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ABSTRACT

Ultrasound radio-frequency (RF) time series have been shown to carry tissue 
typing information. To evaluate the potential of RF time series for early prediction of 
tumor response to chemotherapy, 50MCF-7 breast cancer-bearing nude mice were 
randomized to receive cisplatin and paclitaxel (treatment group; n = 26) or sterile 
saline (control group; n = 24). Sequential ultrasound imaging was performed on days 
0, 3, 6, and 8 of treatment to simultaneously collect B-mode images and RF data. Six 
RF time series features, slope, intercept, S1, S2, S3, and S4, were extracted during RF 
data analysis and contrasted with microstructural tumor changes on histopathology. 
Chemotherapy administration reduced tumor growth relative to control on days 6 
and 8. Compared with day 0, intercept, S1, and S2 were increased while slope was 
decreased on days 3, 6, and 8 in the treatment group. Compared with the control 
group, intercept, S1, S2, S3, and S4 were increased, and slope was decreased, on days 
3, 6, and 8 in the treatment group. Tumor cell density decreased significantly in the 
latter on day 3. We conclude that ultrasonic RF time series analysis provides a simple 
way to noninvasively assess the early tumor response to chemotherapy.

INTRODUCTION

Cancer has become a huge burden for our society. 
According to the GLOBOCAN 2012 estimates, there were 
about 14.1 million newly diagnosed cases of cancer and 
8.2 million cases of cancer-related deaths in the world [1]. 
Although more than half of the cancer patients receive the 
treatment of cytotoxic agents, marked tumor heterogeneity 
leads to variable responses even for tumors with the same 
staging and cytopathologic characteristics. Thus, it is crucial 
to accurately evaluate early tumor response to treatment in 
order to prevent unnecessary chemotherapy and for timely 
implementation of new therapeutic strategies.

Response Evaluation Criteria in Solid Tumors 
(RECIST) are the standard most often utilized to 
evaluate tumor response to chemotherapy, which relies 
on morphological measurements of tumor size based on 
CT or MRI examination [2]. However, reduction in tumor 
size often takes several weeks or months to be measurable 
after initiation of treatment. Functional imaging modalities 
have been used to detect alterations in the perfusion or 
metabolism of the tumors and often provide valuable 
information earlier during therapy [3-5]. However, these 
imaging techniques are variously limited by their cost, 
the patient’s risk of radiation exposure, and the need for 
contrast agents.

www.impactjournals.com/oncotarget/                      Oncotarget, 2018, Vol. 9, (No. 2), pp: 2668-2677

                   Research Paper



Oncotarget2669www.impactjournals.com/oncotarget

Changes in tumor metabolism, perfusion, receptor 
expression, and survival (apoptosis and/or necrosis) are 
common responses to chemotherapy that occur far earlier 
than changes in tumor volume [6]. Cancer cell death in 
the early stage of therapy has been demonstrated to be 
an effective indicator to predict treatment outcome in 
both preclinical and clinical studies [7, 8]. Currently, 
histological analysis is the standard methods to detect 
cancer cell death, however, this method needs to acquire 
tissue samples through biopsy which is invasive. Since 
effective treatment would lead to the reduction in cancer 
cell density, water apparent diffusion coefficient measured 
by diffusion-weighted magnetic resonance imaging (DW-
MRI) has been showed to be increased in the treatment 
responder in clinical studies [9, 10]. However, in order 
to evaluate tumor response to treatments, repeated and 
dynamic examinations are required which limits the 
clinical utilization of DW-MRI since the cost of MRI is 
relative high. Comparing with other imaging technique 
using in assessing tumor response to chemotherapy, 
ultrasonography has the advantages as no ionizing 
radiation, easy availability, portability and relative low 
cost of ultrasound equipment. Based on the analysis of 
the ultrasonic radiofrequency (RF) data, quantitative 
analysis of the ultrasonic spectrum has been employed 
to collect information of tissue microstructures. In 
previous studies, this noninvasive technique has been 
used to diagnose some disease such as the anisotropy of 
myocardial structures, ocular tumors, and prostate cancer 
and to evaluate cancer cell apoptosis caused by anticancer 
therapies in mice tumor models [11-16]. Our previous 
study showed that quantitative analysis of the ultrasonic 
spectrum could be used to evaluate tumor response to 
cytotoxic therapy by characterizing tumor microstructure 
changes [17]. Unlike ultrasonic spectral analysis of a 
single frame, ultrasound RF time series is calculated 
through analyzing sequence of RF echoes continuously 
acquired from one stationary tissue location within a few 
seconds. Previous studies showed that RF time series 
had higher accuracy, sensitivity, and specificity in tissue 
typing in comparison with spectrum analysis of only 
one frame of RF data [18]. Past research also showed 
that when a location in the tissue receives repetitive 
irradiation of sequential ultrasound, the signal of RF 
time series backscattered from the location would carry 
information regarding “tissue characteristic” [19], and 
that changes in the magnitude of RF signal over time in 
the sample location depend on tissue microstructure [20]. 
Although the mechanisms responsible for these effects 
are not fully understood, it has been shown that variations 
in ultrasound backscattering are related to changes in both 
ultrasound speed and tissue temperature which occurs 
in the course of the ultrasonic RF time series scanning 
procedure, and depend in turn on tissue properties [21]. 
Ultrasonic RF time series has been utilized for the 

diagnosis of breast and prostate tumors, and to monitor 
changes after tissue ablation, with promising preliminary 
results [22-24]. However, as far as we know, no study 
has so far been published addressing the application of 
ultrasonic RF time series in the evaluation of early tumor 
response to the treatment of cytotoxic agents. Therefore, 
this study aimed to assess whether ultrasonic RF time 
series could be used to assess early tumor response to 
conventional chemotherapy in a mice breast cancer 
models.

RESULTS

Assessment of tumor growth

Tumor volume didn’t significantly differ between 
control and chemotherapy-treated mice on days 0 and 3. 
On days 6 and 8, tumor volumes from treated mice were 
significantly smaller than control tumors (day 6: control 
group = 1.05 ± 0.38 cm3, treatment group = 0.59 ± 0.24 
cm3, P < 0.01; day 8, control group = 1.68 ± 0.78 cm3, 
treatment group = 0.59 ± 0.23 cm3, P < 0.01) (Figure 1).

Changes in ultrasonic RF time series features

Significant differences were observed when 
comparing RF time series features of tumors from 
treated and control mice on days 3, 6, and 8 (P < 0.05). 
Significantly increased intercept, S1, S2, S3, and S4 
values, as well as decreased slope, were registered 
for treated tumors (P < 0.01) at those three time points 
(Figure 2). Compared to baseline (day 0), intercept, 
S1, and S2 increased significantly, while the slope was 
significantly decreased (P < 0.01) on days 3, 6, and 8 in 
the treatment group. In contrast, no significant changes 
occurred in the 6 ultrasonic spectral features on days 3, 6, 
and 8 in the control group. We noticed that RF time series 
features demonstrated significant variations on day 3 after 
treatment, namely 3 days before differences in tumor size 
could be readily measured by conventional imaging.

Histological changes

In the control tumors, tumor cell density did not 
significantly differ on days 3, 6, and 8 in comparison with 
day 0, while in samples from the treated tumors, treatment 
with cisplatin and paclitaxel significantly decreased tumor 
cell density on days 3, 6, and 8 relative to day 0 (P < 
0.05). Compared with control, chemotherapy treatment 
significantly reduced tumor cell density on days 3, 6, and 
8. Additional microstructural changes, involving nuclear 
condensation and fragmentation were also revealed by 
H&E staining in tumor specimens from chemotherapy-
treated mice (Figure 3).
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Figure 1: Tumor volume changes. Summary bar graphs show that treatment with cisplatin and paclitaxel significantly reduced tumor 
growth on days 6 and 8 as compared with control tumors (*P < 0.01).

Figure 2: Changes in ultrasonic RF time series features. Intercept, S1, S2, S3 and S4 were significantly increased, and slope was 
significantly decreased in tumors from chemotherapy-treated mice compared with control tumors on days 3, 6, and 8 (*P < 0.01).

Correlation between ultrasonic RF time series 
features and histological results

A negative correlation was observed between tumor 
cell density and intercept (r = −0.84, P < 0.01), S1 (r = 
−0.84, P < 0.01), S2 (r = −0.70, P < 0.01), S3 (r = −0.66, 
P < 0.01), and S4 (r = −0.67, P < 0.01). In contrast, there 
was positive correlation between tumor cell density and 
slope (r = 0.67, P < 0.01) (Figure 4).

DISCUSSION

This study was designed to evaluate the feasibility 
of ultrasonic RF time series in the assessment of early 
tumor response to combination chemotherapy with 
cisplatin and paclitaxel in a subcutaneous breast cancer 
model in mice. With the use of tumor size and tumor cell 
nuclei density as end-point measurements, our results 
revealed that ultrasonic RF time series data showed good 
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Figure 3: Histopathological analysis of tumor cell density. (A) Bar graph summarizing changes in tumor cell density in control 
and treatment groups. (*P < 0.01). (B) Representative tissue micrographs showing substantially decreased tumor cell density in samples 
from chemotherapy-treated mice (T) as compared with control mice (C) receiving vehicle on days 3, 6, and 8. (Scale bars: 50 μm).

Figure 4: Correlation between tumor cell density and ultrasonic RF time series features. (A) slope (r = 0.67, P < 0.01). (B) 
intercept (r = −0.84, P < 0.01). (C) S1 (r = −0.84, P < 0.01). (D) S2 (r = −0.70, P < 0.01). (E) S3 (r = −0.66, P < 0.01). (F) S4 (r = −0.67, 
P < 0.01).
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correlation with longitudinal treatment response following 
chemotherapy. Whereas conventional imaging could 
detect the differences in tumor size by day 6, changes 
in ultrasound RF time series parameters were evident 
just 3 days after treatment. Paralleling these changes, 
histopathology revealed significant chemotherapy-induced 
alterations in tumor microstructure.

Early monitoring of tumor response to anticancer 
therapy is crucial to prevent further unnecessary therapy 
and to help determining new treatment choices. For a 
long time, the Response Evaluation Criteria in Solid 
Tumors (RECIST), which relies on CT- or MRI-based 
morphological measurements, has been widely applicated 
for evaluation of clinical responses [2, 25]. However, 
since the tumor shrinkage occurs late in the course of 
treatment, it is hard to be determined early tumor response 
to chemotherapy based on conventional radiographic 
modalities [26]. Therefore, there is a strong need to 
develop and validate reliable imaging techniques for this 
purpose.

Cancer cell death in the early stage of therapy has 
been demonstrated to be an effective indicator to predict 
treatment outcome in both preclinical and clinical studies 
[7, 8]. Owing to tumor cell death, tumor cell density 
would significantly decrease after treatment [27] and this 
reduction has become a hallmark of early tumor response 
to chemotherapy [6]. In this study, the decrease in tumor 
cell density was the most significant changes in tumor 
microstructure after treatment, which could be detected 
just 3 days following treatment initiation. Previous 
clinical studies showed that these changes were also 
found in breast cancer which was response to neoadjuvant 
chemotherapy [27, 28]. Due to the decrease in tumor cell 
density, apparent diffusion coefficient of water measured 
by diffusion-weighted MRI has been shown to be increased 
in patients with breast [29, 30] and ovarian cancers which 
was response to chemotherapy [10], soon after treatment 
(within 2–4 days) and before changes in tumor volume 
could be measureable. However, the application MRI in 
assessing tumor response to chemotherapy is limited due 
to its relative high cost.

Ultrasound imaging offers some major advantages, 
i.e. relatively low cost, wide availability and portability, 
and no risk of exposing to radiation in comparison to 
other imaging modalities utilized to assess tumor response 
to treatment. Ultrasound have been used for tissue 
characterization since the early 70’s by quantitatively 
analyzing the RF signal backscattered from the tissue [31]. 
The usefulness of ultrasonic spectrum analysis of single 
RF frame data in assessing tumor response to radiotherapy 
[15] and chemotherapy [32] has been investigated by 
parallel analyses of tissue microstructural changes. RF 
time series analysis, which is calculated through analyzing 
sequence of RF echoes continuously acquired from one 
stationary tissue location within a few seconds, has 

been proposed as a new tissue characterizing technique 
for tissue typing to enable cancer detection (18, 21, 23). 
Although both features extracted from RF time series 
and features of spectrum analysis are calculated from the 
ultrasound RF signals, the principles underlined above two 
means are different, as features of spectrum analysis are 
computed from only one single frame of RF data, while 
the features of RF time series are calculated from sequence 
of ultrasound RF echoes that originate from a constant 
tissue location and depth [18]. Hence, an advantage of RF 
time series analysis over single-frame spectrum analysis is 
that in the former there is no need for signal compensation 
to account for depth-dependent effects [33].

Ultrasound beams undergo scattering and will 
be absorbed by tissue when propagating through 
tissue.  Moradi and his colleagues proposed that when 
a location in the tissue receives repetitive irradiation 
of sequential ultrasound, the signal of RF time series 
backscattered from the location would carry information 
regarding “tissue characteristic”. Their study showed that 
compared to traditional ultrasonic spectral features and 
texture analysis of B-scan, RF time series was superior 
in detecting prostate cancer. The area under the receiver 
operating characteristic curve of RF time series was 0.87, 
which was significantly higher than traditional ultrasonic 
spectral analysis (0.78) and the texture analysis (0.72) 
[18]. The potential reasons underlining the improved 
performance might be due to the changes in temperature 
and sound speed caused by continuous sonification of the 
frame sequences [22]. The absorption of the mechanical 
energy of the ultrasound beams in the tissue will induce 
thermal effects and potentially cause a small increase 
in the temperature, which will change the ultrasound 
speed and induce a time shift in receiving the ultrasound 
signal backscattering from the tissue. The increase in the 
temperature due to ultrasound propagation depends on 
the thermal properties of tissue and varies from one to 
another [22].

Our study has several limitations. For instance, it 
was hard to exactly match the imaging plane on ultrasound 
system with the pathological section since the ultrasound 
transducer is much thicker than the histopathological 
section. However, as tumor microstructures seen on HE 
staining were mostly homogenous, this should have not 
led to significantly bias. Quantification of the ultrasonic 
features with three dimensional transducers which covered 
the whole tumor area could improve the definition of the 
features calculated from the sequential RF data to better 
correlate them with concomitant pathological changes. 
Second, ultrasound attenuation during propagating in 
the tissue was not made up for in the current study since 
tumors were located subcutaneously and we placed 
the ROI center at about 0.2 cm under the skin. It was 
reasonable to think the results would not be significantly 
changed even if the ultrasound attenuation of a 6 MHz 
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Figure 5: Experimental design. Five mice were randomly chosen for baseline evaluation prior to treatment. On days 3 and 6, 8 mice 
from the control group and 9 mice from the treatment (chemotherapy) group were sacrificed after ultrasound imaging and tumors were 
excised for histopathologic analysis. The same procedures were performed on day 8 on the remaining 16 mice (8 mice per group). T: 
treatment; C: control.

Figure 6: Analysis of ultrasonic RF time series features. (A) Samples of RF echo signals collected over time from a fixed tumor 
location under continuous emission of ultrasound. (B) Quantitative features included the slope and intercept of the linear regression of the 
frequency spectrum (red line), and the sum of the amplitude values in four different frequency bands (separated by green vertical lines on 
the graphs), namely S1-S4.
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transducer was compensated. Third, no comparison was 
made between ultrasonic RF time series and single frame 
spectrum analysis, although previous studies had showed 
that ultrasonic RF time series had higher accuracy, 
sensitivity, and specificity in tissue characterization 
compared with ultrasonic spectrum analysis of a single 
RF frame (18, 23, 33). Nevertheless, further studies are 
needed to fully characterize and compare the performance 
of these two imaging modalities during early assessment 
of chemotherapy response.

In conclusion, our preclinical study suggested 
that ultrasonic RF time series offered a simple way 
to noninvasively detect early tumor microstructure 
changes post chemotherapy with the use of a clinical 
ultrasound system. In line with previous reports, we 
propose that ultrasonic RF time series could be utilized 
for early evaluation of tumor response to conventional 
chemotherapy before changes in tumor volume become 
detectable without contrast agent injection.

MATERIALS AND METHODS

Cell line and tumor implantation

This study was approved by the Committee on 
the Ethics of Animal Experiments of the Sun Yat-Sen 
University and followed the Guide for the Care and 
Use of Laboratory Animals of the National Institutes of 
Health. The human breast cancer cell line MCF-7 was 
obtained from the State Key Laboratory of Oncology in 
Southern China. Cells were grown in DMEM (HyClone 
Co., UT, USA) supplemented with 10% fetal bovine serum 
(Gibco, Grand Island, NY, USA), penicillin (50 U/ml), 
and streptomycin (50 μg/ml) at 37°C in a humidified 5% 
CO2 atmosphere. For inoculation, approximately 5 × 107 
MCF-7 cells suspended in phosphate-buffered saline were 
injected subcutaneously into the right chest wall of 5- to 
6-week-old BALB/c female nude mice.

Experimental design

A total of 55 mice were used for the experiments. 
After implantation MCF-7 tumors were allowed to grow 
for 14 days, until their longest diameter reached ~8-10 
mm. The first-dose chemotherapy time point was referred 
to as day 0. At this point, 5 untreated mice were randomly 
chosen for ultrasonic examination, and their tumors then 
excised for histopathological analysis. The remaining mice 
were randomized into a treatment group (n = 26) and a 
control group (n = 24). The mice in the treatment group 
received combination chemotherapy with cisplatin (2 mg/
kg.d-1, Mayne Pharma Pty Ltd, Salisbury, Australia) and 
paclitaxel (10 mg/kg.d-1, Bristol-Myers Squibb, Italy) by 
intraperitoneal injection once daily for 3 days. The mice 
in the control group received vehicle (sterile saline) with 

the same timing and dosing schedule. After the last dose, 
ultrasound imaging was performed on days 3, 6, and 8. On 
days 3 and 6, 8 mice from the control group and 9 mice 
from the treatment group were sacrificed after ultrasound 
imaging and tumors were excised for histopathological 
analysis. On day 8, the same procedures were carried out 
in the remaining 16 mice (8 mice per group) (Figure 5).

Ultrasound data acquisition

Ultrasound imaging was performed on days 0, 3, 
6, and 8. Each mouse was anesthetized by intraperitoneal 
injection of pentobarbital sodium at a dose of 75 mg/kg 
(Sigma, St. Louis, MO, USA) before imaging. Centrifuged 
gel was used to minimize bubble formation in the gel and 
a stand-off gel pad was placed on the skin for scanning. A 
commercially available clinical ultrasound scanner, Sonix 
TOUCH (Ultrasonix Medical Corporation, Richmond, 
Canada) with an L14–5/38 ultrasound transducer at a 
center frequency of 6 MHz was used to simultaneously 
collect B-mode tumor images and RF data. For data 
acquisition, the ultrasound transducer was positioned such 
that the focal zone was at the same depth in each imaged 
specimen to control for any potential attenuation. All RF 
data were sampled with mechanical index of 0.25, frame 
rate of 33 Hz, dynamic range of 76 dB, and imaging depth 
of 2.5 cm. Imaging settings, including TGC, gain, power, 
and sampling rate were identical in all imaging sessions. 
The ultrasound probe and the tumors remained stationary 
in position for 10 seconds and a total of 330 RF data 
frames were digitally recorded at three different image 
planes for each tumor. All ultrasound examinations were 
performed by one radiologist (J.W.W), who was blinded to 
treatment status. The greatest longitudinal, transverse, and 
anteroposterior dimensions of tumors were registered each 
time by electronic caliper measurements available on the 
ultrasound system. Tumor volume was determined using 
the formula for a prolate ellipsoid: volume = π/6 × length 
× width × depth. The largest cross-section plane of the 
tumor was imaged with the transducer held manually in 
this position throughout the examination.

Features extraction from RF time series

Ultrasound RF time series analysis was performed 
by a radiologist (L.Q.G) who was blinded to treatment 
information. All the ultrasound RF data was analyzed 
with MATLAB-based (v. 2009a: MathWorks, Natick, 
MA, USA) software developed in our lab for ultrasound 
RF time series analysis. Rectangular regions of interest 
(ROI) were centered approximately at the focal depth of 
the transducer onto tumor images. Three representative 
ROIs were selected for each tumor sample and averaged 
for the final analysis.
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Temporal ultrasound RF echo signals collected from 
a fixed spot of tumor tissue formed one RF time series 
(Figure 6A). We use the method originally described by 
Moradi et al. which proposed summarizing the power 
spectrum of the RF time series in six features, as described 
below [21]. These six features were extracted from the 
amplitude of the Discrete Fourier Transformation (DFT) 
of RF time series averaged over an ROI. For analysis, a 
window of size M×N was selected to form RF time series. 
The power spectrum was averaged over the ROI and then 
normalized by dividing it by its maximum to obtain values 
in the range [0, 1]. This normalization process sets the 
maximum of the averaged spectrum to 1 and enables us 
to compare data from different ROIs. As all samples of 
one RF time series originated from the same depth of the 
tissue, there was no need for compensation of signals for 
depth-dependent effects. The normalized amplitude of the 
DFT can be described as:
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where fi is the amplitude of RF time series in point i,  
and Nt  is the amount of RF time series. We transform 
the RF time series fi  into F k( ) using the Fast Fourier 
Transform (FFT) algorithm as implemented in MATLAB. 
Then we average the spectrum over all RF time series 
corresponding to RF samples in one ROI. The averaged 
spectrum of the ROI (F kave ( )) is then normalized as 
follows:
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averaged spectrum to 1 and enables us to compare data 
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where L is the length of the RF time series. We also fit a 
regression line to values of the spectrum versus normalized 
frequency. The slope and intercept of the regression line 
are the remaining two features (Figure 6B).

Histopathological examination

At each time point after ultrasound imaging, mice 
were sacrificed and tumors were removed and fixed 
in 10% buffered formalin before paraffin processing. 
Tumor specimens were sectioned (5 μm) at the largest 
cross sections corresponding to the ultrasound imaging 
planes. Sections were stained with hematoxylin and 
eosin (H&E) and assessed microscopically for changes 
in cell morphology. Tumor cell density was measured 
by a team member (L.Q) who was blinded to treatment 
status. Regions with the highest tumor cell density in H&E 
stained sections were located by scanning the sections 
under 40 × magnification optics, and ten different fields 
within such regions were randomly captured at 400 × 
magnification. Image-Pro Plus 6.0 software (Media 
Cybernetics, Silver Spring, MD, USA) was used to 
calculate the number of nuclei in each histology image. 
Data were averaged over ten fields for statistical analysis.

Statistical analysis

All analyses were performed using SPSS version 
16.0 (SPSS, Inc, Chicago, IL). The Kolmogorov-Smirnov 
test was applied to evaluate normal distribution. The 
Levene test was applied to evaluate the homogeneity of 
variance. Independent student’s t-test was used to assess 
significance when comparing tumor sizes between treated 
and control mice. One-way analysis of variance (ANOVA) 
was used to determine whether significant differences in 
RF time series features and tumor nuclei density existed at 
the three imaging points between the treatment and control 
groups. The post-hoc Bonferroni corrected t test was 
performed for multiple comparisons to confirm differences 
between individual time points. The Pearson correlation 
test was used to determine the relationship between RF 
time series features and histopathological changes. P ≤ 
0.05 was considered as being statistically significant.
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