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CKS1 expression in melanocytic nevi and melanoma
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ABSTRACT

Cyclin-dependent kinase subunit 1 (Cks1) regulates the degradation of p27, 
an important G1-S inhibitor, which is up regulated by MAPK pathway activation. 
In this study, we sought to determine whether Cks1 expression is increased in 
melanocytic tumors and correlates with outcome and/or other clinicopathologic 
prognostic markers. Cks1 expression was assessed by immunohistochemistry in 
298 melanocytic lesions. The frequency and intensity of cytoplasmic and nuclear 
expression was scored as a labeling index and correlated with clinico-pathological 
data. Nuclear Cks1 protein was found in 63% of melanocytic nevi, 89% primary and 
90% metastatic melanomas with mean labeling index of 7 ± 16, 19 ± 20, and 30 ± 
29, respectively. While cytoplasmic Cks1 was found in 41% of melanocytic nevi, 84% 
primary and 95% metastatic melanomas with mean labeling index of 18 ± 34, 35 ± 
34, and 52 ± 34, accordingly. Histologic stepwise model of tumor progression, defined 
as progression from benign nevi to primary melanomas, to melanoma metastases, 
revealed a significant increase in nuclear and cytoplasmic Cks1 expression with tumor 
progression. Nuclear and cytoplasmic Cks1 expression correlated with the presence 
of ulceration, increased mitotic rate, Breslow depth, Clark level, tumor infiltrating 
lymphocytes and gender. However, other well-known prognostic factors (age, 
anatomic site, and regression) did not correlate with any type of Cks1 expression. 
Similarly, increasing nuclear expression of Cks1 significantly correlated with worse 
overall survival. Thus, Cks1 expression appears to play a role in the progression 
of melanoma, where high levels of expression are associated with poor outcome. 
Cytoplasmic expression of Cks1 might represent high turnover of protein via the 
ubiquination/proteosome pathway.
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INTRODUCTION

Cell cycle deregulation is a cornerstone of malignant 
transformation, leading to increased proliferation 
and growth rates. It is widely accepted that cell-cycle 
destabilization is common to many human malignancies. 
Induction of cellular proliferation is carried out in large 
part at the transcriptional level, where cis- and trans-
activating factors induce the transcription of cell cycle 
progression mediators. Furthermore, ubiquitin ligase-
mediated degradation of cell cycle progression factors 
represents a further level of regulation. It is this tight 
regulation of cell-cycle progression, which maintains 
tissue homeostasis. In normal tissue, cyclin-dependent 
kinase (CDK) activity is inhibited in the absence of 
mitogens, by the protein p27, via the ubiquitin proteasome 
pathway [1] (Figure 1). 

The cyclin-dependent kinase subunit family is a 
highly phylogenetically conserved family of small (9-
18kDa) proteins. There are two distinct orthologues, Cks1 
and Cks2 in vertebrates [2, 3]. Cks1 is required in SCFskp2-
driven p27 ubiquitinylation [2]. Cks1 induces an allosteric 
change in the Skp2 component of SCFskp2 ubiquitin ligase, 

allowing it to bind phosphorylated p27. This in turn allows 
for efficient transfer of the ubiquitin moiety, which, once 
bound to p27, leads to subsequent recognition by the 
proteasome [1, 4]. Cells lacking p27 degradation can 
progress abnormally through the cell cycle, because of 
unopposed CDK activity. 

A likely mechanism for overexpression of Cks1, 
observed in many human malignancies [5–13], is cis-
activation of the Cks1 gene promoter by proto-oncogenes 
such as Myc. Myc normally accelerates cell-cycle 
progression and its overexpression has been implicated in 
many tumors such as Burkitt’s lymphoma. Interestingly, 
quantitative mRNA expression analysis in Burkitt’s 
lymphoma-derived B-cells reveals increased Cks1 
transcript levels, which suggests myc-dependent Cks1 
overexpression and in turn increased p27 turnover, thereby 
allowing the malignant B-cells to transit through the cell 
cycle [14]. Cks1 also activates the transcription of factors 
responsible for cell-cycle progression and is associated 
with increased proliferation in several cell types [15]. 

Melanoma arises from malignant transformation 
of melanocytes and is one of the deadliest forms of skin 
cancer [5]. Melanocytes rely on adhesion factors to activate 

Figure 1: Putative role of Cks1 in pathogenesis of melanoma. Constitutive activation of the MAPK pathway leads to increased 
Cks1 expression and down regulation of p27, a crucial G1-S cell-cycle regulator.
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extracellular signal-regulated kinase 1/2 (ERK1/2), which, 
in turn induces cyclin D1 and down regulates p27 [16]. 
B-RAF regulates p27 mRNA abundance, independently 
of cyclin D1, and mutations of B-RAF are implicated in 
70% of melanomas [17]. B-RAF controls p27 expression 
in melanoma cells at the mRNA level and at the level of 
proteasome degradation. The latter is cyclin D1-dependent 
and occurs via regulation of Cks1 and Skp2 [6]. B-RAF 
knockout mice showed decreased levels of cyclin D1 and 
increased levels of p27. Mice lacking Cks1 had lower 
Skp2 levels and an increase in p27 levels. Mice lacking 
both Cks1 and Skp2 harbored a further increase in p27 
levels compared to Skp2 knockouts alone. Individual 
knockouts of either Cks1 or Skp2 significantly reduced 
cell growth [5]. This appears to support the hypothesis 
that B-RAF and cyclin D1 control expression of Cks1 
and Skp2, which, in turn, mediate degradation of p27 in 
melanoma cells.

The most common mutation of B-RAF, V600E, 
hyper-activates B-RAF and the downstream mitogen-
activated protein kinase (MEK)-ERK1/2 pathway. This 
pathway is an important regulator of G1-S progression. 
Indeed, several studies have shown that B-RAFV600E-MEK 
signaling is necessary for melanoma cell S phase entry, 
proliferation and anchorage-independent growth in vitro 
[18–22] and for melanoma cell sub-cutaneous growth 
in nude mice [21, 23]. Underscoring the importance of 
RAF-MEK-ERK1/2 signaling, this pathway may also 
be hyper-activated in melanomas expressing wild-type 
B-RAF through mutation of RAS, aberrant expression 
of G-protein coupled receptors and/or up-regulation of 
autocrine growth factors [24, 25]. It is critical to identify 
cell cycle markers that correlate with increased B-RAF 
signaling in melanoma since they may serve as tumor 
biomarkers, and alterations in their expression/regulation 
may underlie de novo or secondary resistance to B-RAF 
and MEK inhibitors. 

Skp1-cullin1-F-box (SCF) E3 ubiquitin ligase 
complexes have been identified as important regulators 
of cell cycle progression [26, 27] as aberrant expression 
of Skp2 is an adverse prognostic sign in melanoma [28]. 
The F-box protein determines the substrate specificity of 
the complex. Skp2 is the F-box protein involved in SCF-
mediated degradation of the cyclin-dependent kinase 
inhibitor, p27, during late G1 and S phase [4, 29–31]. Skp2 
also targets p57, p21, cyclin E1 and origin recognition 
complex 1 (Orc1) for degradation [4, 30, 32–34]. Skp2 is 
required for melanoma cell growth, however in a manner 
independent of p27 but dependent on p53 [35]. In addition 
to SCF components, Skp2 requires a cofactor, cdc kinase 
subunit 1 (Cks1) [2, 4]. Recently demonstrated, mutant 
B-RAF-MEK signaling regulates Cks1 expression in 
melanoma cells [5]. Furthermore, Cks1 was found to 
regulate Skp2 expression and that Cks1/Skp2 complexes 
mediate B-RAF effects on p27Kip1 [5]. Importantly, 
earlier work on correlations between the pathological 

and immunohistochemical profiles in melanomas found 
that Skp2 cytoplasmic levels correlated with aggressive 
melanomas and predicted poorer 10-year survival  
rate [28]. 

Given the previously suspected role of Cks1 in 
regulating Skp2 [22, 28], herein, we investigated Cks1 
Expression in a number of different melanocytic lesions, 
from common melanocytic nevi to metastatic melanoma to 
assess its role in melanoma progression and its impact on 
prognosis in primary melanoma patients. 

RESULTS

Normal skin Cks1 expression 

In control lymph nodes, lymphocytes within 
germinal follicles strongly expressed nuclear Cks1. 
Cks1 expression was assessed in the skin adjacent to 
melanocytic lesions (Figure 2). Table 1 summarizes these 
observations. Normal (resting) and hyperplastic epidermis 
(psoriasiform hyperplasia of epidermis adjacent to ulcers, 
overlying scars, or in regions of lichenification, eccrine 
coils, and follicular bulbs all showed strong, widespread 
nuclear Cks1 expression. However, only hyperplastic, 
not ‘resting’ keratinocytes exhibited cytoplasmic Cks1 
expression. Sebocytes, follicular keratinocytes and smooth 
muscle cells of pilar erectus and media of vessels also 
expressed cytoplasmic Cks1. No Cks1 expression was 
seen in normal, junctional melanocytes.

Melanocyte phenotype and Cks1 expression

Cks1 was found in melanocytic lesions and 
its expression was diverse by melanocytic nevus or 
melanoma cell cytologic phenotypes, or by pattern of 
growth. Uncommon nevi and dysplastic nevi showed 
some nuclear staining. Most melanocytic lesions, however, 
showed cytoplasmic staining. All melanoma showed 
variable nuclear staining (Figure 3).

Quantification of Cks1 expression in melanocytic 
nevi, melanoma, and metastases

Table 2 summarizes the results for Cks1 overall 
expression and labeling indices for all melanocytic lesions 
by histologic classification (Figure 3, 4). Analysis of 
123 primary melanomas with both in situ and invasive 
components revealed similar Cks1 expression in both 
components in 65 cases, higher Cks1 expression of in 
situ component in 38 cases and higher Cks1 expression in 
invasive component in 20 cases. Comparison of different 
histological subtypes of melanomas revealed highest Cks1 
labeling index, especially nuclear staining, in nodular, 
desmoplastic and mucosal melanomas, indicating its 
correlation with aggressive histopathologic subtypes 
(Figure 5). Notably, expression of cytoplasmic Cks1 was 
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significantly higher in primary melanomas from patients 
with a positive sentinel lymph node metastasis compared 
to primary melanomas from patients with a negative 
sentinel lymph node biopsy (55.7 ± 33.4 versus 36.6 ± 
34.6, respectively, p = 0.01 for cytoplasmic Cks1 labeling 
index). However, no differences were noted for nuclear 
Cks1 labeling index in primary melanomas with or without 
an associated sentinel lymph node metastasis (19.6 ± 18.7 
versus 23.8 ± 21.2, respectively, p = 0.21). Matched analysis 
of Cks1 expression in primary and metastatic melanomas 
from the same patients (n = 22) showed higher nuclear Cks1 
labeling index in metastatic lesions in 13 cases, lower in 6 
cases and similar expression in 4 cases (n = 23; in analyzed 
cohort one patient had two metastatic lesions evaluated 
by immunohistochemistry). Higher cytoplasmic Cks1 
expression in metastatic melanomas was found in 13, lower 
in 9 and comparableCks1 expression in 1 patient.

Cks1 expression and melanoma progression

By linear regression methods, both nuclear and 
cytoplasmic Cks1 correlated with stepwise progression 

from melanocytic nevi to melanomas in situ, to primary 
melanomas, to metastatic melanomas (r = 0.34, p < 0.0001 
and r = 0.32, p < 0.0001, respectively). With increasing 
American Joint Commission on Cancer (AJCC) tumor 
classification, nuclear and cytoplasmic Cks1 showed also 
significant positive correlation (r = 0.26, p = 0.0003, and 
r = 0.26, p < 0.0001, respectively). By AJCC stage (Ia, 
Ib, IIa, IIb, IIc, III (lymph node metastatic melanomas), 
and IV (visceral and distant skin metastatic melanomas)), 
nuclear and cytoplasmic Cks1 correlated with increasing 
AJCC stage (r = 0.22, p = 0.0024, and r = 0.36, p < 
0.0001, respectively). See Table 3 for direct comparison 
of Cks1 expression with standard clinical and histologic 
prognostic markers. 

Comparison of Cks1 labeling index with 
histologic prognostic biomarkers 

Both nuclear and cytoplasmic, Cks1 expression 
positively correlated with well-known prognostic factors 
(Tables 3 and 4). Specifically, the presence of ulceration  
(r = 0.21, p = 0.004 and r = 0.31, p < 0.0001, 

Figure 2: Cks1 expression in normal skin and lymph node was seen only in proliferating cells. Sun-damaged skin with 
scattered keratinocytes showing Cks1 nuclear and cytoplasmic expression; normal melanocytes did not express Cks1 (top left). Follicular 
anagen bulb’s matrical keratinocytes exhibited intense nuclear and cytoplasmic expression of Cks1. Intervening dendritic melanocytes 
show faint nuclear and cytoplasmic Cks1 expression (right panel). Follicle center cells (bottom left) from a lymph node show low level of 
cytoplasmic and nuclear expression.
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respectively), increasing mitotic rate (r = 0.33, p < 0.0001 
and r = 0.27, p = 0.0002, respectively), tumor thickness (r 
= 0.2, p = 0.006, and r = 0.35, p < 0.0001, respectively), 
Clark level (r = 0.18, p = 0.011 and r = 0.17, p = 0.016, 
respectively). In addition, Cks1 expression negatively 
correlated with tumor infiltrating lymphocytes (for nuclear 
Cks1 labeling index r = –0.25, p = 0.0007, and for 
cytoplasmic Cks1 labeling index r = –0.18, p = 0.011). 
Cks1 nuclear labeling index correlated also with sex (r 
= 0.15, p = 0.028). However, other prognostic factors 
(age, anatomic site, vascular invasion and regression) 
did not correlate with nuclear or cytoplasmic Cks1 
expression. There was no correlation between melanin 
pigmentation and Cks1 expression in radial growth 
phase. However, melanin content negatively correlated 
with nuclear Cks1 expression in vertical growth phase 
(Table 4). Furthermore, positive correlation between 
melanin pigmentation and both cytoplasmic and nuclear 
Cks1 expression in metastases was found (Table 4). 
Other relevant correlations of Cks1 expression with 
histopathological characteristics are presented in Table 4. 

Survival analysis and Cks1 expression 

By univariate analysis, nuclear and cytoplasmic 
Cks1 labeling index (≥20) was found to be a predictor of 
poor disease-free and overall survival (Table 5, Figure 6). 
We also found that AJCC stage, depth, Clark’s level, 
ulceration, TILs, mitosis, vascularity and angioinvasion 
were predictors of disease-free survival and overall 
survival (Table 5). However, Cks1 expression was not 
an independent prognostic factor of disease-free survival 

and overall survival in melanoma patients on multivariate 
analysis. By multivariate analysis, age (Hazard ratio (HR) 
= 1.04; p = 0.001), vascular invasion (HR = 4.78; p = 
0.0001) and AJCC stage (HR = 2.1; p = 0.003) were found 
to be independent overall survival factors. 

DISCUSSION

In this study, we found a significant increase 
in nuclear and cytoplasmic Cks1 expression with 
melanocytic tumor progression from melanocytic nevi 
to primary melanomas to metastatic melanomas. The 
results showed that overexpression of Cks1 in primary 
melanomas positively correlated with tumor advancement 
(Breslow thickness, Clark level, AJCC stage) and other 
well-known prognostic factors, such as gender, ulceration, 
mitotic counts, and negatively correlated with the presence 
of tumor infiltrating lymphocytes. In addition to nuclear 
expression of Cks1, we found also that cytoplasmic 
expression of Cks1, and its increasing cytoplasmic level, 
similarly to nuclear expression, correlated to melanocytic 
tumor progression, presence of poor-prognostic markers of 
melanoma, and worse survival. 

Cks1 is ubiquitinated followed by proteasomal 
degradation, and some post-translational modifications, as 
observed in tumor cells, can modify Cks1 turnover [36]. 
Thus, increased cytoplasmic levels of Cks1 may represent 
high turnover of protein via the ubiquitination/protease 
pathway or its accumulation upon proteasomal blockade. 

Cks1, as a cell control molecule, has been identified 
as a potential molecular target for cancer treatment since 
its silencing resulted in G2/M arrest and apoptosis of 

Table 1: Cks1 expression in normal skin and lymphoid follicles

Normal skin constituents Nuclear Cks1 Cytoplasmic Cks1

Adipocytes + +

Dermal scar/fibrosis ++ +/–

Eccrine ducts and coils + –

Epidermis, normal 
 Solar elastosis present
 Hyperplastic epidermis

+
++
++

–
+/–
+

Follicular bulbar keratinocytes + +/–

Lymphoid follicles ++ ++

Melanocytes – –

Nerves – +

Sebocytes – +

Smooth muscle cells – +

Vessels, endothelium +/– –

–:no expression; +/–:weak and variable expression; +:expression: ++: strong expression.
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Figure 3: (A) Melanocytic lesions showed varying degrees of both cytoplasmic and nuclear Cks1 expression in the histologic stepwise 
progression: from banal common melanocytic nevi (MN) to dysplastic melanocytic nevi to primary melanoma (PM), and metastatic 
metastatic melanoma. (B) Increasing nuclear and cytologic Cks1 expression with melanoma progression.
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Table 2: Cks1 expression in melanocytic nevi, primary cutaneous melanoma and metastatic melanoma
Absolute 

cytoplasmic 
Cks1 

expression (%)

Cytoplasmic Cks1 
LI

Absolute nuclear 
Cks1 expression (%) Nuclear Cks1 LI

Melanocytic nevi (n = 87) 17.7 18,1 ± 34,3 (0–100) 6.5 7.8 ± 15.9 (0–90)
Common acquired nevi (n = 
33) 6.3 4.1 ± 8.5 (0–35) 3.6 8.2 ± 17.4 (0–90)

Dysplastic nevi (n = 29) 1.7 1.7 ± 4.1 (0–20) 1.0 3.1 ± 2.5 (0–5)
Spitz Nevi (n = 11) 45.0 45.0 ± 45.9 (0–100) 20.1 20.5 ± 26.1 (0–90)
Blue Nevi (n = 14) 63.8 63.9 ± 44.2 (0–100) 6. 0 6.4 ± 14.3 (0–50)
Melanoma in situ (n = 8) 10.4 11.3 ± 16.6 (0–50) 12.9 13.8 ± 11.9 (3–35)
Radial growth phase 
melanoma (n = 20) 22.3 22.3 ± 32.4 (0–100) 7.7 8.8 ± 22.0 (0–100)

Vertical growth phase 
melanoma (n = 143) 37.7 38.2 ± 33.4 (0–100) 21.5 21.9 ± 19.5 (0–90)

Nodular (n = 61) 46.1 46.3 ± 34.9 (0–100) 20.5 20.9 ± 18.3 (0–90)
Superficial spreading (n = 38) 28.6 29.1 ± 30.4 (0–100) 16.6 17.1 ± 18.9 (0–80)
Lentigo maligna (n = 20) 29.1 29,8 ± 32,8 (0–100) 26.4 27.0 ± 20.2 (0–70)
Acral (n = 10) 52.8 53,0 ± 35,4 (5–100) 19.2 19.5 ± 17.2 (5–60)
Mucosal (n = 6) 38.0 38.3 ± 18,6 (10–65) 39.2 39.2 ± 15.3 (10–50)
Metastatic melanomas (n = 
40) 52.5 52.6 ± 33.8 (0–100) 30.2 30.5 ± 29.4 (0–100)

Lymph node (n = 26) 54.8 55.0 ± 34.5 (0–100) 32.0 32.3 ± 32.2 (0–100)
Skin/soft tissue (n = 6) 38.3 38.3 ± 24.2 (20–85) 31.8 32.5 ± 24.2 (10–75)

Visceral (n = 8) 55.4 55.6 ± 26.8 (20–
100) 23.1 23.1 ± 24.6 (0–70)

LI: labeling index +cells/100 tumor cells reported as mean ± standard deviation; (range). 
“Vertical growth phase melanoma” includes also desmoplastic (n = 6) and unclassified (n = 2) melanomas.

Figure 4: Melanomas typically express cytoplasmic and nuclear Cks1 protein. Exhibited herein is a metastatic melanoma to 
lymph node showing predominate cytoplasmic Cks1.
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lung cancer cells without affecting normal fibroblasts 
[37] and growth inhibition of cells of oral squamous 
carcinoma [38]. Also reported, over expression of Cks1 
correlated to radiotherapy resistance, both in patients, and 
in experimental cell-based study of esophageal cancer. 
In addition, over expression of Cks1 closely associated 
with poor pathological features of esophageal carcinoma, 
including higher histologic tumor grade, regional lymph 
nodes invasion, and neoplastic embolus [12, 13]. 

Increased cell proliferation rate is a common and 
important feature of malignant lesions, and in melanoma 
cells the deregulation of different mechanisms of cell-
cycle control has been observed (reviewed in [39]. It was 
demonstrated that Cks1 is required for efficient Skp2-
dependent p27 ubiquitination and its degradation [2, 4]. 
In different tumors, including melanomas, an inverse 
correlation between overexpression of Cks1 and reduced 
expression of cell-cycle inhibitor p27 has been shown  
[9, 14, 28, 40, 41]. Furthermore, decreased expression 
of p27 with the progression of tumors from nevi to 
melanomas, with lowest expression in metastatic 
melanomas, was reported [28, 42–44]. Some of these 
studies also revealed a negative correlation between 
reduced p27 expression and tumors thickness in nodular 
melanomas [42], as well as inverse correlation with disease-
free survival, supporting the prognostic significance of 
cell-controlling p27 expression in melanomas. Other 
authors have not found such an association [28, 45]. In 
melanomas, similar to Cks1, increasing expression of Skp2 
with melanocytic tumor development from nevi to primary 

and metastatic melanomas was also demonstrated [28]. 
Silencing of Skp2 resulted in inhibition of melanoma tumor 
growth in vitro and in vivo [46]. Elevated Skp2 expression 
similarly predicted worse 10-year overall survival [28]. 

The reduced survival related to overexpression of 
Cks1 has also been observed in other tumors, including 
multiple myeloma [41], nasopharyngeal [47], gastric [8], 
colorectal [9, 10], esophageal [12] cancers and others. 
Correspondingly, in some studies increased expression 
of Cks1 was related to other clinico-pathomorphological 
features, such as poor differentiation [11] and lymph 
node metastasis [13, 47]. In nasopharyngeal tumors, 
increased expression of Cks1 has also been identified as an 
independent poor prognostic factor [47]. Our findings are 
concordant with results of other studies, as we have shown 
that Cks1 expression is not only a predictor of disease-free 
survival, but also a predictor of overall survival. Higher 
expression of Cks1 is associated with reduced disease-
free survival and overall survival in melanoma patients. 
Similarly, in our cohort, melanoma patients that developed 
metastases had elevated cytoplasmic Cks1 expression. 
Taken together, our findings point out the important role 
of Cks1 in melanoma biology and indicate the prognostic 
value of Cks1 in melanoma. In addition, Cks1 may be a 
potential molecule for targeted anti-melanoma treatment. 
However this concept should be confirmed using 
appropriate animal models including patient-derived 
orthotopic xenografts, which mimic clinical tumor growth 
and metastasis and have important clinical potential for 
melanoma patients [48–53]. Thus we also plan to perform 

Figure 5: Heterogeneity of Cks1 nuclear and cytoplasmic expression amongst histologic melanoma subtypes. Except for 
acral melanomas, nuclear expression exceeds cytoplasmic reactivity in different histological types of melanoma: LMM (lentigo maligna 
melanoma); NM (nodular melanoma); SSM (superficial spreading melanoma).
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Table 3: Comparison of Cks1 LI with standard prognostic markers

Category Cytoplasmic Cks1 LI (mean ± SD) Nuclear Cks1 LI (mean ± SD)

AJCC Tumor stage T1a (n = 46) 21.52 ± 29.89 14.02 ± 23.87

T1b (n = 3) 15.00 ± 18.03 6.67 ± 7.64

T2a (n = 33) 33.64 ± 35.52 18.48 ± 18.14

T2b (n = 13) 42.31 ± 33.83 20.38 ± 15.34

T3a (n = 26) 36.35 ± 31.67 22.31 ± 14.51

T3b (n = 15) 50.00 ± 28.22 32.00 ± 16.78

T4a (n = 7) 47.14 ± 33.02 26.43 ± 32.24

T4b (n = 20) 59.00 ± 31.44 26.25 ± 18.06

Clark Level* Level 2 (n = 5) 23.00 ± 43.53 21.00 ± 44.22

Level 3 (n = 31) 33.06 ± 33.71 11.77 ± 16.81

Level 4 (n = 108) 34.81 ± 32.76 21.85 ± 18.64

Level 5 (n = 18) 55.56 ± 31.24 26.67 ± 23.26

Ulcer Absent (n = 116) 29.53 ± 32.43 17.67 ± 20.84

Present (n = 47) 52.66 ± 30.82 26.81 ± 17.21

Mitotic counts/10hpf 0 (n = 62) 26.77 ± 35.00 12.90 ± 20.68

1-4 (n = 52) 35.48 ± 32.39 20.48 ± 15.38

>4 (n = 48) 49.90 ± 28.61 30.10 ± 20.51

Vascular invasion Absent (n = 135) 35.19 ± 34.11 19.63 ± 20.31

Present (n = 28) 41.07 ± 30.95 23.57 ± 19.90

Tumor vascularity* Absent (n = 33) 29.24 ± 33.94 14.24 ± 23.56

Sparse (n = 74) 36.76 ± 34.96 19.80 ± 18.57

Moderate (n = 37) 44.32 ± 33.27 25.54 ± 21.76

Prominent (n = 18) 31.94 ± 25.33 23.89 ± 14.30

Microsatellites Absent (n = 153) 34.64 ± 32.64 19.87 ± 19.67

Present (n = 10) 66.67 ± 36.31 30.0 ± 27.95

Tumor infiltrating lymphocytes
Absent (n = 30-)

Non-brisk (n = 100)

26.9 ± 25.8

22.0 ± 22.2

44.4 ± 25.8

36.4 ± 33.4

Brisk (41) 14.6 ± 27.9 27.9 ± 33.7

Regression Absent (n = 126) 38.69 ± 34.24 20.28 ± 18.86

Present (n = 36) 28.47 ± 30.11 20.97 ± 24.75

AJCC Stages I and II Stage I (n = 82) 26.16 ± 32.28 15.55 ± 21.34

Ia (n = 46) 21.52 ± 29.89 14.02 ± 23.87

Ib (n = 36) 32.08 ± 34.63 17.50 ± 17.75

Stage II (n = 81) 46.36 ± 31.92 25.12 ± 17.92

IIa (n = 39) 38.22 ± 32.08 21.67 ± 14.61

IIb (n = 22) 49.09 ± 29.06 30.23 ± 22.17

IIc (n = 20) 59.00 ± 31.44 26.25 ± 18.06

Type of (1st) melanoma recurrence Local (n = 6) 38.33 ± 34.22 32.50 ± 24.24

Regional (n = 26) 55.00 ± 37.47 32.31 ± 32.16

Distant (n = 8) 55.63 ± 26.78 23.13 ± 24.63

Outcome Alive without disease (n = 76) 31.64 ± 34.35 15.07 ± 17.97

Alive with disease (n = 15) 44.00 ± 33.60 29.33 ± 20.69

Dead without disease (n = 21) 35.71 ± 35.96 20.71 ± 27.49

Dead with disease (n = 45) 43.11 ± 29.97 27.00 ± 18.35

LI: labeling index +cells/100 tumor cells reported as mean ± standard deviation 
*Per criteria of Kashani-Sabet M et al. [66]
NS – not statistically significant
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an in depth mechanism oriented studies to define in details 
the role of CKS1 in melanoma progression and metastases 
and its usefulness as a target in anti-melanoma treatment 
using patient-derived orthotopic xenografts and transgenic 
mice.

Furthermore, this study showed relationships 
between melanoma stage and degree of tumor 
melaninization. First, a lack of relation between melanin 
pigmentation and Csk1 expression in radial growth phase 
melanomas; second, a negative correlation between nuclear 
Cks1 expression and vertical growth phase melanoma; and 
third, a positive correlation of melanin with nuclear and 
cytoplasmic Cks1 in melanized melanoma metastases. 
This spectrum suggests that melanogenic apparatus may 
affect the function and processing of Cks1 depending 
on the stage of tumor progression. It must be noted that 
melanogenesis may affect metabolic status and behavior of 
melanoma cells in a complex manner [54–59]. In addition, 
our previous study showed that higher melanin levels were 
associated with poorer prognosis and outcome following 
radiotherapy in melanoma patients [60, 61]. Animal-
based study has revealed that spontaneous apoptosis of 
amelanotic melanoma cells is reduced in comparison to 
melanotic melanomas, and that pigmented melanoma 

cells are more resistant to induced apoptosis [62]. This 
is consistent, with experimental findings that inhibition 
of melanogenesis can act as sensitizer to radiation and 
cyclophosphamide induced toxicity or immune destruction 
of melanoma cells [63, 64]. Therefore, the potential effect 
of active melanogenesis or its intermediates on Cks1 
expression and function deserves further careful and an 
in-depth investigation.

CONCLUSIONS

In summary, nuclear expression of Cks1 increased 
with the stage of melanoma progression and correlated with 
poor overall survival. Cytoplasmic expression of Cks1 may 
represent high turnover of protein via the ubiquitination/
protease pathway and is likely a marker of melanoma 
cell proliferation. These results indicate a role for Cks1 
in the pathogenesis of melanoma. Further exploration of 
this topic will include multivariate survival analysis to 
determine if Cks1 is an independent prognostic variable 
and to evaluate whether Cks1 expression segregates 
with the presence or absence of specific gene mutations 
involved in melanoma such as BRAF and NRAS.

Table 4: Correlation of Cks1 with other clinicopathologic factors in melanoma patients

Category
Cytoplasmic Cks1 LI Nuclear Cks1 LI

r p r p
Age NS NS NS NS
Sex NS NS 0.15 0.028
Site NS NS NS NS
Breslow thickness 0.35 <0.0001 0.20 0.005
Clark Level 0.17 0.016 0.18 0.011
Ulcer 0.31 <0.0001 0.21 0.004
Mitotic counts/10 hpf 0.27 <0.0001 0.33 0.0002
Tumor infiltrating lymphocytes –0.18 0.011 –0.25 0.0007
Vascular invasion NS NS NS NS
Tumor vascularity NS NS 0.18 0.013
AJCC stage 0.36 <0.0001 0.26 0.0003
Microsatellites 0.22 0.0024 NS NS
Regression NS NS NS NS
Associated nevus –0.17 0.016 –0.16 0.018
Pigmentation-RGP NS NS NS NS
Pigmentation-VGP –0.21 0.01 -0.33 0.0001
Pigmentation-metastases 0.36 0.03 0.34 0.04
Solar elastosis NS NS 0.17 0.018
Spindle melanocytes NS NS 0.17 0.023

RGP: radial growth phase; VGP: vertical growth phase
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MATERIALS AND METHODS

Samples

Two hundred and ninety-eight paraffin blocks of 
melanocytic lesions were retrieved for this study from the 
files of the Department of Pathology, Albany Medical Center 
Hospital; Samuel Stratton Veterans Administration Medical 
Center; Emory University, Department of Pathology; and 
UConn Health. These samples consisted of 87 melanocytic 
nevi (9 junctional, 14 compound, 10 intradermal, 11 Spitz 
nevi, 29 dysplastic per criteria of Clemente et al. [67], and 
14 blue nevi were examined), 8 melanoma in situ, 163 
primary melanomas, and 40 metastatic melanomas (26 
regional lymph node, 6 skin and soft tissue, and 8 visceral 
metastases). Clinicopathologic data were retrieved from 
reports (histologic diagnosis and melanoma histologic 
staging features were reviewed on each). Survival data were 
retrieved from the Tumor Registries at all 4 institutions. This 
study was approved by the institutional review board. 

The primary melanomas patients had a mean age 
of 60 years (range 15–93 years old) and comprised of 
53 females and 112 males (ages were not available for 
6 patients). Clinical follow-up was available on 158 
primary melanomas patients with a mean of 58 months 
of observation (range 6–225 months). Twenty-two of the 
primary melanomas patients had metastases available 
for immunohistochemical analysis. In addition, primary 
melanomas were classified by the updated AJCC tumor-
node-metastasis and staging criteria [65]. The primary 
melanomas consisted of 46 stage Ia (46 T1a), 36 stage Ib 
(3 T1b, 33 T2a), 39 stage IIa (13 T2b, 26 T3a), 22 stage 
IIb (15 T3b, 7 T4a), and 20 stage IIc (20 T4b) melanomas.

Immunohistochemistry

Expression of Cks1 (Zymed, San Francisco, CA; 
1:50) was evaluated by immunohistochemistry. The 
frequency and intensity of cytoplasmic and nuclear 
expression was scored as a labeling index. This data was 

Table 5: Predictors of prognosis by univariate analysis

Disease-free survival Overall survival

Hazard ratio 95% Conf. 
Interval p Hazard ratio 95% Conf. 

Interval p

Age 1.01 1.00–1.02 0.055 1.05 1.02–1.07 0.0001

AJCC stage (I and II) 1.97 1.58–2.44 0.0001 1.93 1.49–2.50 0.0001

Angioinvasion 5.44 2.94–10.09 0.0001 6.23 3.10–12.50 0.0001

Associated nevus 0.79 0.42–1.47 0.46 0.97 0.48–1.99 0.64

Cks1 cytoplasmic (20%) 2.20 1.23–3.94 0.008 2.169 1.09–4.28 0.027

Cks1 nuclear (20%) 3.47 1.96–6.12 0.0001 3.51 1.80–6.85 0.0001

Clark’s level 4.33 2.36–7.97 0.0001 3.23 1.70–6.15 0.0001

Depth 1.34 1.19–1.51 0.0001 1.28 1.11–1.48 0.001

Mitosis 1.12 1.09–1.61 0.0001 1.11 1.06–1.15 0.0001

Pigmentation – stage I 2.698 0.6564–24.46 0.1326 2.567 0.4167–31.92 0.2424

Pigmentation – stage II 0.8327 0.4188–1.638 0.5882 0.7925 0.3481–1.735 0.5380

Pigmentation – stage III 1.166 0.4007–3.437 0.7705 0.9635 0.3537–2.620 0.9406

Pigmentation – stage IV – – – 2.113 0.7163–10.60 0.1403

Regression 0.56 0.26–1.20 0.14 0.46 0.18–1.20 0.11

Sex 1.36 0.72–2.56 0.35 1.64 0.75–3.63 0.21

Site 1.00 0.77–1.28 0.97 0.64 0.70–1.27 0.68

TILS 0.98 0.97–0.99 0.0001 0.98 0.97–0.99 0.003

Tumor vascularity 1.82 1.38–2.40 0.0001 2.06 1.48–2.85 0.0001

Ulceration 3.97 2.25–7.02 0.0001 4.34 2.23–8.47 0.0001

TILS: tumor infiltrating lymphocytes. Bold significant (≤0.05; italics, trend (<0.10)
AJCC: American Joint Committee on Cancer. LI: labeling index.
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correlated with clinical, pathologic, and outcome data. 
Melanocytic nevi served as a control. Non-tumor elements 
(sweat glands, lymphocytes) also served as a control and 
exhibited Cks1 staining. 

Statistical analysis

Statistical analysis was carried out with the STATA 
(College Station, TX) statistical package. Differences 
between groups were tested by the chi-squared test 
for dichotomous variables and by the Student’s t-test 
for continuous variables. Correlations between study 
variables were examined by linear regression and 
pairwise covariance methods. Survival analysis was 
performed using the Kaplan Meier method. In addition, 
univariate and multivariate Cox proportional hazards 
models were applied to assess the effect of CKS1 
expression and other variables and disease-free survival 
and overall survival. GraphPad Prism 5.0 (La Jolla, CA) 
was used to prepare survival graphs. The criterion for 
significance was p ≤ 0.05.
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Figure 6: Five-year overall survival (A, B) and disease free survival (C, D). Significant decreased 5 year overall survival was associated 
with nuclear (A) and cytoplasmic (B) Cks1 labeling index of 20 or greater in primary melanoma (54% versus 78%, and 27% versus 75%, 
respectively). Significant decreased disease free survival was associated with nuclear (C) and cytoplasmic (D) Cks1 labeling index of 20 
or greater in primary melanoma (36% versus 55%, and 21% versus 72%, respectively). LI - labeling index.
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