be noted here that due to the nature of 
synchronous residual polyp of origin, all patient cases 
exhibit the property of branching evolution to some 
extent, even though it is assumed that the cancer sample 
developed from the adenoma. This is the reason we 
labeled a few cases to have an MOE of s,p as we could not 
conclusively classify these cases as having stepwise vs. 
parallel MOE. Also, the striking feature of neutral MOE 
is its lack of selective pressure in its lineage, which allows 
aneuploidies to begin at any point in time as a result of 
random drift of a clone with aneuploidies to noticeable 
high frequency. All samples with observable aneuploidies 
were given the additional neutral MOE assignment for 
rule #5 because of this inability to predict the initiation 
of aneuploidies. Lastly, samples without significant 
aneuploidies were not considered for rule #5.

Mutational spectra and MOEs

Next, we broke down the somatic mutations into 
96 tri-nucleotide motifs for each sample, as Alexandrov 
previously did in cancer in order to decipher mutational 
signatures [12]. Then, we performed a pairwise comparison, 
and ordered them by hierarchical clustering in order to 
identify any mutational patterns specific to different MOEs 
(Figure 3). C>T transitions and C>A transversions seem 
to contribute the most in distinguishing the clusters apart. 
Additionally, the similarity in the mutational patterns of 
cancer and their matched adenoma samples imply that 
the mechanism resulting in the shaping of the mutational 
spectra is determined even before adenoma and remains 
relatively stable in the corresponding cancer.

Clustering of the CAP and cancer samples based on 
their somatic mutational spectra clearly show three major 
groups of the samples with the same subtypes: case A16 
being in one, cases A10 and A12 being in another, and the 
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rest being in another group. In other words, the subtyping 
into microsatellite-high (MSI-H), which are defecting for 
mismatch repair, and microsatellite stable (MSS) cases 
contributes more significantly to the substitution mutation 
patterns than the MOE assignment does. Nevertheless, the 
same subtype does not guarantee the same MOE assignment 
and this is consistent with two microsatellite-high (MSI-H) 

cases of A10 and A12 having a different MOE. Although 
the same underlying genetic hypermutability results in the 
two cases having a similar number of mutations, A10 cancer 
had a neutral MOE while A12 cancer underwent a stepwise 
or parallel MOE. The genetic hypermutability in both A10 
and A12 cases were confirmed in their mutational patterns 
that are similar to signature 6. According to Alexandrov, 

Table 1: Rules to classify MOE for each case of neoplastic transformation
Rules/MOE Stepwise Parallel Neutral Eruptive

#1: Fraction of private 
SNVs relative to shared 
SNVs

Large fraction of 
private in cancer and in 
polyp as well as shared 

mutations (qualitatively: 
≥10% cancer specific, 
≥10% cancer specific, 

and ≥40% shared 
SNVs)

Majority is private in 
cancer and in polyp 
(qualitatively: ≥50% 

either cancer or polyp 
specific SNVs) 

Majority is shared 
(qualitatively: 
<5% cancer 

specific and polyp 
specific SNVs)

Majority is private 
in polyp and shared 
(qualitatively: <5% 

cancer specific, 
≥10% polyp specific, 

and ≥80% shared 
SNVs)

#2: Gap in the SNV AF 
distribution in polyp 
and in cancer

Yes/Yes Yes/Yes No/No No/Yes

#3: Position of private 
SNV clusters relative to 
the shared SNV cluster

Polyp-specific SNV AF 
is lower than the shared 

SNV AF

Both polyp and cancer-
specific SNV AF are 

equal to the shared SNV 
AF

No private 
mutations

Both polyp and 
cancer-specific SNV 
AFs are lower than 
the shared SNV AF

#4: Indistinguishable 
early shared from later 
shared SNVs

No No Yes Yes

#5: Numerous 
aneuploidies start in Cancer (Late) Cancer (Late) N/A Polyp (Early)

Table 2: Rule-based classification of each neoplastic transformation case
Cases/Rules Rule #1 Rule #2 Rule #3 Rule #4 Rule #5 Conclusion
A02 s s,p p s,p s,p,n s,p
A03 s s,p s s,p s,p,n s
A04 n n n n,e n,e n
A07 s s,p p s,p s,p,n s,p
A08 p s,p p s,p s,p,n p
A09 e e s,e n,e n,e e
A10 n n n n,e - n
A11 s - s s,p n,e s
A12 s s,p p s,p - s,p
A13 p - - - n,e or s,p,n Most likely p
A14 n n n n,e - n
A15 e s,p p s,p - p
A16 s s,p s s,p - s

The label s stands for stepwise, p stands for parallel, n stands for neutral, e stands for eruptive, and s,p for a combination 
of stepwise and parallel. Based on its characteristics relevant to the rule in question, the samples were given the most 
likely MOE assignments for each rule. Then, each sample was assigned the final MOE with the majority count across the 
five rules.
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signature 6 is commonly observed in CRC and is presumed 
to be associated with compromised DNA mismatch repair 
(Supplementary Figures 12 and 13). Additionally, the 
cluster analysis illustrates that the MOE classification 
is not solely dependent on the number of mutations or 
the MSI status. Despite the A16 cancer sample having 
approximately 62 times the amount of somatic mutations 
found in MSS cases and 6.7 times the amount found in 
MSI-H cases, it is classified as stepwise MOE as are most 
of the other cases. The rest of the samples, representing the 
MSS cases, exhibited distinct patterns of signature 1, which 
is presumed to be associated with sporadic deamination 
of 5-methylcytosine. These cases also exhibited spectra 
similar to signature 5, but signature 5 is not yet known to 
be associated with particular mechanisms (Supplementary 
Figure 14).

Having such a high mutation burden, the case A16 
was presumed to have mutations in POLE, because the 
adenoma and cancer mutational spectra matched signature 
10 in the COSMIC database (Supplementary Figure 15). 
Signature 10 is commonly observed in CRC and is thought 
to be associated with variants in DNA polymerase epsilon 
(POLE), which suggests a defect in the POLE gene [12]. 
A missense somatic mutation call in POLE with an AF of 
0.25 in the cancer sample of the A16 case may account for 
only a part of the story, since the mutational spectra tell 
us that the mutations in POLE gene happened early in the 
evolution for such patterns to form both in adenoma and 

in cancer. Indeed, we found two missense mutations in 
the matched normal sample of the case A16. While these 
could be either germline mutations or somatic mutations 
that occurred early in development, these mutations could 
possibly explain the ultra-high mutation rate observed in 
both the polyp and cancer. The first missense mutation is a 
known SNP on chromosome 12 at position 133220526 that 
is predicted to have a slight deleterious effect with a SIFT 
score of 0.03, which is contrary to a benign effect predicted 
by the PolyPhen2 score of 0.104 (SNP ID rs5744934). 
The second missense mutation, which we believe to be 
responsible for the ultra-high mutation effect, is a variant 
that has not been previously reported and is located on 
chromosome 12 at position 133220556. Both SIFT and 
PolyPhen2 predict the resultant amino acid change from 
arginine to proline to have a damaging effect with scores 
of 0.01 and 0.997, respectively. These results imply that 
defects in specific pathways occurring early in the lineage 
might contribute more to the shaping of these mutational 
spectra than the particular MOE that led to the tumor, 
though the relationship of the ultra-high mutation rate and 
the MOE requires further study in a larger sample set.

Aneuploidies and MOE

To determine if a pattern in the CNAs have 
specific connections to the MOEs, we devised a pairwise 
similarity metric characterizing a chromosomal region of 

Figure 3: Heatmap of the mutational spectra analysis and hierarchical clustering of all cases. Each colored panel represent 
the 16 possible tri-nucleotide combinations corresponding to the respective transversion or transition type. The color intensity indicates 
the proportion of the particular tri-nucleotide for that substitution mutation. Bars on the left represent the total number of SNVs for each 
sample in log scale. Clearly visible linear pattern over all the samples with high color intensity suggests mutational components that are 
similar in the majority of cases. The samples are clustered into three major clusters with A16 samples being in one, A12 and A10 in another, 
and the rest in one cluster. A few samples, indicated by the asterisk, had too few cancer-specific mutations. For these samples, the somatic 
mutations included those found in the villous low adenoma stage. Stepwise MOEs are shown in red, parallel in yellow, the combination of 
two in orange, neutral in gray, and eruptive in blue.
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duplications or deletions present in both of the samples. 
The scoring emphasizes only the similarity in the pairs 
and thus gives a small regional variation the same weight 
as an entire chromosomal aberration as long as they are 
present in both samples. A chromosome can have a score 
between 0 and 1, and the score is higher if more samples 
have overlapping regions of copy number aberrations 
for this particular chromosome compared to the other 
chromosomes. Because these are scores per chromosome, 
calculating the summation of these scores represents a 
similarity score between a pair of samples across their 
entire genome. Samples corresponding to each CAP 
and cancer tissue types were separately compared and 
clustered based on these values (Figure 4).

In addition to comparing the CNAs across 
the samples, this similarity metric also allowed per-
chromosome analysis to identify chromosomes with 

more recurrent CNAs compared to other chromosomes 
for each CAP and cancer tissue type. Because we often 
observe higher aneuploidy level in cancer as opposed 
to adenoma, a comparison between the two is not 
meaningful. Nevertheless, identification of potential 
markers is an essential step towards understanding the 
clinical significance of polyp compared to cancer tissues 
in addition to the MOE classification. Chromosomes 7, 17, 
20, and 18 had the most recurrent copy number alterations 
across cancer cases, while chromosomes 1, 16, 17, 18, 
15, 20, and 7 were most recurrent across CAP cases 
(Supplementary Figure 16). Duplications in chromosome 
7 are significantly recurrent in both CAP (p-value of  
4.8 × 10–7) and cancer (p-value of 4.2 × 10–5). Deletions 
in chromosomes 17 and 18 are also significantly recurrent 
compared to other chromosomes in both CAP and cancer 
(p-values < 3.4 × 10–5).

Figure 4: Heatmap of the CNA analysis and hierarchical clustering of the cases by adenoma and carcinoma. CNAs in 
each sample are indicated by either deletions (blue) or duplications (red). The alternating grey and black bars at the bottom of each panel 
represent the spanning of the chromosomes for regional reference. Samples are grouped together by similarity in pairwise CNA comparison 
using UPGMA and are labeled with the corresponding MOE. The bottom panel is the summary of chromosomes with the most recurrent 
changes. Chromosomes with significantly more recurrent changes in CAP are represented by the orange yellow color, and cancer by the 
olive green color. The stepwise MOEs are shown in red, parallel in yellow, the combination of two in orange, neutral in gray, and eruptive 
in blue.
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Utility of exome sequencing and low-coverage in 
MOE classification

To determine if our criteria for MOE classification 
is also applicable to exome sequencing data, the 2D plot 
for case A03 and A09 were re-created based on AF of the 
somatic SNVs found in coding regions only (Supplementary 
Figure 17). All features of the 2D plot from the whole 
genome sequencing data were observable in the new 2D 
plot. Those cases with fewer number of SNVs may lose 
some features of the AF distribution simply due to the lower 
number of SNVs in the exome compared to the genome, but 
the criteria appears to be robust to exome sequencing overall. 
Similarly, the differential occurrence of aneuploidies may 
still be observable despite the less definitive amplification 
and CNAs from the exome. Our criteria should be applied 
to an actual exome sequencing data to determine whether 
the MOE classification can still apply to exome sequencing. 
We downsampled our whole genome sequencing data to  
10 × coverage in order to determine if the MOE classification 
is possible with low-coverage data. Despite relaxing the 
parameters to include SNVs called by at least two callers, 
instead of three, only a limited number of shared mutations 
could be detected. As precision of AF estimates also reduced, 
no confident MOE classification would be made (data not 
shown). Together, these findings illustrate that a higher 
sequencing depth is more essential than the fraction of 
analyzed genome for MOE classification.

DISCUSSION

There have been several studies modeling the 
dynamic process of neoplastic transformation based on 
the spatial characterization of cancer by multi-region 
sampling as well as temporal progression of cancer by 
comparing the primary cancer sample to metastases 
[3, 13]. Traditionally intra-tumor heterogeneity from 
multiple spatially distinct regions of a cancer at one point 
in time or possibly in corresponding cancer recurrence 
tissues has been one means to evaluate the clonal history 
of the tumor and create phylogenetic trees that depict 
cancer evolution [14, 15]. However, these studies do not 
take into account information of intermediate clones that 
do not persist through malignant transformation. Even 
if they do, they are often exclusively based on unrelated 
polyps that have not developed into cancer or cancers 
in which the presumed polyp of origin is no longer 
present, i.e., without directly evaluating the molecular 
transformation of normal colon through polyp to cancer 
in the same person. In addition to the studies on spatial 
characterization of cancer, single cell sequencing studies 
have contributed in the in-depth analyses of the clonal 
lineage in carcinogenesis with the ability to call somatic 
mutations that are missed due to their low AFs [11, 16]. 
Nevertheless, these approaches still fail to address the 

fundamental limitation in the study design of explaining 
cancer evolution from CRC sample alone.

In this study, we used the cancer adjacent polyp 
as a snapshot of the origin of the CRC’s clonal lineage 
to infer the pre-cancer time course. Numerous studies 
have reported that remnant features of primary tumors 
in their recurrent metastatic tumors, suggesting that the 
determination of whether the tumor will metastasize could 
possibly be present in the primary tumor before metastases 
have occurred [13, 15, 17].

We defined a set of criteria that is based on the 
information about SNVs and CNAs in both cancer and its 
matching polyp in order to classify each case into one of 
four MOEs. Other types of variations, such as transposons 
and indels, could be included in such classification. 
However, given that such variations are less frequent and 
that they are more difficult to detect, we did not consider 
them in this study. Our defined criteria are almost universal, 
as we were able to classify all but two cases into a distinct 
MOE with no ambiguity. Complications in classifying 
the two cases could stem from those cases not belonging 
to any of the established four MOEs, i.e., these two cases 
have undergone an extremely rare and not well-understood 
MOE such as CRC with polyclonal origin [11]. For every 
mode, we found at least one case corresponding to it. 
Approximately 70% of CRCs in our dataset evolved in 
a stepwise or a parallel fashion, although we should note 
that all cases are expected to exhibit features of parallel 
evolution, given the nature of our experiment, i.e., existence 
of matched polyp and CRC. We also found that the non-
aggressive cases in which patients with stage II and III CRC 
survived their cancer exhibited all four stepwise, parallel, 
neutral, or eruptive MOE. At the same time patients with 
aggressive CRC, presenting either with metastatic disease 
or later developing recurrent disease, predominantly exhibit 
a stepwise and parallel MOE. This implies that MOE may 
not be the only determinant of clinical aggressiveness.

Our data on the relationship between the MOE and 
the somatic substitution mutations show that the patterns 
in the somatic substitutions were more significantly 
influenced by the underlying mutational mechanisms 
than by their MOEs. It also indicates that several different 
mutational mechanisms can lead to the same MOE 
and two different MOEs can have similar mutational 
mechanisms. Similarly, CNA patterns did not directly 
correlate with the MOE. This indicates that mutations 
in specific genes or pathways, and sequential order of 
deletions and duplications could determine the MOE of 
a CRC. While it is possible that factors other than the 
mutational mechanism—such as somatic variants in 
particular pathways, germline variants, and perhaps the 
microbiome—that can determine the MOE of a CRC, it 
is also possible that the relationship between MOE and 
mutational mechanism simply could not be found given 
our small sample size. Thus our finding warrants further 
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study in understanding the relationship between the two in 
a larger sample set.

Overall, our study is the first to define specific 
criteria to link the MOEs to mutational characteristics in 
patient cases using cancer and its residual polyp of origin. 
Just as carcinogenesis models are relevant across different 
cancers, this MOE classification of CRC may apply to 
other cancer types with premalignant stages including 
the precancerous stages of pancreatic cancer known as 
pancreatic intra-epithelial neoplasia (PanIN) and ductal 
hyperplasia that precedes breast cancer [18, 19]. Use of 
MOE in the study of neoplastic transformation promises 
to provide additional insight into the genomic landscape 
of cancer as our classification signifies a characterization 
of cancer that is vastly different from the conventional 
genomic profiling using somatic SNVs and CNAs. While 
our criteria for MOE classification are mostly qualitative, 
development of a statistical approach to quantify the 
probability of being any of the MOEs is thus warranted to 
scale MOE classification to more cancers and cases.

Combining single cell analysis and intra-tumoral/
intra-polyp heterogeneity approaches focusing on the 
more precise tracking of cancer evolution from the 
early, perhaps polyp-specific events initiating neoplastic 
transformation, will most likely provide additional insights 
into the details of malignant transformation in CRC. This 
insight, along with the relevance of CRC MOE modeling 
in other cancer types, may better our understanding of 
carcinogenesis in order to improve prognostication and to 
develop treatments targeted at the most relevant molecular 
events that drive both malignant transformation and 
ultimately progression.

MATERIALS AND METHODS

Patient sample characteristics

All tissues were collected from patients consented 
to the IRB approved Biobank for Gastrointestinal Health 
Research [BGHR] (IRB 622-00, PI LA Boardman) at Mayo 
Clinic between 2000–2016. 1 cm2 portions of surgically or 
endoscopically resected cancers from patients with CRC 
RPO+ were snap frozen in liquid nitrogen and maintained 
long term at –80°C. All of the CAP polyps were sessile and 
ranged in size from 2 to 6 cm. Matched normal colonic 
epithelium were collected at least 8cm away from the polyp/
tumor margin. This study did not include subjects with 
family history of FAP or Lynch syndrome and any other 
hereditary CRC or inflammatory bowel disease.

Tissue preparation and whole genome 
sequencing

An H and E slide circled by a pathologist to enrich 
for distant normal colon epithelium a minimum of 8 cm 
away from the polyp or tumor edge, polyp and cancer 

tissues was used a guide slide for macrodissection of 
these two tissue compartments. DNA from peripheral 
blood leukocytes (PBL) from the patients was obtained 
on a subset of these patients. DNA was extracted using 
the PureGene method and was quantified with appropriate 
kits on the Qubit Fluorometer. Samples were sequenced at 
the Broad Institute on the Illumina HiSeq X instruments 
producing 150 base pair, paired-end reads to meet a goal 
of at least 30× mean coverage. All data from a particular 
sample was aggregated into a single BAM file using the 
Picard Tools (https://broadinstitute.github.io/picard/).

Mutation frequency detection

Four different somatic variant callers were used to 
identify SNVs in the polyp and cancer against the matched 
normal tissue or PBL with default options: MuTect, 
SomaticSniper, Strelka, and VarScan [20–23]. We only 
took SNVs detected by at least three callers. Variant allele 
frequencies for those SNVs were calculated from sample 
BAM files for each patient using an in-house script. For 
functional annotations of the variants, we used Variant 
Effect Predictor (http://www.ensembl.org/Tools/VEP).

Mutation spectra analysis

From the list of somatic SNVs called in cancer, we 
subtracted somatic SNVs called in polyp to ensure mutual 
exclusivity between the cancer and polyp SNVs. Cancer 
samples in the cases A04, A09, A11, A14, and A15 did 
not have enough cancer specific somatic SNVs and thus 
all somatic SNVs found in cancer were included. Each 
somatic SNV within a sample was categorized into the 
corresponding transversion or transition substitution 
mutation into one of the 96 tri-nucleotide possibilities. 
After normalization, correlation coefficient was calculated 
based on these vectors of 96 integers for each sample and 
UPGMA-based hierarchical clustering was performed on 
the samples based on this coefficient. All the statistical 
analyses were performed using R software. Heatmaps 
were generated using the ggplot() function in the R 
package, ggplot2. Hierarchical clustering was performed 
with the hclust() function with default parameters. 
Correlations coefficients were calculated using the cor() 
function with the Pearson method.

Pathway from related genes

For each of the CAP and cancer, a list of genes with 
somatic SNVs was submitted to the Database for Annotation 
Visualization and Integrated Discovery (DAVID) for 
functional pathway analysis. To account for the background 
mutation rate, only the genes determined by the MutSig to 
be significantly mutated were used in the analysis (p-value 
< 0.05). The number of significantly mutated genes for CAP 
and cancer were determined to be 123 and 137 respectively. 
The results of the multiple hypothesis tests were corrected 
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using Benjamini method (FDR < 0.05). No particular 
pathway categories were significantly affected.

CNA analysis

We called CNAs in cancers and polyps using 
CNVnator using bin size of 200 bps [24]. The regions of 
deletion and duplication were then genotyped and only the 
regions with a copy number of >1.75 and <2.25 in normal 
samples were considered. To further filter the CNAs, 
only the regions with copy number difference greater 
than 0.2 with respect to normal tissue were chosen. A 
pairwise similarity metric M is based on Jaccard similarity 
coefficient was defined as follows:

M
R R

R R R RperChr

dup dup del del

dup del dup del

=
+

+ + + −
∑ ∑ ∑
∑ ∑ ∑ ∑ ∑

, ,

(1 1 2 2 RR Rdup dup del del, , )+∑
The similarity metric per chromosome is equal to the 

sum of regions R of duplications and deletions common 
in both samples over the union of regions of duplication 
and deletion for the samples. Because these are scores per 
chromosome, calculating the summation of these scores 
represents a similarity score M between a pair of samples 
across their entire genome. Chromosomes X and Y were 
excluded from calculations to ensure metric comparability 
across genders. For each tissue type (adenoma or 
carcinoma), chromosomes with significantly recurrent 
aneuploidies compared to others were determined by 
a Wilcoxon signed-rank test. With a pairwise similarity 
metric across all the samples, UPGMA-based hierarchical 
clustering was performed. Heatmaps were generated by 
dividing the genomic regions into segments of 50kb and 
using the ggplot() function in the R package, ggplot2. 
Hierarchical clustering was performed with the hclust() 
function with default parameters.
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